Results of ISS Type for Hysteretic Lur’e Systems: a Differential Inclusions Approach*

B. Jayawardhana†, H. Logemann‡, and E.P. Ryan§

1 Introduction

The paper comprises a study of absolute stability, input-to-state stability, and boundedness properties of a feedback interconnection of a finite-dimensional, linear, m-input, m-output system \((A, B, C)\) and a set-valued nonlinearity \(\Phi\). With reference to Figure 1, we assume that \(D\) is a set-valued map in which input or disturbance signals are embedded. The analytical framework is of sufficient generality to encompass feedback systems with hysteresis operators (that is, a causal rate-independent operator) in the feedback loop. To illustrate this, let \(F\) be a causal operator from \(\text{dom}(F) \subset L^1_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^m)\) to \(L^1_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^m)\), where \(\mathbb{R}_+ := [0, \infty)\), and consider the

*Based on research supported by the UK Engineering & Physical Sciences Research Council (Grant Ref: GR/S94582/01).
†Department of Discrete Technology and Production Automation, University of Groningen, 9747 AG Groningen, The Netherlands. Email: B.Jayawardhana@rug.nl
‡Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom. Email: hl@maths.bath.ac.uk
§Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom. Email: epr@maths.bath.ac.uk
feedback system (structurally of Lur’ë type), with input \(d \in L^\infty_{\text{loc}}(\mathbb{R}_+, \mathbb{R}^m) \), given by the functional differential equation

\[
\dot{x}(t) = Ax(t) + B(d(t) - (F(Cx))(t)).
\]

(1)

Assume that \(F \) can be embedded in a set-valued map \(\Phi \) in the sense that

\[
y \in \text{dom}(F) \implies (F(y))(t) \in \Phi(y(t)) \quad \text{for a.a. } t \in \mathbb{R}_+.
\]

If the input \(d \) is such that \(d(t) \in D(t) \) for almost all \(t \), then any solution of (1) is \textit{a fortiori} a solution of the feedback interconnection in Figure 1. In this sense, properties of solutions of the feedback interconnection are inherited by solutions of (1). Under particular regularity assumptions on \(D \) and \(\Phi \), generalized sector conditions on \(\Phi \), and positive-real conditions related to the linear component \((A, B, C)\), we establish input-to-state stability (in the sense of [10], but extended to differential inclusions) and boundedness properties of solutions of the system in Figure 1.

2 Set-valued nonlinearities and differential inclusions

A set-valued map \(y \mapsto \Phi(y) \subset \mathbb{R}^m \), with non-empty values and defined on \(\mathbb{R}^m \), is said to be \textit{upper semicontinuous} at \(y \in \mathbb{R}^m \) if, for every open set \(U \) containing \(\Phi(y) \), there exists an open neighbourhood \(Y \) of \(y \) such that \(\Phi(Y) := \bigcup_{z \in Y} \Phi(z) \subset U \); the map \(\Phi \) is said to be \textit{upper semicontinuous} if it is upper semicontinuous at every \(y \in \mathbb{R}^m \). The set of upper semicontinuous compact-convex-valued maps

\[
\Phi : \mathbb{R}^m \to \{ S \subset \mathbb{R}^m \mid S \text{ non-empty, compact and convex} \}
\]

is denoted by \(U \). Let \(D : \mathbb{R}_+ \to \{ S \subset \mathbb{R}^m \mid S \neq \emptyset \} \) be a set-valued map. The map \(D \) is said to be \textit{measurable} if the preimage \(D^{-1}(U) := \{ t \in \mathbb{R}_+ \mid D(t) \cap U \neq \emptyset \} \) of every open set \(U \subset \mathbb{R}^m \) is Lebesgue measurable: \(D \) is said to be \textit{locally essentially bounded} if \(D \) is measurable and the function \(t \mapsto |D(t)| := \sup\{ \|\xi\| \mid \xi \in D(t) \} \) is in \(L^\infty_{\text{loc}}(\mathbb{R}_+) \).

The set of all locally essentially bounded set-valued maps \(\mathbb{R}_+ \to \{ S \subset \mathbb{R}^m \mid S \neq \emptyset \} \) is denoted by \(B \). For \(D \in B, I \subset \mathbb{R}_+ \) an interval and \(1 \leq p \leq \infty \), the \(L^p \)-norm of the restriction of the function \(t \mapsto |D(t)| \) to the interval \(I \) is denoted by \(\|D\|_{L^p(I)} \).

The feedback system shown in Figure 1 corresponds to the initial-value problem

\[
\dot{x}(t) - Ax(t) = B(D(t) - \Phi(Cx(t))), \quad x(0) = x^0 \in \mathbb{R}^n, \quad D \in B,
\]

(2)

where \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{m \times n} \) and \(\Phi \in U \). By a solution of (2) we mean an absolutely continuous function \(x : [0, \omega) \to \mathbb{R}^n, 0 < \omega \leq \infty \), such that \(x(0) = x^0 \) and the differential inclusion in (2) is satisfied almost everywhere on \([0, \omega)\); a solution is \textit{maximal} if it has no proper right extension that is also a solution; a solution is \textit{global} if it exists on \([0, \infty)\). We record the following existence result (a consequence of, for example, [3, Corollary 5.2]).

Lemma 1. Let \(\Phi \in U \). For each \(x^0 \in \mathbb{R}^n \) and each \(D \in B \), the initial-value problem (2) has a solution. Moreover, every solution can be extended to a maximal solution \(x : [0, \omega) \to \mathbb{R}^n \) and, if \(x \) is bounded, then \(x \) is global.
3 Input-to-state stability: the main results

In the context of the differential inclusion (2), the transfer-function matrix of the linear system given by \((A, B, C)\) is denoted by \(G\), i.e., \(G(s) = C(sI - A)^{-1}B\).

We assemble the following hypotheses which will be variously invoked in the theory developed below. Recall that \(K\) is the set of all functions \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+\) that are continuous and strictly-increasing with \(\varphi(0) = 0\); \(\mathcal{K}_\infty \subset K\) is the set of all unbounded functions of class \(K\); \(\mathcal{K}\) is the set of all functions \(\beta : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+\) such that \(\beta(\cdot, t) \in K\) for each \(t \in \mathbb{R}_+\) and, for each \(r \in \mathbb{R}_+, \beta(r, t) \downarrow 0\) as \(t \to \infty\).

\((H1)\) There exist numbers \(a < b\) and \(\delta > 0\) such that
\[
\langle ay - v, by - v \rangle \leq 0 \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m,
\]
\(G(I + aG)^{-1} \in H_\infty\) and \((I + bG)(I + aG)^{-1} - \delta I\) is positive real.

\((H2)\) \(\Phi(0) = \{0\}\) and there exist numbers \(a > 0\), \(\delta \in (0, 1)\) and \(\theta \geq 0\) such that
\[
\frac{a}{2}\|y\|^2 \leq \langle y, v \rangle \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m,
\]
\[
\|v - a\delta y\| \leq \langle y, v - a\delta y \rangle \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m \text{ with } \|y\| \geq \theta
\]
and \(G(I + \delta aG)^{-1}\) is positive real.

\((H3)\) There exist \(\varphi \in \mathcal{K}_\infty\) and numbers \(b > 0\) and \(\delta \in [0, 1)\) such that
\[
\max \left\{ \varphi(\|y\|)\|y\|, \frac{\|y\|^2}{b} \right\} \leq \langle y, v \rangle \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m
\]
and \((\delta/b)I + G\) is positive real.

\((H4)\) \(\Phi(0) = \{0\}\) and there exist \(\varphi \in \mathcal{K}_\infty\) and a number \(\theta \geq 0\) such that
\[
\varphi(\|y\|)\|y\| \leq \langle y, v \rangle \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m,
\]
\[
\|v\| \leq \langle y, v \rangle \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m \text{ with } \|y\| \geq \theta
\]
and \(G\) is positive real.

Remark 2. (a) \((H1)\) is a set-valued version of the familiar multivariable sector condition. A routine calculation shows that (3) holds if and only if
\[
\left\| v - \frac{a + b}{2} y \right\| \leq \frac{b - a}{2}\|y\| \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m.
\]
(b) If \(m = 1\) (the single-input, single-output case), then the combined frequency-domain assumptions in \((H1)\) admit a graphical characterization in terms of the Nyquist diagram of \(G\) (see, e.g., [5, pp. 268]).

(c) Conditions (4) and (7) can be viewed as the limits of (3) and (6), respectively, as \(b \to \infty\).

(d) A sufficient condition for (6) to hold is the “nonlinear” sector condition
\[
\langle \varphi(y)\|y\|^{-1} y - v, by - v \rangle \leq 0 \quad \forall v \in \Phi(y), \forall y \in \mathbb{R}^m,
\]
which is (3) with the term ay replaced by $\varphi(y)\|y\|^{-1}y$ (which should be interpreted as taking the value 0 for $y = 0$). It is easy to construct counterexamples which show that (9) is not necessary for (6) to hold.

(e) If $m = 1$ and (4) holds, then (5) is trivially satisfied for any $\theta \geq 1$ and any $\delta \in [0,1)$. Similarly, if $m = 1$ and (7) holds, then (8) is satisfied for every $\theta \geq 1$.

(f) If (6) holds for some $\varphi \in K_\infty$ and for some $b > 0$, then $\Phi(0) = \{0\}$ and, furthermore, (8) is satisfied for any $\theta > 0$ satisfying $\varphi(\theta) \geq b$.

Definition 3. System (2) is said to be input-to-state stable with bias $c \geq 0$ if every maximal solution of (2) is global, and there exist $\beta_1 \in KL$ and $\beta_2 \in K_\infty$ such that, for all $x_0 \in \mathbb{R}^n$ and all $D \in B$, every global solution x satisfies

$$\|x(t)\| \leq \max \{\beta_1(\|x_0\|, t), \beta_2(\|D\|_{L^\infty([0,t])} + c)\} \quad \forall t \in \mathbb{R}_+.$$

System (2) is input-to-state stable if it is input-to-state stable with bias 0.

System (2) has the converging-input-converging-state property if, for all $x_0 \in \mathbb{R}^n$ and all $D \in B$ with $\|D\|_{L^\infty([t,\infty))} \to 0$ as $t \to \infty$, every maximal solution x of (2) is global and satisfies $x(t) \to 0$ as $t \to \infty$. The following lemma shows in particular that if system (2) is input-to-state stable, then it has the converging-input-converging-state property.

Lemma 4. Assume that system (2) is input-to-state stable with bias $c \geq 0$ and let β_1 and β_2 be as in Definition 3. Then, for all $x_0 \in \mathbb{R}^n$ and all $D \in B$, every global solution x of (2) satisfies

$$\limsup_{t \to \infty} \|x(t)\| \leq \limsup_{t \to \infty} \beta_2(\|D\|_{L^\infty([t,2t])} + c).$$

We now arrive at the main results on input-to-state stability (proofs of which can be found in [4]).

Theorem 5. Let the linear system (A, B, C) be stabilizable and detectable. Assume that (H1) holds. Then, every maximal solution of (2) is global and there exist positive constants c_1, c_2 and ε such that, for all $x_0 \in \mathbb{R}^n$ and $D \in B$, every global solution x satisfies

$$\|x(t)\| \leq c_1 e^{-\varepsilon t}\|x_0\| + c_2 \|D\|_{L^\infty([0,t])} \quad \forall t \in \mathbb{R}_+.$$

In particular, system (2) is input-to-state stable.

Theorem 6. Let the linear system (A, B, C) be minimal. Assume that at least one of hypotheses (H2), (H3) or (H4) holds. Then system (2) is input-to-state stable.

In [1] it has been proved, for single-valued Φ and D, that, if (H4) holds, then (2) is input-to-state stable. Therefore, Theorem 6 can be considered as a
generalization of the main result in [1].

In the following corollaries (to Theorems 5 and 6, respectively), we will consider not only nonlinearities satisfying at least one of the conditions (3), (4), (6) and (7) for all arguments \(y \in \mathbb{R}^m \), but also nonlinearities \(\Phi \in \mathcal{U} \) with the property that there exists a set-valued map \(\tilde{\Phi} \in \mathcal{U} \) satisfying at least one of the conditions (3), (4), (6) and (7) and a compact set \(K \subset \mathbb{R}^m \) such that

\[
y \in \mathbb{R}^m \setminus K \implies \Phi(y) \subset \tilde{\Phi}(y).
\]

(10)

In particular, single-input, single-output hysteretic elements can be subsumed by this set-valued formulation provided that the “characteristic diagram” of the hysteresis is contained in the graph of some \(\Phi \in \mathcal{U} \).

Corollary 7. Let the linear system \((A, B, C) \) be stabilizable and detectable. Let \(\Phi \in \mathcal{U} \) be such that there exist a set-valued map \(\tilde{\Phi} \in \mathcal{U} \) and a compact set \(K \subset \mathbb{R}^m \) such that (10) holds. Assume that (H1) holds with \(\Phi \) replaced by \(\tilde{\Phi} \). Then, every maximal solution of (2) is global and there exist positive constants \(c_1, c_2 \) and \(\varepsilon \) such that, for all \(x^0 \in \mathbb{R}^n \) and \(D \in \mathbb{B} \), every global solution \(x \) satisfies

\[
\|x(t)\| \leq c_1 e^{-\varepsilon t}\|x^0\| + c_2 (\|D\|_{L^\infty[0,t]} + E) \quad \forall t \in \mathbb{R}_+,
\]

where

\[
E := \sup_{y \in K} \sup_{v \in \Phi(y)} \inf_{v \in \tilde{\Phi}(y)} \|v - \tilde{v}\|.
\]

(11)

In particular, system (2) is input-to-state stable with bias \(E \).

Corollary 8. Let the linear system \((A, B, C) \) be minimal and let \(\Phi \in \mathcal{U} \) be such that there exist a set-valued map \(\tilde{\Phi} \in \mathcal{U} \) and a compact set \(K \subset \mathbb{R}^m \) such that (10) holds. Assume that at least one of the hypotheses (H2), (H3) or (H4) holds with \(\Phi \) replaced by \(\tilde{\Phi} \). Then system (2) is input-to-state stable with bias \(E \) given by (11).

4 Hysteretic feedback systems

We return to the feedback interconnection of Figure 1, but now in a single-input, single-output setting and with a hysteretic operator \(F \) in the feedback path. An operator \(F : C(\mathbb{R}_+) \to C(\mathbb{R}_+) \) is a hysteresis operator if it is causal and rate independent. Here rate independence means that \(F(y \circ \zeta) = (Fy) \circ \zeta \) for every \(y \in C(\mathbb{R}_+) \) and every time transformation \(\zeta \), where \(\zeta : \mathbb{R}_+ \to \mathbb{R}_+ \) is said to be a time transformation if it is continuous, non-decreasing and surjective. Conditions on \(F \) which ensure well-posedness of the feedback interconnection (existence and uniqueness of solutions of the associated initial-value problem) are expounded in, for example, [8] and [9]. The so-called Preisach operators are among the most general and most important hysteretic operators: in particular, they can model complex hysteresis effects such as nested loops in input-output characteristics. Therefore, and for clarity of presentation, we focus on the class of Preisach operators.

A basic building block for these operators is the backlash operator. A discussion
of the backlash operator (also called play operator) can be found in a number of references, see for example [2], [6] and [7]. Let $\sigma \in \mathbb{R}_+$ and introduce the function $b_\sigma : \mathbb{R}^2 \to \mathbb{R}$ given by

$$b_\sigma(v_1,v_2) := \max \{v_1 - \sigma, \min\{v_1 + \sigma, v_2\}\} = \begin{cases} v_1 - \sigma, & \text{if } v_1 < v_1 - \sigma \\ v_2, & \text{if } v_2 \in [v_1 - \sigma, v_1 + \sigma] \\ v_1 + \sigma, & \text{if } v_2 > v_1 + \sigma. \end{cases}$$

Let $C_{pm}(\mathbb{R}_+)$ denote the space of continuous piecewise monotone functions defined on \mathbb{R}_+. For all $\sigma \in \mathbb{R}_+$ and $\xi \in \mathbb{R}$, define the operator $B_{\sigma,\xi} : C_{pm}(\mathbb{R}_+) \to C(\mathbb{R}_+)$ by

$$B_{\sigma,\xi}(y)(t) = \begin{cases} b_\sigma(y(0),\xi) & \text{for } t = 0, \\ b_\sigma(y(t),(B_{\sigma,\xi}(u))(t_i)) & \text{for } t_i < t \leq t_{i+1}, i = 0, 1, 2, \ldots, \end{cases}$$

where $0 = t_0 < t_1 < t_2 < \ldots$, $\lim_{n \to \infty} t_n = \infty$ and u is monotone on each interval $[t_i, t_{i+1}]$. We remark that ξ plays the role of an “initial state”. It is not difficult to show that the definition is independent of the choice of the partition (t_i). Figure 2 illustrates how $B_{\sigma,\xi}$ acts. It is well-known that $B_{\sigma,\xi}$ extends to a

![Figure 2. Backlash hysteresis](image)

Lipschitz continuous hysteresis operator on $C(\mathbb{R}_+)$ (with Lipschitz constant $L = 1$), the so-called backlash operator, which we shall denote by the same symbol $B_{\sigma,\xi}$.

Let $\xi : \mathbb{R}_+ \to \mathbb{R}$ be a compactly supported and globally Lipschitz function with Lipschitz constant 1. Let μ be a regular signed Borel measure on \mathbb{R}_+. Denoting Lebesgue measure on \mathbb{R} by L, let $w : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ be a locally $(\mu_L \otimes \mu)$-integrable function and let $w_0 \in \mathbb{R}$. The operator $P_\xi : C(\mathbb{R}_+) \to C(\mathbb{R}_+)$ defined by

$$(P_\xi(y))(t) = \int_0^\infty \int_0^\infty (B_{\sigma,\xi}(y))(t) w(s,\sigma)\mu_L(ds)\mu(d\sigma) + w_0$$

$$\forall u \in C(\mathbb{R}_+), \forall t \in \mathbb{R}_+, \quad (12)$$

is called a Preisach operator, cf. [2, p. 55]. It is well-known that P_ξ is a hysteresis operator (this follows from the fact that $B_{\sigma,\xi}(u)$ is a hysteresis operator for every $\sigma \geq 0$). Under the assumption that the measure μ is finite and w is essentially bounded,
the operator \(P_\xi \) is Lipschitz continuous with Lipschitz constant \(L = |\mu|(\mathbb{R}_+)||w||_\infty \) (see [7]) in the sense that

\[
\sup_{t \in \mathbb{R}_+} |P_\xi(y_1)(t) - P_\xi(y_2)(t)| \leq L \sup_{t \in \mathbb{R}_+} |y_1(t) - y_2(t)| \quad \forall y_1, y_2 \in C(\mathbb{R}_+).
\]

This property ensures the well-posedness of the feedback interconnection.

Setting \(w(\cdot, \cdot) = 1 \) and \(w_0 = 0 \) in (12), we obtain the Prandtl operator \(P_\xi : C(\mathbb{R}_+) \to C(\mathbb{R}_+) \) defined by

\[
P_\xi(y)(t) = \int_0^\infty (B_{\sigma, \xi(\sigma)}(y))(t) \mu(d\sigma) \quad \forall u \in C(\mathbb{R}_+), \quad \forall t \in \mathbb{R}_+.
\]

(13)

For \(\xi(\cdot) = 0 \) and \(\mu \) given by \(\mu(E) = \int_E \chi_{[0,5]}(\sigma) \, d\sigma \) (where \(\chi_{[0,5]} \) denotes the indicator function of the interval \([0, 5]\)), the Prandtl operator (13) is illustrated in Figure 3. The next proposition identifies conditions under which the Preisach operator (12)

satisfies a generalized sector bound. For simplicity, we assume that the measure \(\mu \) and the function \(w \) are non-negative (an important case in applications), although the proposition can be extended to signed measures \(\mu \) and sign-indefinite functions \(w \).

Proposition 9. Let \(P_\xi \) be the Preisach operator defined in (12). Assume that the measure \(\mu \) is non-negative, \(a_1 := \mu(\mathbb{R}_+) < \infty \) and \(a_2 := \int_0^\infty \sigma \mu(d\sigma) < \infty \). Furthermore, assume that

\[
b_1 := \inf_{(s, \sigma) \in \mathbb{R} \times \mathbb{R}_+} w(s, \sigma) \geq 0, \quad b_2 := \sup_{(s, \sigma) \in \mathbb{R} \times \mathbb{R}_+} w(s, \sigma) < \infty
\]

and set

\[
a_P := a_1 b_1, \quad b_P := a_1 b_2, \quad c_P := a_2 b_2 + |w_0|.
\]

(14)

Then, for all \(y \in C(\mathbb{R}_+) \) and all \(t \in \mathbb{R}_+ \),

\[
y(t) \geq 0 \quad \Rightarrow \quad a_P y(t) - c_P \leq (P_\xi(y))(t) \leq b_P y(t) + c_P,
\]

(15)
\[y(t) \leq 0 \implies b_p y(t) - c_P \leq (P_\xi(y))(t) \leq a_p y(t) + c_P, \quad (16) \]

Furthermore, for every \(\eta > 0 \),
\[|y(t)| \geq c_P / \eta \implies (a_p - \eta)y^2(t) \leq (P_\xi(y))(t)y(t) \leq (b_p + \eta)y^2(t). \]

Let \(P_\xi \) be a Preisach operator, defined as in (12), satisfying the hypotheses of Proposition 9. Let \(a_p, b_p \) and \(c_P \) be given by (14) and define \(\Phi, \tilde{\Phi} \in \mathcal{U} \) by
\[
\Phi(y) := \left\{ v \in \mathbb{R} \mid a_p y - c_P \leq v \leq b_p y + c_P \right\}, \quad y \geq 0
\]
\[
\Phi(y) := \left\{ v \in \mathbb{R} \mid b_p y - c_P \leq v \leq a_p y + c_P \right\}, \quad y < 0.
\]

\[\tilde{\Phi}(y) := \left\{ v \in \mathbb{R} \mid (a_p - \eta)y^2 \leq vy \leq (b_p + \eta)y^2 \right\}, \]
where \(\eta > 0 \). In view of (15) and (16),
\[y \in C(\mathbb{R}_+) \implies (P_\xi(y))(t) \in \Phi(y(t)) \quad \forall \ t \in \mathbb{R}_+.
\]

Moreover, writing \(K := [-c_P / \eta, \ c_P / \eta] \), we have
\[\Phi(y) \subset \tilde{\Phi}(y) \quad \forall \ y \in \mathbb{R} \setminus K \quad \text{and} \quad E := \sup_{y \in \mathbb{R}} \sup_{v \in \Phi(y)} \inf_{\tilde{v} \in \tilde{\Phi}(y)} |v - \tilde{v}| = c_P.
\]

Let the linear system \((A, B, C) \) (with transfer function \(G \)) be stabilizable and detectable. Write \(a := a_p - \eta, \ b := b_p + \eta \) and assume that \(G/(1 + aG) \in H^\infty \) and, for some \(\delta > 0 \), \((1 + bG)/(1 + aG - \delta) \) is positive real. Then hypothesis (H1) holds with \(m = 1 \) and \(\tilde{\Phi} \) replacing \(\Phi \). We are now in a position to invoke Corollary 7 to conclude properties of solutions of the single-input, single-output, functional differential equation
\[
\dot{x}(t) = Ax(t) + B[d(t) - (P_\xi(Cx))(t)], \quad x(0) = x^0. \quad (17)
\]

We reiterate that, for each \(x^0 \in \mathbb{R}^n \) and \(d \in L^\infty_{\text{loc}}(\mathbb{R}_+) \), (17) has unique global solution. An application of Corollary 7 (with \(D(t) = \{d(t)\} \) for all \(t \in \mathbb{R}_+ \)) yields the existence of constants \(\varepsilon, c_1, c_2 > 0 \) such that, for every global solution \(x \),
\[
\|x(t)\| \leq c_1 e^{-\varepsilon t}\|x^0\| + c_2 \left(\|d\|_{L^\infty[0,t]} + c_P \right) \quad \forall \ t \in \mathbb{R}_+,
\]
showing in particular that (17) is input-to-state stable with bias \(c_P \). Furthermore, by Lemma 4,
\[\lim_{t \to \infty} d(t) = 0 \implies \limsup_{t \to \infty} \|x(t)\| \leq c_2 c_P. \]
Bibliography

