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Introduction 
 

Glioblastoma multiforme are aggressive brain tumors that grow rapidly with remarkable invasive properties 
[1]. Median survival for patients receiving optimal treatment (which includes surgical resection, radiation, and 
chemotherapy) is only about 12 months, with a very small chance of long term survival [2]. The dismal prognosis 
for patients diagnosed with glioblastoma has sparked considerable efforts, clinically and otherwise, to understand 
the progression of this disease [3-9]. Mathematical models and computational tools are increasingly being 
accepted in cancer research as aids for visualizing and integrating information, testing different mechanism 
hypotheses and suggesting optimal treatment strategies [10-18].  

 
The progression of a tumor is the ultimate outcome of several time and space dependent interacting processes 

which entail the combined intracellular and extracellular events that govern cell survival, proliferation, and 
migration, as well as angiogenic, inflammatory, and immune responses. Modeling and computations have already 
made significant headway by introducing quantitative abstractions of key signaling cascades (e.g., EGFR, 
VEGFR) that direct the cell’s response to extracellular stimuli at the micro-scale [19-21] as well as tumor 
evolution descriptions [18, 22-25] at the macro-scale. Brain tumor models are a subset of a broad spectrum of 
general tumor progression models that vary in their level of detail [26-30].  

 
Mathematically, one of the most sophisticated frameworks is the so called agent-based modeling. The key 

idea of this approach is to capture the evolution of a tumor as the result of the collective behavior of individual 
cells. In turn, the behavior of every cell is predicted by a set of rules parameterized by the level of key 
biochemical cues [18, 23]. However, mathematical and computational requirements have driven these initial 
attempts to use simplified descriptions of the temporal-spatial distribution of extracellular species, the 
intracellular events or both. In this work, we present a multi-scale agent-based model of describes the 
progression of a brain tumor (i.e., glioblastoma multiforme) by capturing in detail the interplay between 
the temporal-spatial distribution of key biochemical and the intracellular signaling pathways that 
determine the fate of every tumor cell. In the following sections we present a brief description of the 
model and the main simulation results. 

 
Model description 

 
We developed a multiscale/multiresolution integration of dynamic extracellular and intracellular 

environments to describe the progression of a brain tumor. The main focus of this work is to establish a model’s 
framework to describe tumor growth and invasion resulting from the proliferation and migration of individual 
tumor cells under biologically relevant conditions that consider both internal cell dynamics and the surrounding 
extracellular matrix. To achieve this goal, a large number of biochemical components of both the intra- and extra-
cellular domains were integrated to capture the principal characteristics of tumor progression. Specifically, we 
consider that the state of every tumor cell (i.e., proliferating, migrating, quiescent or necrotic) will be determined 
by the level of activation of the Ras-Raf-MEK-ERK cascade and the local glucose and oxygen levels. The Ras-
Raf-MEK-ERK cascade is triggered by the activation of the EGF receptor (EGFR) by the transforming growth 
factor α (TGFα) which diffuses from the blood vessels and also is produced by the necrotic tumor cells. The 
computational details of the various different components of the model are discussed below.  

 
We consider a 2D extracellular environment, glucose, oxygen and TGFα concentrations are assumed to be 

continuous fields (thus described by a set of PDEs) and the cells are treated as discrete entities that may occupy a 
lattice point on a regular square grid. Healthy cells are assumed to consume glucose and oxygen at a constant rate 



and are destroyed on contact by invading tumor cells. The parameters of extracellular model were collected from 
the open literature [18, 22, 38, 39] when available or estimated to fit the reported average glucose, oxygen and 
TGFα concentrations in the brain [40, 41]. Tumor cells also were assumed to modify the extracellular matrix, 
resulting in a decrease of the effective diffusion coefficients [42]. Blood vessel provided the necessary nutrients to 
the tumor cells, i.e., glucose, oxygen and TGFα. When encircled by proliferating tumor cells, vessels in the brain 
can become compressed and destabilized (vessel co-option) [43]. For simplicity reasons, it was assumed in our 
model that the tumor compresses a vessel when tumor cell proliferates into the space corresponding to the vessel. 
The vessel is then completely degraded and the tumor occupies the vessel space in its entirety. As stated above, 
tumor cells can be necrotic, quiescent, proliferating or migrating depending on the local concentration of glucose 
and oxygen and the activation level of their MAPK pathway. Viable tumor cells (i.e. non-necrotic cells) consume 
glucose and oxygen at higher rates than normal cells and produce TGFα at rate determined by intracellular 
signaling. Necrotic cells were assumed to be completely inert, simply occupying space. The intracellular MAPK 
pathway is represented by a set of ODEs [19] to calculate the TGFα dependent activation level of ERK and the 
amount of autocrine TGFα produced.  

 
Mathematically, the tumor growth process is mathematically represented by the following hybrid system of 

partial and ordinary differential equations, 
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where extraC  denotes the concentrations of extracellular species (i.e., the nutrients, growth factors, etc.), intraC  
denotes the concentration of the intracellular species and N their number (N = 14 in the current model). Ω  is 
defined as the computational domain of the PDEs and Γ  is the boundary of Ω . )(⋅Q  specifies the Neumann 
boundary condition. )(⋅S  and )(⋅R  
refer to production and 
consumption terms respectively. 

)(zD  is the diffusion coefficient 
which depends on the location of 
the tumor cells and if  are the right-
hand side functions of the ODEs 
describing the intracellular 
dynamics. 

 
The simulation is started with 

the system at steady-state with the 
tissue consisting of only normal 
cells, at which time, a small core of 
16 cancer cells (a 4×4 square) is 
introduced at the center of the 
domain. At every time step (Δt), the 
extracellular (PDEs) model is 
integrated to determine the glucose, 
oxygen and TGFα concentration 
profiles (see Fig. 1). These 
concentrations are inputs to the 
intracellular model for every cell, 
which is integrated to determine the 
ERK activation and the TGFα 
production rate, which then 
becomes an input to the PDE, which 
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 Figure 2. Simulation scheme of the multiscale tumor growth model. 
The tags close to the arrows (top-right box) indicate the governing 
variables for the transitions between phenotypes. Single and double 
head arrows indicate irreversible and reversible transitions, 
respectively. The simulation is terminated when a tumor cell reaches 
the border of the regular grid or the simulation time has been reached.  
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is integrated again until both the intracellular and extracellular models report the same value for TGFα. The 
phenotype of every cell is then determined depending on the level of glucose, oxygen and ERK activation and the 
position of cells and spatial dependent parameters are updated. The integration proceeds then in time until a 
cancerous cell reaches the boundary of the simulation domain or a pre-specified time limit is reached. The 
evolution rules to determine the phenotype of each cell are as follows:  
 

• The probability of a viable tumor cell to remain alive depends on the local glucose and oxygen 
concentrations; there is a high probability it will become necrotic if their levels drop below a pre-specified 
threshold.  

• If a viable cell “survives”, then its phenotype is decided by a biased random process depending on the 
strength of the ERK activation. The decision process assigns to the cell a higher probability to become (or 
remain) quiescent, migrate or proliferate for low, medium or high ERK levels, respectively; the 
phenomenological threshold values are based on experimental observations [44].  

• A cell that proliferates grows at a rate that depends on the glucose and oxygen concentrations; it will 
eventually divide if there is a free space in its neighborhood (i.e., not occupied by another cancer cell), 
otherwise it will become quiescent.  

• Similarly, a tumor cell with migrating phenotype can move only to a free space on its neighborhood. In 
order to select the direction where the cell will move, we are considering two mechanisms: the first one, 
called weak chemotaxis,  is similar to the biased random walk of [45] where the cell can move to any free 
space in its neighborhood with a probability parameterized by the glucose and oxygen levels. In the 
second one, called strong chemotaxis, is again a biased random walk were the cell movement is only 
allowed to free spaces where the glucose and oxygen concentrations are at least as high as in its current 
location.  

 
The motivation for exploring the effect of these mechanisms is the observation that trajectories of migrating 

glioblastoma cell lines in vitro range from practically random to very close to linear [46]. This difference in the 
migration mechanism results in significantly different tumor morphology as will be shown in the following 
section. 
 
Simulation results 
 

Several simulations were performed to assess the growth patterns generated by the model under various 
extracellular conditions. In our initial simulation, the domain included regularly-spaced blood vessels to allow the 

sensitivity analysis of the 
basic system parameters. 
We subsequently simulated 
the tumor evolution in a 
larger domain with an 
irregular blood vessel 
distribution (Fig. 2) and 
evaluated the effect of 
strong vs. weak chemotaxis. 
Herein we present the 
simulation results for the 
latest case, focusing 
primarily on the tumor size 
and shape. 
 

Fig. 3a shows a large 
domain simulation with an 
irregular distribution of 
blood vessels under weak 
chemotaxis conditions. It is 

 Figure 5. Spatial domain with irregular distribution of blood vessels. The graph at the 
right shows the initial oxygen concentration where the red spots correspond to the 
location of blood vessels. Tumor progression takes place in the central square 
whereas the surrounding is a buffer region. The vessels in the central square try to 
mimic the distribution of the vessels in the glioblastoma shown in the left picture.  

5. 



apparent that weak chemotaxis conditions lead to tumors with regular, compact, circular shapes irrespective of the 
distribution of blood vessels. The effects of the irregular domain can be seen in the varying thickness of the shell 
of viable cells, and in the irregular shape of the necrotic core. We point out that at the end of the simulation, four 
vessels have been degenerated. 

 
The results for the large domain simulation with irregularly distributed blood vessels and strong chemotaxis 

are shown in Fig. 3b. The majority of the tumor cells initially migrate to surround the closest blood vessel at day 
10 (No shown). The tumor core started growing at this location, destroying the vessel by day 14. Once the source 
of nutrients was eliminated, the cells immediately began to migrate away from this point towards other vessels. It 
appears that upon reaching a vessel, the migrating cells remain close to it until the vessel is destroyed, and then 
resume their search for a new vessel. In contrast to the weak chemotaxis simulations, the topology of the vessels 
network has a significant role on the shape of the tumor. When a blood vessel is destroyed, tumor cells 
surrounding that vessel must escape and migrate to another vessel to avoid becoming necrotic. This may create a 
discontinuous shell of viable cells, which can put necrotic tumor cells in direct contact with (probably also 
necrotic) normal cells. A fundamental insight achieved by comparing the simulations shown in Fig. 3a and b is 
that chemotaxis conditions dominate the invasive nature of a tumor, and that strong chemotaxis results in an 
aggressive and invasive tumor type, possibly similar to that of glioblastomas (compare with Fig 2). The model 
predicts a substantially higher growth rate of the tumor driven under strong chemotaxis conditions. It is evident 
that the effects of strong vs. weak chemotaxis are numerous and significant, and the evident differences between 
the two simulations are thought provoking. Whereas the compact tumor driven by weak chemotaxis reached only 
three vessels by day 40, the strong chemotaxis driven tumor reached all vessels within the domain by day 40. 
Lower TGFα levels were found in more invasive tumor, but since they were higher than the threshold needed to 
activate ERK, the lower levels did not decrease cell migration. While at day 40 the number of viable cells in both 
simulations was similar (the weak chemotaxis tumor had 7,642 viable cells and the strong chemotaxis tumor had 
8,138 viable cells), the number of necrotic cells was significantly greater in the strong chemotaxis tumor (8069 vs. 
1717) that in the weak chemotaxis tumor. The irregular shaped tumor has a much larger tumor/normal tissue 
interface compared to a circular shaped tumor. The significance of these differences raises the need for further 
investigation. 

Figure 3. Snapshots of the brain tumor growing on a irregularly-spaced blood vessels at day 40. Cell 
migration directed by weak chemotaxis (a) and by strong chemotaxis (b). 
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Conclusions 
  
The development of therapeutics for solid cancers requires a better understanding of tumor growth and 

progression. Tumor progression depends on the intricate interplay between biological processes that span multiple 
length scales from the molecular to the macroscopic. Mathematical modeling and computations can be efficiently 
used to organize and integrate the ever increasing experimental data as well as powerful tools to explore and 
generate new testable hypothesis. In this work we presented a multi-scale agent-based model to simulate the 
progression of a brain tumor. We used the model to explore hypothesis regarding the mechanisms by which tumor 
cell migrate. Simulations results suggest that ability of the migrating cells to sense the gradients of important 
biochemical cues such as nutrients and growth factors can be determinant in the invasive properties of the tumor. 
Furthermore, the model was able to produce in silico tumors with similar morphology to that of actual brain 
tumors. This model will be the starting point to construct a more complete model that includes more and more 
detailed descriptions signaling pathways (e.g., PI3K-Akt, PLCγ), tumor induced angiogenesis, 
pharmacokinetics/pharmacodynamics and its extension to a 3D space.   
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