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EXECUTIVE SUMMARY 

Naturalistic driving study is an innovative way of investigating traffic safety and driving 
behaviors.(1) The method is characterized by instrumenting participant vehicles with data 
acquisition systems (DAS) that include cameras and various sensors to continuously monitor 
the driving process.  This type of study can record detailed vehicle kinematic information as 
well as traffic conditions with advanced instruments such as radar.  The rich information 
collected by naturalistic driving study provides numerous advantages over the traditional 
accident-database-based analyses or driving-simulator-based studies. However, the 
complicated data collection process also demands novel approaches for data analyses and 
modeling. This study developed an integrated framework for modeling the safety outcomes of 
naturalistic driving studies and addressed several critical methodological issues.  Specifically, 
the following research questions were addressed: 1) how to extract exposure information for 
safety events and baselines (the study design), 2) how to measure and interpret safety risks, 
and 3) how to statistically model safety risks.   

The proposed method was applied to the 100-Car Study.(1) A total random baseline sampling 
scheme was adopted with a sample size of 17,344.  Two alternative statistical models, the 
generalized estimation equation and mixed-effect logistic regression, were used to incorporate 
driver-specific correlations and adjust for potential confounding effects.  The results indicate a 
certain level of discrepancy between the model-based approaches and the crude odds ratios.   

The Study Design and Measure of Risk 
The study design is concerned with how the safety outcomes are identified and how exposure 
information is extracted. The data collection process of a naturalistic driving study is prospective 
and is similar to a cohort study; but safety event and baseline identification follows a case-
control design. Thus the naturalistic driving study is analogous to the case-cohort type study as 
illustrated in figure 1.  The case-cohort is a two-stage study design in which the first step is to 
collect and save all relevant data and the second step is to extract information from the saved 
data for analyses. The case-cohort method combines the merits of both cohort and case-control 
studies. It is less prone to bias than a case-control study but is more efficient than a cohort study.  
As shown by this research, the case-based approach is the preferred method for analyzing 
naturalistic driving data unless full automated data reduction techniques are available.  
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(a) Case-cohort study data collection step 1: exposure information not extracted 

 
 

(b) Case-cohort study step 2: extract exposure information for case and control 

Figure 1. Diagram. Case-cohort study.  

There are three commonly used risk measures: risk ratio, odds ratio, and risk rate ratio (RRR).  
For most factors of interest, risk rate and RRR as measured by number of events per unit of 
exposure are most appropriate for naturalistic driving study.  However, the RRR is difficult to 
calculate due to the high cost of accurately extracting exposure duration information.  This study 
proposed to approximate RRR by odds ratio.  The approximation requires a combination of 
appropriate baseline sampling methods and statistical models.  It was shown that with a total 
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random baseline sampling method, the odds ratio will approximate the rate ratio. The sampling 
method is illustrated in figure 2, where PT+ and PT- is the exposure duration (person-time) for 
two exposure levels “+” and “-“; and B and D are the number of baseline line samples for each 
period.  The random sampling method satisfies the condition ஻

஽
ൌ ௉்ା

௉்ି
, which is the key to odds 

ratio to rate ratio approximation.  A stratified random re-sampling method, which shares the 
same properties as the total random sampling method, was implemented to combine an existing 
baseline data set and a new data reduction to generate a total of 17,344 baseline samples. 

 
Figure 2. Diagram. Random sampling scheme. 

Statistical Modeling and Results 
The statistical analyses focused on two issues: 1) to incorporate the correlation among 
observations from the same driver (the driver-specific correlation), and 2) to adjust for 
confounding effects through modeling.  Two logistic-regression-based models, the Generalized 
Estimation Equation method (GEE) and mixed effect logistic regression, were adopted to address 
those issues.  The models were applied to both the crashes and near-crashes. The modeling 
results are summarized in table 1 and table 2 and illustrated in figure 3 and figure 4. 

Table 1. Modeling results for crashes. 
 GEE Model Random  Effect  

Model 
Contingency Table:  
Crude Odds Ratio 

Factors Odds  
Ratio 

95% CI 
Low 

95% CI 
High 

Odds 
Ratio 

95% CI 
Low 

95% CI 
High 

Odds  
Ratio 

95% 
CI  

Low 

95% CI 
High 

Drowsy 6.35 3.38 11.91 6.31 3.30 12.08 7.12 3.94 12.87 
Weather: 
 Inferior versus 
Normal 

2.17 0.79 6.01 2.14 0.82 5.62 1.80 0.89 3.63 

Road Surface: 
 Other versus Dry 4.81 1.98 11.71 4.79 2.27 10.11 3.10 1.81 5.32 

Lighting:  
Other versus Day 1.04 0.58 1.86 0.97 0.57 1.65 1.41 0.86 2.29 

LOS B versus A 0.42 0.23 0.76 0.42 0.23 0.79 0.42 0.23 0.77 
LOS C versus A 0.89 0.38 2.08 0.89 0.39 2.02 0.89 0.40 1.99 
LOS DEF versus A 1.83 0.67 5.03 1.98 0.84 4.65 2.47 1.10 5.54 
Distraction:  
Complex versus Non 3.51 1.18 10.41 3.40 1.36 8.51 3.31 1.4 7.82 

Distraction: 
 Moderate versus Non 0.65 0.25 1.64 0.68 0.32 1.42 0.64 0.31 1.32 

Distraction:  
Simple versus Non 0.54 0.26 1.11 0.51 0.26 1.01 0.49 0.25 0.96 

Junction versus  
Non-Junction 5.89 3.51 9.86 6.05 3.71 9.85 5.38 3.35 8.64 

iii 



 

 
Table 2. Modeling results for near-crashes. 

 GEE Model Mixed  Effect  
Model 

Contingency Table:  
Crude Odds Ratio 

Factors Odds  
Ratio 

95% CI 
Low 

95% CI 
High 

Odds 
Ratio 

95% CI 
Low 

95% CI 
High 

Odds  
Ratio 

95% CI 
Low 

95% CI 
High 

Drowsy 3.67 2.69 5.01 3.5282 2.7040 4.6038 4.08 3.25 5.13 
Weather: 
 Inferior versus 
Normal 

1.94 1.22 3.10 1.8213 1.1792 2.8129 1.06 0.82 1.39 

Road Surface: 
 Other versus Dry 2.17 1.38 3.40 2.0419 1.4356 2.9042 1.43 1.15 1.78 

Lighting:  
Other versus Day 1.17 0.96 1.43 1.0372 0.8714 1.2344 1.12 1.03 1.40 

LOS* B versus A 1.18 0.98 1.43 1.1790 0.9724 1.4295 1.18 0.98 1.41 

LOS C versus A 4.06 3.17 5.20 3.9243 3.1674 4.8620 4.07 3.35 4.97 

LOS DEF versus A 4.99 3.63 6.87 5.3586 4.0405 7.1068 5.46 4.23 7.04 
Distraction:  
Complex versus Non 2.02 1.30 3.12 1.9514 1.3601 2.7997 1.85 1.34 2.57 

Distraction: 
Moderate versus Non 0.48 0.37 0.63 0.4844 0.3757 0.6244 0.46 0.36 0.58 

Distraction:  
Simple versus Non 0.33 0.25 0.42 0.2976 0.2332 0.3799 0.30 0.24 0.38 

Junction versus  
Non-Junction 3.36 2.74 4.12 3.4980 2.9576 4.1371 3.24 2.78 3.78 
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Figure 3. Graph. Crash odds ratios. 
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Figure 4. Graph. Near-crash odds ratios. 

The main findings are summarized as follows:  

• There are some discrepancies among results from the GEE, the mixed effect model, and 
the crude odds ratio estimation. The confidence intervals of the crude odds ratio are in 
general narrower than those from the two model-based approaches. However, this is 
considered as overly optimistic given that it ignores the driver-specific correlation and 
fails to adjust for potential confounding factors.   

• The GEE and mixed effect model can be used to evaluate the level of correlations among 
observations from the same driver.  The GEE analysis indicates that the marginal 
correlations among observations are weak.  The mixed effect logistic regression model 
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shows moderate variations among drivers.  This result is consistent with the fact that a 
small number of drivers contribute a large proportion of the safety events. The mixed 
effect model is preferred because of its connection with this individual variation.  

• The odds ratios for crashes are consistently larger than for near-crashes.  On the other 
side, the precision of the estimation for near-crashes, as measured by the length of the 
confidence interval, is substantially better than that for crashes.  This result has 
significant implications for using near-crashes as a safety surrogate for crashes.   

• Drowsiness will increase the risk of both crashes and near-crashes substantially (sixfold 
increase for crash and threefold increase for near-crash).  

• Inferior weather conditions will significantly increase the risk of near-crashes and also 
show a considerable impact on crashes.  

• Traffic densities show distinct patterns for crashes and near-crashes.  For crash risks, the 
Levels of Service [LOS] B and C, which represent a moderate level of interactions 
among vehicles, are not necessarily more dangerous than free flow condition (LOS A).  
This could be attributed to the increased driver vigilance.   However, LOS B and LOS C 
are associated with a high risk of near-crash.  For both crashes and near-crashes, high 
traffic density (LOS DEF) will lead to higher risks.  

• Complex secondary tasks will increase the risk of crashes by more than three times and 
the risk of near-crashes by two times.  The simple and moderate secondary tasks, on the 
other hand, show some level of protective effects for both crashes and near-crashes.   

• The highway junction is substantially more dangerous than the non-junction highway 
segment with a sixfold increase in crash risk and a threefold increase for near-crash.  

 
This study focuses on analysis methodology issues for naturalistic driving study.  The framework 
developed provides a solid theoretical justification for the case-based study method in 
naturalistic driving studies.  It addressed critical issues on how to measure risk, how to conduct 
data reduction, and how to model the reduced data statistically.  The framework can be directly 
applied to evaluate time-variant risk factors such as driver behavior and driving environmental 
factors.   
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CHAPTER 1. INTRODUCTION 

Naturalistic driving study is an innovative way of investigating traffic safety and driving 
behaviors. (1) The method is characterized by instrumenting participant vehicles with data 
acquisition systems (DAS) that include cameras and various sensors to continuously monitor 
the driving process.  This type of study can record detailed vehicle kinematic information and 
traffic conditions with advanced instruments such as radar.   The rich information collected by 
naturalistic driving study provides numerous advantages over the traditional accident-
database-based analyses or driving-simulator-based studies. However, the complicated data 
collection process also demands novel approaches for data analyses and modeling. This study 
developed an integrated framework for modeling the safety outcomes of naturalistic driving 
studies and addressed several critical methodological issues.  Specifically, the following 
research questions were addressed: 1) how to extract exposure information for safety events 
and baselines (the study design), 2) how to measure and interpret safety risks, and 3) how to 
statistically model safety risks.   

Highway crashes are one of the leading causes of death in the United States; there are more than 
40,000 deaths and approximately 2.5 million injuries annually that result from highway 
crashes.(2)  As a result,  safety has been a focus of transportation research for the last decade.  
Before the emergence of advanced data collection methods, accident databases and /police 
reports have been the main sources of traffic accident information.  There have been numerous 
efforts to establish the relationship between accident frequency and potential risk factors such as 
highway geometric features and traffic characteristics.  For this purpose, the accident data are 
commonly aggregated by intersection or highway segment.  Comparable with aggregated 
accident data, counting data models, such as Poisson and negative binomial regression models, 
have been the mainstream modeling techniques.(3,4)  Recently, more sophisticated models were 
developed incorporating spatial and temporal correlation and using full Bayesian framework.(5,6)   
 
One inherent drawback for aggregated analysis is that a large proportion of information for 
individual crashes was lost during aggregation.   Only those characteristics shared by all crashes 
within an aggregation stratum can be kept.  For example, in intersection safety analysis, the 
response is the number of crashes for each intersection. Only those properties shared by all 
crashes at a given intersection (such as intersection design and traffic characteristics) can be 
incorporated into analyses.  The risk factors for each crash, such as driver age, gender, vehicle 
type, etc., are different in most cases and thus cannot be considered as the attributes of 
aggregated crash counts. 

Only limited studies have considered traffic safety at the discrete/individual crash level.(7)  One 
critical issue in individual crash-based analysis is to find a proper control group and compare 
safety events with the control group.  In evaluating the effectiveness of electronic stability 
control (ESC), Dang(7) used the crashes that were not directly related to ESC as the control 
group; e.g., crashes involving a parked vehicle, a backing up vehicle, vehicles entering/leaving a 
parking lot, and vehicles with a speed lower than 10 mi/h.  The quantitative comparison of ESC 
frequencies in ESC-related crashes and non-ESC-related crashes was then used to evaluate the 
effect of ESC.  The individual crash-based analysis can incorporate more information than the 
aggregated method.  For this type of analysis, the appropriateness of the control group directly 
determines validity of the study and sometimes can be difficult to define.   
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The details and quality of data that naturalistic driving studies have provided are unprecedented.   
The video image and kinematic measures can provide not only the exact driving behavior, 
vehicle kinematic, and driving environmental information, but also the sequence and precise time 
stamp for each sub-event.   This high resolution information is not readily available from the 
accident database.  The traditional accident reconstruction techniques can recover some vehicle 
kinematic information but are often fragmentary and lack the exact time stamp for the sequence 
of events.  To make maximum use of the rich information collected, individual safety-event-
based analysis is preferred to the aggregated method.  

Drivers’ behavior is the main contributor to traffic safety events. However, accurately retrieving 
driver behaviors from post-accident reconstruction is challenging if not impossible.  The records 
from accident databases are primarily based on the statements from driver(s)/witness(es) and that 
information is often fragmentary and based on witness' perception and memory.(8) Accident 
reconstruction may suggest the driver’s behaviors before/during the crash but the results often 
tend to be speculative.  For this reason, many driver behavior studies are conducted in a 
controlled experimental environment or on a simulator.  However, the driver’s behavior in a 
simulator and in a controlled environment may substantially differ from behavior during natural 
driving conditions.  Therefore, simulator/controlled experiments cannot completely replace the 
field data collection.  The naturalistic driving study can overcome these challenges and provides 
an opportunity to quantitatively evaluate the safety impact of drivers’ behavior under natural 
driving conditions.  

Driver behavior, along with many other factors such as weather and traffic conditions, is time-
variant in that its status constantly changes over time.  Models based on aggregated data are 
difficult to be implemented for those time-variant exposures because the aggregation requires 
accurate exposure duration information for each factor, e.g., duration of each period when the 
driver is drowsy.  To extract this information is cost-prohibitive using the current data reduction 
method for naturalistic driving. The problem is further complicated when multiple factors are 
considered.  The lack of exact exposure duration information could be an obstacle for Poisson 
and negative binomial models, which are based on aggregated data and require exposure 
duration.  Therefore, the individual crash/discrete-based analysis method is preferred for 
analyzing naturalistic driving data.    

In this study, an integrated analysis framework was developed for modeling the safety outcomes 
of a naturalistic driving study based on individual safety events.  The focus is on time-variant 
risk factors.  The main components of this framework are addressed in the subsequent chapters.  
The overall structure of the report is as follows.   

• Chapter 2: the study design and some typical study design methods are introduced.  The 
merits of each design and their relationship with naturalistic driving study are discussed. 
In addition, various measures of risk and their relationship with the study design are 
discussed in detail. 

• Chapter 3: a random sampling scheme is introduced and implemented for the 100-Car 
Naturalistic Driving Study (100-Car Study).  
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• Chapter 4: several alternative models are introduced for the analysis of reduced data.  The 
method was applied to the reduced data from the 100-Car Study.   

• Chapter 5: summary and discussion.  





 

CHAPTER 2. STUDY DESIGN AND BASELINE SAMPLING SCHEME 

One primary goal of naturalistic driving study is to identify and evaluate factors with significant 
impacts on traffic safety, which is typically measured by number of crashes or crash surrogates. 
The study design is a critical component of naturalistic driving study.  It guides the overall data 
collection and analyses and essentially determines the validity of a study.  For a naturalistic 
driving study design, three major questions shall be addressed: 1) what is characteristic of the 
overall study design, 2) how to measure a risk, and 3) how the baseline information should be 
extracted.  In this chapter, several typical epidemiology study design methods were introduced 
and their relationship with naturalistic driving study was investigated.   

STUDY DESIGN 

Naturalistic driving study investigates the factors that affect traffic safety.  This is a direct 
analogy to epidemiology study whose focus is to evaluate factors affecting public health.  
Therefore, the naturalistic driving study design is similar to epidemiology design. The 
framework developed in this research is built upon epidemiology methods.   The study design 
determines how the exposure information and health/safety events should be collected/extracted.  
To a large extent, it also determines how the data should be analyzed.  The naturalistic study, by 
definition, does not involve direct intervention in the driving process; thus, it belongs to the 
observational study category.  Unlike experimental studies in which exposure/treatment can be 
controlled by researchers, the participants in an observational study decide their own exposure 
status.  Similarly, drivers in a naturalistic driving study determine their own driving behaviors. 
For example, a driver can make his/her decision on whether to use a cell phone during driving.  
Besides driving behaviors, the exposure status of potential risk factors such as environmental and 
traffic conditions cannot be controlled by researchers.  Therefore, the study framework was 
developed based on observational study methods.    

Because of the inability to control exposure status, observational studies are more prone to bias 
than experimental studies.  In an experimental study, interaction and confounding factors can be 
addressed through randomization or appropriate assignment of exposure status.  In observational 
studies, however, there is no guarantee that the effects of particular risk factors will be isolated 
from other factors.  For example, texting might always be associated with eyes-off-road and, in 
this case, the effects of texting cannot be separated from the effect of eyes-off-road.  Appropriate 
study design and data analysis methods can address those issues and are critical components of 
an observational study. 

In a naturalistic driving study, the participants drive vehicles in a non-obstructive driving 
environment and their driving behaviors, environmental factors, vehicle kinematic information, 
and traffic conditions are continuously recorded through multiple video cameras and various 
instruments. Safety events (such as crashes, near-crashes, and critical incidents) are identified 
through kinematic signatures of the vehicle and confirmed through visual inspection for video 
recordings.  The main objective of studying these safety events is to identify factors that have a 
significant impact on traffic safety.  This is done by comparing the exposure status of risk factors 
that are present before/during safety events and during normal driving conditions.   Following 
the convention of epidemiology research, the safety outcomes, i.e., crash and near-crash, are 
used interchangeably with cases; and the factors that might contribute to safety are used 
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interchangeably with exposures.  Besides cases, the exposure status under normal driving 
conditions is also required, which is called baselines/controls. The quantitative evaluation of risk 
will be conducted through the comparison of the exposure status between cases and baselines.    

The study design concerns how cases and baselines are selected and how exposure information is 
extracted.  Depending on the order in which exposure and cases are identified and the timeline of 
a study, there are three basic types of studies: the cohort study, the case-control study, and the 
cross-sectional study. The basic setup for each study design and their characteristics are 
introduced as following. 

The Cohort Study 

In a cohort study, exposure information is identified first, and safety/disease outcomes (either 
case or non-case) are identified subsequently.  A cohort is a group of individuals with similar 
exposure status.  For example, in traffic safety studies, there could be a teenage driver cohort and 
an adult driver cohort.  These two cohorts will be followed through the study period and the 
safety outcomes for each cohort (i.e., crash or no-crash) are identified through the course of 
study.  For time-variant exposures such as weather and traffic conditions, the membership of 
cohort will change over time.  A dynamic cohort is used to refer to a group of individuals with 
the same exposure status at a given time point/period.  As will become apparent later, the 
majority of the risk factors in naturalistic driving study rely on the dynamic cohort concept.  A 
schematic plot of cohort design is shown in figure 5.  

 
Figure 5. Diagram. Cohort study.   
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Compared to other types of observational studies, the cohort study is the least prone to bias.  The 
direction of the study, i.e., from exposure to health outcomes, allows the risk to be evaluated 
directly.  However, the cohort study usually requires a lengthy data collection period and the cost 
is high. For example, the Framingham Heart Study has lasted for decades.(9)  When historical 
exposure data are available, the cohort study can be relatively time- and cost-efficient and is 
commonly used in occupational disease studies. 
 
The Case-control Study 

In a case-control study, cases and controls are identified first and their corresponding exposure 
status is subsequently extracted.  A group of observations, i.e., controls, are selected to represent 
the general exposure status of the study population. In traffic safety studies, the cases will be the 
drivers who had experienced a safety event or the events themselves. The controls are the drivers 
without safety events or segments of normal driving process.  The risk factors are evaluated by 
comparing the exposure frequencies for cases and for controls.  A schematic plot for case-control 
study is shown in figure 6. 
 
Depending on how cases are defined, the controls can either be drivers without any safety events 
or a short period of normal driving process.  The selection of controls will determine the validity 
of a case-control study to a large extent.  The general principle for control selection is that 
controls should reflect the characteristics of the source population from which cases are derived.  
How to implement this principle in practice, however, is context-dependent.  Note that in a 
cohort study the cases are always derived from source population and thus are less prone to bias 
than a case-control study.  Improper control selection can lead to invalid conclusions in a case-
control study.  A thorough consideration for baseline selection scheme is critical for the success 
of a study.  
 
Another disadvantage for case-control study is that the design does not allow direct evaluation of 
risk. This is a serious weakness but can be addressed by using appropriate control selection 
scheme and risk measures.  This research uses a combination of baseline sampling method and 
statistical analyses to address the risk measurement issue.  The details will be discussed in a later 
part of this report. 
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Figure 6. Diagram. Case-control study.  

The Cross-sectional Study 

In a cross-sectional study, the cases and baselines as well as the corresponding exposure 
information are collected at a particular time point (or time period).   Many traffic safety studies 
belong to this category. For example, the crash happened during a specific time period and the 
corresponding traffic conditions and infrastructure characteristics in the same period can be 
collected in a cross-sectional study.  A regression-based analysis is commonly used to connect 
safety outcomes with the exposures status.   The cross-sectional method works best for those 
factors that do not change for a long period of time. In traffic safety studies, the road geometric 
design and traffic demand characteristics are examples of those measures.  Due to the relatively 
small number of crashes that happen at each location, the duration of the cross-sectional time 
window is usually several years long.  A schematic plot for the cross-sectional study is shown in 
figure 7. 
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Figure 7. Diagram. Cross-sectional study.  

The Case-cohort Study 

The cohort, case-control, and cross-sectional studies are the three primary observational study 
designs.  In addition to those three methods, several hybrid design methods have been proposed 
to mitigate the drawback of the individual study design.  The case-cohort is a hybrid design that 
combines the characteristics of both cohort and case-control study.   In a case-cohort study, the 
data collection follows the procedure of a cohort study.  However, the exposure status, or the 
original cohort, is not extracted at the beginning of the study as is the case for typical cohort 
studies.  Instead, the information is “saved” for future analyses.  There could be a number of 
reasons for this approach, e.g., the cost of identifying exposure status is too high, it is technically 
not practical to identify exposure status for a large number of samples, or the research questions 
are not full determined at the time of data collection.   After the data collection process, the 
analysis, however, follows that of a case-control study in which the cases/safety outcomes are 
identified retrospectively from the original cohort.   Instead of finding exposure status for all 
samples, only a subset (i.e., the controls) will be selected from the saved information.  By doing 
this, only a subset of saved data needs to go through the exposure status identification process, 
thus significantly reducing the corresponding data reduction cost.   
 
The case-cohort method combines the advantages of both cohort and case-control studies.  The 
case-cohort study guarantees the cases are from the study population, thus reducing bias 
associated with control selection as in a case-control study.  At the same time, since only a small 
proportion of the study population needs to be examined for exposure status, the associated cost 
is much lower than that of the cohort study.   However, the case-cohort cannot totally eliminate 
the weakness of cohort and control studies, e.g., duration of the data collection cannot be 
reduced.  At the same time, caution is still needed in selecting the control from the study 
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population; that is, the controls should still represent the characteristics of the general population.  
As will be discussed later, the selection of control also depends on the risk measures used and the 
modeling approach. The two-step procedure of case-cohort is illustrated in figure 8. 
 

 
 

(a) Case-cohort study data collection step 1: exposure information not extracted 

 
 

(b) Case-cohort study step 2: extract exposure information for case and control 

Figure 8. Diagram. Case-cohort study.  

Case-crossover Design 

Case-crossover sampling is a matched sampling scheme for which a given number of baseline 
samples are selected for each case by matching certain conditions.  The case-crossover method 
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requires that baseline samples have the same potential confounding/interaction factors as the 
case, such as driver, location, time of day, and weather conditions.  In a case-crossover, the 
matching factors for a case are extracted first.  The controls are then identified by matching those 
factors with the case.  This procedure guarantees that the case and control have the same 
exposure for matched factors.  Thus, the confounding/interaction factors are controlled through 
sampling.  The case-crossover design is suitable for short exposures with transient effects such as 
drowsiness and inattention.   
 
There are some disadvantages for case-crossover design.  The matching process can be 
technically difficult. There are situations where no sufficient qualified baselines can be 
identified.   Due to the matching scheme, the observations for each matched set shall be 
considered as not independent.  Therefore, the analysis requires more sophisticated models.  
Furthermore, the baseline samples from case-crossover can only serve the specific analyses and 
are difficult to use in other studies.   A schematic plot of the case-crossover design is shown in 
Figure 9. 
 

 
Figure 9. Diagram. Case crossover study. 
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NATURALISTIC DRIVING STUDY AND ITS DESIGN CHARACTERISTICS 

Naturalistic driving study is characterized by its minimized interference with the driving process 
and the massive amount of information collection.  Consequently, the study is an observational-
type study.  The data collection process can be considered as a plain recording of reality for the 
next step analysis.  The rich information collected by naturalistic driving study allows various 
research questions to be answered.  In term of study design, the naturalistic driving study data 
collection is perspective-type study but in itself does not constitute one specific study design.  
The reason is that a study design usually targets specific research questions, which is generally 
not fully determined at the beginning of data collection.  There could be several alternative study 
designs for a given research question.   The thorough information collected through naturalistic 
driving study provides great flexibility in study design.  
 
There are some distinct characteristics for naturalistic driving studies.  The data are collected 
prospectively; that is, all relevant exposure information will be recorded regardless of future 
safety outcomes.  From this viewpoint, it has the characteristics of a cohort study.  The 
participants for a study are usually fixed and it is a fixed population study.  The cohort refers to a 
group of individuals with identical exposure status.  This is easy to define for time-invariant 
exposures such as driver genders and vehicle type; e.g., a cohort of male drivers and a cohort of 
sedans.   The cohort is difficult to be defined for time-variant exposures such as driver behavior, 
weather conditions, and traffic conditions.  Those exposures will change over time and one 
participant driver might be in a drowsiness cohort during one period of time and in a non-
drowsiness cohort during another time period.  The concept of dynamic cohort is used to refer to 
a cohort of participants who belong to a certain exposure group but might change their 
membership.  A dynamic cohort consists of participants at a certain exposure status for a given 
time point.   
 
An analysis based on dynamic cohort is commonly measured by risk rate, which requires the 
knowledge about the duration for each exposure level.  While the advances in technology may 
allow those durations to be calculated automatically in the future, this is obviously cost-
prohibitive given that current data reduction relies primarily on manual data reduction by trained 
data reductionists.  Therefore, a standard cohort-type analysis is not practical. Instead, case-based 
approaches are more appropriate.   
  
The case-based approach follows the general framework of a case-control study design.  For 
naturalistic driving data, the first step is to identify safety outcomes from the continuously 
recorded kinematic and image information.  The current Virginia Tech Transportation Institute 
(VTTI) practice is to use kinematic triggers (e.g., abnormally high deceleration rate or yaw rate, 
etc.) to identify segments potentially being related to safety events.  A visual inspection is then 
followed to each trigger to confirm the safety outcome.(10)  The safety outcomes are analogous to 
cases for a case-control study.   Similarly, a set of controls needs to be selected.  In the context of 
a naturalistic driving study, the controls are segments of driving records for normal driving 
conditions.  The exposure statuses for both cases and controls are extracted. The comparison of 
exposure statuses for cases and controls allows quantitative measure of the risk associated with 
each exposure.  
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The case-based approach for analyses of risk factors from naturalistic driving study is 
fundamentally different from a standard cohort study.  Although the exposure data were 
collected in the data collection process, they were not extracted immediately.  Instead, the raw 
data were simply stored and the exact exposure information is extracted later through the data 
reduction process.  This is more analogous to the case-cohort type study.  There are several 
alternative design methods for the case-based approach, including random baseline sampling and 
the case-crossover design method.  The random baseline sampling method was adopted in this 
report and will be discussed in detail in Chapter 3.    
 
MEASURE THE RISK OF EXPOSURE FACTORS  

The output from an observational study can be conveniently arranged in a contingency table 
form although the interpretation can be dramatically different.   For a simple dichotomous 
exposure factor, the output contingency table has the general form as shown in table 3. 
 

Table 3. Output of observational study. 

 E+ E- Total
Crash A B A+B 
No crash C D C+D 
Total A+C B+D A+B+C+D

 
In the above table, the exposure is assumed to have two levels:  E+ and E-.  For example, E+ 
could represent young drivers or inferior weather conditions and E- could represent adult drivers 
or normal weather conditions.  In the first case, the value “A” is the number of young drivers 
having a crash during the study period and B is the number of adult drivers having a crash. The 
value C is the number of young drivers without a crash and D is the number of adult drivers 
without a crash.    
 
The main difference among study designs is how the marginal sample size is determined.  For 
cohort study, the sample size for each cohort is predetermined.  That is, the numbers A+C and 
B+D are predetermined before data collection.  For case-control study, the number of controls 
(i.e., the row marginal) is predetermined; e.g., A+B (the number of cases) is observed from the 
study and C+D (the number of controls) is predetermined.  For cross-sectional study, the total 
sample size, A+B+C+D, is predetermined.  This difference has a significant implication on what 
types of risk measures can be calculated.  The details are discussed in the following section on 
risk measures.    
 
The ultimate goal of the study is to establish the relationship between exposure and the safety 
outcome, commonly measured by crashes.  At the same time, it is desirable to measure the 
magnitude of the impacts of risk factors to safety. Thus, a quantitative measure of risk is desired.  
Depending on the study design and nature of safety outcomes, three different measures can be 
used: the risk, the odds, and the rate.   
 
Risk  

Risk is the probability of crash for a specific factor (or combination of factors) over a specific 
period of time.  As a probability measure, the risk is always between zero (i.e., no risk) and 1.  
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Risk is commonly evaluated by the relative frequency of cases in each cohort and can be directly 
calculated from the cohort study.   Following table 3, the risk for the E+ cohort is A/(A+C), 
which is the relative frequency of crash for the E+ group; similarly, the risk for the E- cohort is 
B/(B+D).  The risk has the direct interpretation of the probability of crash given exposure status; 
e.g., the risk for teen drivers is the probability of teen drivers having a crash.  
 
Note that in a case-control study, the risk cannot be directly calculated since the total number of 
observations for the exposure group (A+C and B+D) is not predetermined.  Instead, the numbers 
of cases and controls are observed/determined in advance; i.e., A+B and C+D.  Therefore, 
A/(A+C) does not represent the risk for E+ group.  The meaningful measure is the relative 
frequency A/(A+B), which is corresponding to the probability of exposure given that  there was a 
crash.   This measure is not as attractive as the risk of crash for a given exposure level.  For 
example, the value A/(A+C) represents the probability that the driver is a teenager given that 
there is an accident.   This is, of course, of less interest for the researcher and the general public 
than is the risk measure from cohort studies. 
 
The risk is associated with the duration of the study period.  For example, the risk of having a 
crash in 10 years will be much higher than the risk of having a crash in 1 year. For this reason, 
risk requires accurate information about the time at risk, i.e., the driving time or mileage.  This 
can be challenging for time-variant factors.  
 
Comparison of the relative risk of two exposure levels can be done through the comparison of 
the risk. Some commonly used measures include:  
 
1. Risk ratio (RR) for cohort st  udy

ܴܴ ൌ
ܧ|݇ݏܴ݅ ൅
ܧ|݇ݏܴ݅ െ ൌ

ܣሺ/ܣ ൅ ሻܥ
ܤሺ/ܤ ൅  ሻܦ

The neutral value is 1, which indicates that there is no difference in the risk of the exposure and 
non-exposure groups.  An RR greater than 1 indicates elevated risk and a RR of less than 1 
indicates a protective effect or a lessening of risk. Note that this value differs from that based on 
the case-control study.  
 
2. Risk difference (population attributable risk) 

Risk difference ൌ ܧሺ|݇ݏܴ݅  ൅ሻ െ െሻܧሺ|݇ݏܴ݅  ൌ
ܣ

ܣ ൅ ܿ െ
ܤ

ܤ ൅  ܦ

 

 
A zero value risk difference implies there is no difference for the two exposure levels.  
 
Odds 

Odds are another measure of uncertainty.  The odds are defined as the ratio of the probability that 
an event will occur to the probability .,   that an event will not occur; i.e

ݏ݀݀݋ ൌ
݌

1 െ ݌ ൌ
ሻݎݑܿܿ݋ ݈݈݅ݓ ݐ݊݁ݒܧሺ݌

  ሻݎݑܿܿ݋ ܱܶܰ ݈݈݅ݓ ݐ݊݁ݒܧሺ݌
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For a cohort study with the notation in table 3, the odds for young drivers to have a crash is  

൅ൌܧ|ݏܱ݀݀
ܲሺܿܧ|݄ݏܽݎ ൅ሻ

݋ሺ݊݌ െ ܧ|݄ݏܽݎܿ ൅ሻ ൌ
ܣ

ܣ ൅ ܥ
ܥ

ܣ ൅ ܥ
ൌ

ܣ
 ܥ

 

 
S
 
The two exposure levels can be compared using an odds ratio.  The odds ratio can be calculated 
as   

imilarly, the odds for adult drivers are B/D.   

ܴܱܴ ൌ
ܧ|ݏܱ݀݀ ൅
ܧ|ݏܱ݀݀ െ ൌ

ܥ/ܣ
ܦ/ܤ ൌ

ܦܣ
ܥܤ  

 

 
Note that the equation above is based on risk measure from cohort study, thus commonly known 
as the risk odds ratio (ROR).   
 
The odds ratio for case-control study has a different interpretation from the cohort study. 
Because the total numbers of cases and controls are fixed, the odds are based on the probability 
of exposure conditioning on case or control; that is, the probability of exposure given a 
crash/control has happened.  The probability of exposure is apparently less attractive than the 
risk probability in a cohort study.  The odds ratio calculation for case-control study is shown 
below.  

݁ݏܽܿ|ݏܱ݀݀ ൌ
ܲሺܧ ൅ ሻ݄ݏܽݎܿ|
݌ ൌ

ܣ
ܣ ൅ ܤ

ܤ ൌ
ܣ
ܧሺ ܤ െ ሻ݄ݏܽݎܿ|

ܣ ൅ ܤ
ܥ

ܥ ൅ ݈݋ݎݐ݊݋ܿ|ݏܱ݀݀ܦ ൌ
ܲሺܧ ൅ ሻ݈݋ݎݐ݊݋ܿ|

ൌ
ܥ
ܧሺ݌ ܦ െ ሻ݈݋ݎݐ݊݋ܿ| ൌ ܦ

ܥ ൅ ܦ
ܴܱܧ ൌ

݁ݏܽܥ|ݏܱ݀݀
݈݋ݎݐ݊݋ܥ|ݏܱ݀݀ ൌ

ܤ/ܣ
ܦ/ܥ ൌ

ܦܣ
 ܥܤ

The odds ratio for case-control is based on the probability of exposure; thus, it is named the 
exposure odds ratio (EOR).  Although there are fundamental differences between risk odds ratio 
and exposure odds ratio, the formulas are identical.  Under appropriate conditions, the exposure 
odds ratio can be used to approximate the risk ratio.  
 
Risk Rate  

The risk and odds ratios are based on probability measures. As discussed previously, the 
probability has to be considered for a specific period.  To compare two exposure levels, the 
exposure duration for those two levels should be equal or comparable.  For example, to compare 
young drivers and adult drivers, the driving time for each driver should be comparable.  This is 
not necessarily true for naturalistic driving study where different drivers drive different amounts 
and distances.  Furthermore, the driving behaviors and driving environments are constantly 

15 



 

changing over time. For the dynamic cohort defined from time-variant exposures, it is 
challenging to conduct the comparison he rate and rate ratio are 
more appropriate in this c R ) is defined as  

based on probability measure. T
ontext.  The risk rate and risk rate ratio (R R

൅ൌܧ|݁ݐܴܽ
ܧ ݎ݁݀݊ݑ ݐ݊݁ݒ݁ ݂݋ ݎܾ݁݉ݑ݊ ൅

ܯ ܧ  ൅݈݅݁ݏ ሺ݁݉݅ݐሻݎ݁݀݊ݑ ݈݀݁݁ݒܽݎݐ  

െൌܧ|݁ݐܴܽ
ܧ ݎ݁݀݊ݑ ݐ݊݁ݒ݁ ݂݋ ݎܾ݁݉ݑ݊ െ

ܧ ݎ݁݀݊ݑ ݈݀݁݁ݒܽݎݐሻ݁݉݅ݐ െ

 

ሺ ݏ݈݁݅ܯ  

 
݋݅ݐܴܽ ݁ݐܴܽ ݇ݏܴ݅       ൌ ோ௔௧௘|ாା

ோ௔௧௘|ாି
  

 
Higher risk rate is associated with increased risks.  Similar to risk and odds, the RRR can be used 
to evaluate a particular factor.  For example, the RRR for driver distraction versus no distraction 
can be used to evaluate the safety impact of driver distraction.  Under certain conditions the RRR 
can be approximated by the EOR, which will be discussed later.  
 
Baseline Exposure Information  

The typical first step in analyzing naturalistic driving data is to identify safety events; i.e., crash, 
near-crash, or critical incident. After the safety events have been identified, data reduction is then 
conducted to extract information on driver behaviors and driving environments before and during 
the events.  However, as illustrated below, the exposure information for events alone is not 
sufficient for quantitatively evaluating the safety impact of a risk factor. This is partly due to the 
stochastic nature of a safety event.  
 
The occurrence of safety outcomes is random: even driving under the influence does not 
necessarily lead to an a crash every time. It is compelling to use the frequency of an exposure 
factor before crashes to evaluate its safety impact, in which case a higher exposure frequency 
would indicate elevated risk for that factor.  This seemingly reasonable approach actually does 
not reflect the true impact of a risk factor due to the lack of baseline driving conditions.  The 
following hypothetical example illustrates this idea.  Assume that 100 crashes were identified in 
a study and it was found that in 95 of them the drivers were listening to the radio and in 5 out of 
the 100 crashes the drivers were in a severely drowsy condition.  In this very-likely-to-happen 
scenario, one could incorrectly conclude that listening to the radio is more dangerous than severe 
drowsiness.  The reason for this counterintuitive result is that an observed high exposure 
frequency during crash could be due to its high frequency during normal driving conditions.  For 
example, if it was found that under normal driving conditions drivers will listen to the radio 95% 
of the time, then the fact that 95 out of l00 people involved in a crash were listening to the radio 
could be purely due to randomness.  On the other hand, if virtually no severe drowsiness 
occurred under normal driving conditions, the five drowsiness cases would indicate a strong 
association between crashes and drowsiness.  To evaluate the safety impact of a risk factor, the 
exposure status under normal driving conditions is also necessary.  Therefore, there is a need to 
extract exposure information under normal/non-crash driving conditions.  This is done through 
baseline sampling.  The appropriateness of the baseline sampling scheme has a critical impact on 
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the validity of the analysis.  In this report, a random sampling scheme stratified by participant 
drivers is used.  Its theoretical foundation and implications will be discussed in Chapter 3.  





 

CHAPTER 3. A RANDOM SAMPLING SCHEME FOR BASELINE REDUCTION 

Chapter 2 concluded that the overall analysis framework for naturalistic driving study is 
analogous to a case-cohort type epidemiology study.  The data collection follows that of a cohort 
study while the analysis is based on case-control study.  In a case-based approach, the safety 
events are identified after the data collection has finished. The controls, which represent the non-
event, normal driving conditions, are selected subsequently.  The selection of baseline is critical 
to the validity of the study.  It is argued that the baseline sampling scheme should be considered 
in conjunction with appropriate risk measures and corresponding statistical models.  In this 
study, it is proposed that the appropriate measure of risk for naturalistic driving study is the 
RRR.  By using a random baseline sampling scheme the odds ratio can be used to approximate 
the RRR.  The details of the development are discussed in this chapter.  

The advantage of naturalistic driving study lies in the number of variables that can be collected.  
In particular, the video recordings can be used to assess driver behaviors which are difficult to 
retrieve from accident databases.  The driver behaviors, however, change constantly over the 
driving process.  Due to this time-variant property, the exposure status for a safety event is 
typically identified a short moment before the event. For example, the driver’s behavior and 
environmental factors were identified within 6 s before the onset of a safety event.(1)   To assess 
the exposure status of controls (which represent the exposure status under normal driving 
conditions), the critical question is where those controls should be located.   This problem should 
be considered in conjunction with the risk measure adopted.  
 

As discussed in the measure of the risk, it is difficult to assign probabilistic risk measures for 
time-variant exposures such as distraction and traffic conditions.  A proper measure is the RR 
under each exposure level.  An example using drowsiness is shown in figure 10.  The exposure 
status is categorized into two levels: drowsiness and non-drowsiness.  When the length of a 
segment is sufficiently small, the exposure status in this segment can be considered as 
homogeneous and can be categorized into either drowsy period or non-drowsy period.  
Conceptually, all the drowsy driving periods can be pulled together and all the non-drowsy 
driving periods can be pulled together.  Thus the whole driving period can be divided into two 
exposure levels: the drowsy period and the non-drowsy period.  As illustrated in figure 10, the 
length of the drowsy period is represented by the red bar on the left and the non-drowsy period is 
represented by the blue bar on the right.  The red stars represent crashes.  In this setup, the crash 
rates for drowsy and non-drowsy exposure are:    

ݕݏݓ݋ݎܦ|݁ݐܴܽ ൌ
݀݋݅ݎ݁݌ ݕݏݓ݋ݎ݀ ݃݊݅ݎݑ݀ ݀݁݊݁݌݌݄ܽ ݏ݄݁ݏܽݎܿ ݂݋ #

݀݋݅ݎ݁݌ ݕݏݓ݋ݎ݀ ݂݋ ݊݋݅ݐܽݎݑ݀ ݈ܽݐ݋ܶ  

 
   

݊݋ܰ|݁ݐܴܽ െ ݕݏݓ݋ݎܦ ൌ
݀݋݅ݎ݁݌ ݕݏݓ݋ݎ݀݊݋݊ ݃݊݅ݎݑ݀ ݀݁݊݁݌݌݄ܽ ݏ݄݁ݏܽݎܿ ݂݋ #

ܽݐ݋ܶ ݎ݀݊݋݊ ݂݋ ݊݋݅ݐܽݎݑ݀ ݈݀݋݅ݎ݁݌ ݕݏݓ݋  

 
If ܴܽݕݏݓ݋ݎܦ|݁ݐ is significantly greater than ܴܽ݊݋ܰ|݁ݐ െ  then we can conclude that ݕݏݓ݋ݎܦ
drowsiness is a significant factor contributing to traffic safety.  The RRR for drowsiness is:   
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Appropriate statistical tests can be used to test if the rate ratio is greater than 1, which 
corresponds to elevated risk for drowsiness.  This evaluation based on crash rate is more 
accurately defined for time-variant exposure than the probability measures. However, there is a 
challenge in using the above approach: the total duration of drowsy and non-drowsy periods 
cannot be measured exactly using current technology. Extracting driver behavior information 
still relies primarily on manual data reduction and it is not practical to manually check thousands 
of hours of video data.  Therefore, an alternative method has to be used.   
 
 

 
 

Figure 10. Diagram. Illustration of accident rate for time-variance exposure.  

The general principle for selecting controls is that “the controls should represent the population 
from which the cases were derived.”  Based on this general principle, a number of alternative 
sampling methods can be used; e.g., random sampling, matched sampling, case-crossover 
sampling, etc.  The baseline sampling method adopted in this study is a total random sampling 
scheme, which is based on the event rate measure.   
 
Consider the data collection process as a cohort study and let PT+ and PT- represent the 
exposure duration for E+ and E-, respectively.  The number of accidents and the corresponding 
exposure duration can be represented in the following table. 
  

Table 4. Crash rate. 
 E+ E- 
Crash A C 
Duration  PT+ PT- 
Crash rate  A/PT+ C/PT- 

 

݋݅ݐܴܽ ݁ݐܴܽ ݇ݏܴ݅ ൌ
ܣ

ܲܶ ൅
ܥ

ܲܶ െ
 

The RRR will be  

 
In a case control study, the total exposure durations PT+ and PT- are unknown. Instead, a set of 
baseline controls with size M0 (M0=C+D) are selected and their exposure statuses are identified 
as shown in table 5. 
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Table 5. Case-control contingency table. 
 E+ E- Size
Crash A B M1 
Control C D M0 

 
Like most contingency tables, the odds ratio can be calculated for the above table.   

݋݅ݐܴܽ ݏܱ݀݀ ൌ
ܦܣ
ܥܤ ൌ

ܥ/ܣ
 ܦ/ܤ

 

 
When the following three conditions are satisfied, the EOR can be used to approximate the RRR: 

1. M0 subjects are randomly selected via source population  
2. Their exposure odds (B/D) are similar to that in source population (Time+/Time-). 
3. Steady state  

 
As a case-cohort study, the first condition is automatically satisfied.  If the duration of each 
baseline is short enough, the state within this short period can be considered as steady.  The key 
of the baseline sample scheme is to satisfy the second condition.  
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Two sampling methods can satisfy this critical condition: the total random sampling and 
systematic sampling. The details for each scheme are discussed below.  
 
Random sampling  
For random sampling, samples are randomly selected for the baselines.  Typically, the samples 
are stratified by drivers and the number of samples for each driver is proportional to the valid 
moving hours or miles traveled. Under this total random sampling scheme, the probability that a 
baseline is from the ܲܶ r .,  ൅ period is proportional to its elative duration, i.e

݋ݎܲ ܾܽ ܣ  ݅݊ ܲܶ ൅ሻ ൌ
ܲܶ ൅

ሺ ൅ ൅ ሺܲܶെሻܾሺ ݏ݅ ݈݁݊݅݁ݏ ܲܶ ሻ  

when the total sample size, ܰ ܤ ൅ ܦ seline falls in ܲܶ ൅ is  ௕௔௦௘ ൌ , is large, the number of ba

ܤ ൌ ௗܰ௥௢௪௦௬ ௔௦௘ כ
ܲܶ ൅

ሺܲܶ ሺܲܶെሻൎ ௕ܰ ൅ሻ ൅
Similarly, the number of basel e falls i െ iin n ܲܶ s  

ௗܰ௥௢௪௦௬ ൌ ௕ܰ௔௦௘ כ
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Thus, critical condition for odds ratio to RR approximation holds as shown below.   
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The random sampling method is illustrated in figure 11.   
  

 
 

Figure 11. Diagram. Random sampling scheme. 

There are several advantages of random sampling.  It is relatively easy to implement and easy to 
find replacement for invalid baselines. The random samples represent the general baseline status 
so they can be used in studies focusing on different risk factors.  Finally, the statistical analysis is 
relatively straightforward.  For the above reasons, the random sampling scheme was adopted in 
this study.  
 
Systematic sampling   
In a systematic sampling scheme, baseline samples are selected with equal intervals (moving 
hours or miles traveled) from the driving data.  Systematic sampling is based on the same 
principle as random sampling and it can be shown that the odds ratio to RR approximation will 
hold for the systematic sampling.  However, the systematic system scheme does have one 
drawback: when a control is not valid it is difficult to find alternatives. The invalid controls 
(baselines) are quite common because of misaligned video cameras, etc.  The statistical analysis 
for systematic sampling is identical to the random sampling method.   



 

CHAPTER 4. STATISTICAL MODELING 

The objective of the statistical analysis is to quantitatively evaluate the safety impacts of risk 
factors and to conduct inference to the source population. As discussed previously, the odds 
ratio, which is an approximation to RRR, will be the primary risk measure.  Two aspects of odds 
ratio are of interest: the point estimate and precision of point estimate. The point estimate 
represents the magnitude of the impact of a factor; i.e., an odds ratio of 4 implies that one level 
of the factor is 4 times more dangerous than the reference level.  Another aspect is the precision 
of the estimation, which can be measured by the variance of estimates or the length of the 
confidence interval.  A risk factor is considered as significant only when the statistical test 
indicates that the estimated effect significantly differs from a null value, which is 1 for odds 
ratio.  The significant test has a direct relationship with the confidence interval: the odds ratio is 
statistically significantly different from 1 if and only if its 95% confidence interval does not 
include the null value 1.   
 
There are several challenges in the analysis of naturalistic driving data.  The 
confounding/interaction effects and driver-specific correlations are two main obstacles addressed 
in this report.  As an observational study, the safety impact of a factor of interest can be easily 
distorted by other factors.  The confounding and interaction effects could distort the true 
relationship between the factors of interest and safety outcome and have to be addressed in order 
to get a valid conclusion.  Secondly, there are multiple events/baselines for each driver and those 
events/baselines collected for the same driver should not be considered as independent.  
However, most simple statistical models assume independence among observations and a more 
sophisticated modeling method should be used.  It should be noted that the appropriate statistical 
method is always coupled with study design and baseline reduction methods.  For example, 
matched baseline sampling methods such as case-crossover will bring extra correlation in each 
matched set.   
 
The total random baseline sampling approach adopted in this study does not induce extra 
correlations and imposes few constraints.  Therefore, the analysis is quite flexible.  At the same 
time, the method is more prone to confounding and interaction effects.   In this report, several 
alternative analysis methods were discussed and compared, including the simple contingency 
table analysis, regular logistic regression modes, the Generalized Estimation Equation (GEE) 
models, and the mixed effect models.   
  
Simple contingency table analysis  

The contingency table analysis is the simplest method by which to calculate odds ratios.  The 
odds ratio and corresponding variance can be easily calculated.  However, this method only 
considers one factor at a time and cannot address interaction/confounding effects.  Furthermore, 
the contingency table analysis assumes observations are independent of each other, which does 
not fit the naturalistic driving study because of the unavoidable driver-specific correlations.  
Therefore, this method is more appropriate for exploratory analysis and caution should be given 
when using its results to draw formal conclusions.  
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The calculation for contingency table analysis is straightforward. For a factor with two exposure 
levels, E+ and E-, the safety events and exposure data can be arranged in a 2×2 contingency table 
as shown below.  
 

 E+ E-
Safety event A B 
Control C D 

 
The point estimation for odds ratio is AD/BC.  Two popular types of methods can be used for 
statistical inference.  When the same size is large, an asymptotic normal approximation-based 
approach can be used with the following standard error.  

ොሺlogߪ ෠ሻߠ ൌ ሺ
1
ܣ ൅

1
ܤ ൅

1
ܥ ൅

1
 ሻଵ/ଶܦ

 

 
The corresponding Wald confidence interval is 

log ෠ߠ േ ොሺlogߪఈ/ଶݖ  ෠ሻߠ
 

 
When the sample size is small, the Fisher’s exact test can also be used to conduct statistical 
inference.  
 
The analysis method above does not adjust for potential confounding and interaction factors.  
This is especially problematic since the random sampling scheme developed in this study does 
not control those factors during the sampling process.  If a random sampling method and a 
simple contingency table analysis are used together, the confounding and interaction effects will 
be totally ignored.  Not accounting for these effects can negate the validity of the conclusions.  
 
One remedy for this problem is to use stratified analysis.  In a stratified analysis, the data will be 
ground into strata for every level of a confounding/interaction factor.  One contingency table will 
be constructed for each stratum and the conclusion will be based on the results from stratified 
contingency tables.  The main drawback of the stratified analysis is that the sample size in each 
stratum quickly decreases with an increased number of factors.  For a naturalistic driving study, 
there will usually be a number of potential confounding/interaction factors and the number of 
safety events in each stratum is typically insufficient for a meaningful statistical conclusion.  
Therefore, the stratified analysis is not an attractive alternative.  Model-based approaches, such 
as logistic regression, can address those issues relatively easily.  
 
Ordinary Logistic Regression Models  

In a naturalistic driving study, safety outcomes are either safety events (e.g., crashes and near-
crashes) or baselines.  The logistic regression model can be used for this type of categorical 
outcomes.  For example, to model crashes and baselines, the model assumes the outcomes are 
from a binary distribution with two possible values. There is a single model parameter which is 
the probability of crash.   The crash probability is then connected with risk factors to be 
evaluated through a logit link function. The effect of risk factors can be evaluated by examining 
the regression coefficients.  The logistic regression model can accommodate multiple risk 
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factors, which allows those factors to be evaluated simultaneously.  The capability of multiple 
factor analysis provides a mechanism to address the confounding and interactive effects through 
modeling.  
 
The general setup for a logistic regression is described as follows.  Define a binary random 
variable ௜ܻ௝ such that 
  

௜ܻ௝ ൌ ቄ1 ݎܽ݁݊/݄ݏܽݎܥ െ ݄ݏܽݎܿ
0 ܽܤ ݈݁݅݊݁

,      ݅ ൌ 1, … , ;ܫ  ݆ ൌ 1, … , ݏ ௜ܬ

where ܫ is the number of drivers and ܬ௜ is the number of observations for driver ݅.   Assume ௜ܻ௝ 
follows a Bernoulli distribution, i.e., 

 

            
௜ܻ௝ ൌ   ௜௝ሻ  (1)݌ሺ݈݈݁݅ݑ݋݊ݎ݁ܤ

     
 
The model coefficient ݌௜௝ represents the probability of being a safety event for observation ௜ܻ௝.  It 
is assumed that this probability will be influenced by factors such as driver behavior and driving 
environments, etc.  This connection between the safety impacts of a set of factors and the crash 
probability ݌௜௝ is mathematically modeled through a logit link function with the following form 
 
 

௜௝൯݌൫ݐ݅݃݋݈ ൌ log ቆ
௜௝݌

1 െ ௜௝݌
ቇ ൌ ଴ߚ ൅ ଵߚ ଵܺ௜௝ ൅ ଶܺଶ௜௝ߚ ൅ ڮ ൅   ௄ܺ௄௜௝ (2)ߚ

 
where ܺ௞௜௝ is the variable based on a risk factor ݇ and kβ  is the corresponding regression 
coefficient.  With proper parameterization, it can be shown that the exponential of the regression 
coefficient ߚ௞ is corresponding to the odds ratio for the ݇௧௛ factor.  Another merit of the odds 
ratio estimated from the logistic regression is that the odds ratio for a specific factor can be 
considered as an averaged value over all the levels of other factors included in the same model.  
Thus the confounding effect can be effectively addressed by simply including multiple factors 
that might confound with each other simultaneously in the model.   
 
The ordinary logistic regression discussed above assumes observations are independent of each 
other, which is obviously not appropriate as each participant might have multiple safety events 
and baselines.  In this report, two alternative methods were used to address this issue: the GEE 
and the mixed effect model.  
 
Generalized Estimation Equation 

The ordinary logistic regression model assumes independent observations.  For naturalistic 
driving data, it is argued that events/baselines for the same driver should be correlated instead of 
independent because a driver usually has some unique characteristics and those characteristics 
are shared by the events/baselines from this driver.  The GEE model can be used to incorporate 
this correlation.  Originally developed to model longitudinal data (i.e., measures from a same 
patient from different time points) by Liang and Zeger(11),  the GEE model assumes that the 
observations are marginally correlated.   The GEE model specifies the mean and covariance (first 
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two moments) structures of a distribution from the exponential distribution family. For example, 
in naturalistic driving studies, the crash and baseline are assumed from a Bernoulli distribution 
(Equation 1). Similar to the ordinary logistic regression, the GEE model also assumes the logit of 
event probability ݌௜௝ is associated with a set of risk factors through a logit link function as in 
Equation 2.  
   
In a GEE model, observations ௜ܻ௝ and ௜ܻ௝ᇱ from the same driver ݅ are correlated and the 
correlation between is non-zero, i.e., ݎݎ݋ܥ൫ ௜ܻ௝, ܻ௜௝ᇲ൯ ് 0.  This violates the independence 
property of a Bernoulli distribution. The GEE thus is not based on a proper 
distribution/likelihood function; instead it is a Quasi-Likelihood-based approach for which no 
proper probabilistic models exist.  For that reason the GEE should be considered as an estimation 
method rather than a modeling approach.  Also because of this, the GEE cannot be extended to 
Bayesian framework which depends on proper probabilistic models.   

The correlation structure ݎݎ݋ܥሺ ௜ܻ௝, ௜ܻ௝ᇱሻ for the observations from the same driver needs to be 
pre-specified for the GEE model.  Denote t tio  the following general form  

 

he correla n matrix with
 

ሻ࢏ࢅሺݎݎ݋ܿ ൌ

ۏ

 

ێ
ێ
ۍ

1 ଵଶߙ ڮ ଵ௃ߙ
ଶଵߙ 1 ڰ ڭ

ڭ ڰ 1 ௃ିଵ,௃ߙ
௃ଵߙ ڮ ௃,௃ିଵߙ 1 ے

ۑ
ۑ
ې
 (3)  

 
 vector ࢏ࢅ represent  a
࢏ࢅ ൌ ሺ ௜ܻଵ, ௜ܻଵ, ڮ ௜ܻ,௃೔ሻ. 

where ߙ௝௝ᇱ  ൌ ൫ݎݎ݋ܥ ௜ܻ௝, ܻ௜௝ᇲ൯, and the s ll events/baselines for driver ݅, i.e., 

 
In a GEE, the same correlation structure is assumed for all drivers.  Therefore, the matrix entries 
do not depend on the index for a particular driver ݅.  In general, the number of observations for 
each driver is not exactly the same.  The ܬ in above correlation matrix represents the maximum 
number of observations per driver, i.e., ܬ ൌ max

௜
ሺܬ௜ሻ.   

 
There are a number of alternative covariance structures.  For an unstructured correlation matrix, 
each ߙ௝௝ᇱ in Equation 3 can take different values.  The unstructured correlation put the least 
constraints to the correlation structure but contains substantially more parameters.  This could be 
problematic when the sample size is small or when ܬ is large. Another widely used structure is 
the exchangeable correlation matrix, in which all ߙ௝௝ᇱ med be to equal, i.e., s are assu

൫ݎݎ݋ܥ ௜ܻ௝, ܻ௜௝ᇲ൯ ൌ ሼ1
 
 ݆ ൌ ݆Ԣ

ߙ ݆ ് ݆Ԣ (4)  

The exchangeable correlation matrix includes only one parameter and is easy for fitting.  
However, the assumption that all observations are equally correlated does not fit a real situation 
well.  The autoregressive (AR1) mod ula e-series analysis.  The AR1 model 
assumes 

el is pop r in tim

ሺݎݎ݋ܿ ௜ܻ௝ ௜ܻ௝ାଵሻ ൌ  ߙ
Thus, the correlation matrix has the following form.  The AR1 model also contains one extra 
parameter and imposes a pretty strong assumption for the correlation relationship.  
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ሻ࢏ࢅሺݎݎ݋ܥ ൌ
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ێ
ێ
ێ
ۍ 1 ߙ ଶߙ ڮ ௃ߙ

ߙ 1 ߙ ڰ ڭ
ଶߙ ߙ 1 ڰ ଶߙ

ڭ ڰ ڰ 1 ߙ
௃ߙ ڮ ଶߙ ߙ 1 ے

ۑ
ۑ
ۑ
ې
 

 

 
As many researchers indicated, the GEE model is not sensitive to the choice of correlation 
structures and its quasi-likelihood estimator for regression parameter ߚ is consistent, which 
means it will converge to the true value for a large sample, even when the correlation function is 
incorrectly specified.  
 
Mixed effect models  

The correlated categorical observations can also be modeled by the generalized linear mixed 
effect model (GLMM).  Similar to the GEE approach, observations from the same driver are also 
assumed to be correlated. However, instead of specifying the correlations marginally, the 
GLMM builds the correlation structure through a conditional specification.  More specifically, 
the GLMM model assumes that there is a random effect associated with each individual driver.  
One particular driver can be more likely to be associated with higher risk (if the random effect is 
positive), or less risk (if the random effect is negative).  This assumption fit the observation from 
the naturalistic driver results that a small number of drivers contribute a large proportion of 
safety events, thus GLMM is a rather attractive alternative model.  
 
The probability distribution part of the GLMM is identical to the ordinary logistic regression 
model and the GEE model (Equation 1).  The difference lies in the modeling structure for the 
Bernoulli parameter ݌௜௝,  which is specified through the conditional expectation of ௜ܻ௝ given a 
random effect term; i.e., ݌௜௝ ൌ ൣܧ ௜ܻ௝ห࢛௜൧, where ࢏ is the random effect. The ݌௜௝ is connected 
with a set of covariates with

࢛
 a logit link function; i.e.,  

௜௝൯݌൫ݐ݅݃݋݈ ൌ log ቆ
௜௝݌

1 െ ݌
 

௜௝
ቇ ൌ ࢐࢏ࢄ

ᇱ ࢼ ൅ ࢐࢏ࢠ
ᇱ   (5) ࢏࢛

For convenience, matrix notation was used in the above formulation.  Here ࢐࢏ࢄ  is the vector of 
covariates for observation ௜ܻ௝, ࢐࢏ࢄ ൌ ሺ1, ଵܺ௜௝, ܺଶ௜௝, … , ܺ௄௜௝ሻԢ; the ࢼ is the vector of regression 
parameters ࢼ ൌ ሺߚ଴, ,ଵߚ … , ࢐࢏ࢠ is a vector of mixed effects and the ࢏࢛ ௄ሻԢ.  Theߚ  is the 
corresponding design matrix.  For simplification, consider the special case with univariate mixed 
effect and ݖ௜௝ ൌ 1.  The ݑ௜ is a random variable and is typically assumed from a normal 
distribution ܰሺ0, ௨ߪ

ଶሻ.   
 
In the mixed effect logistic model, the observations from the same driver, ݅, share the same 
random term ݑ௜, which induces the driver-specific correlations.  In this setup, the univariate 
mixed effect adjusts the intercept of the linear regression part but does not modify the fixed 
effect ࢼ. This model is also called random intercept model.   
 
The above formula implies that there is a random effect ݑ௜ associated with driver ݅. This random 
effect will vary among drivers and follows a normal distribution.  The value of ݑ௜  is directly 

27 



 

related to the probability of driver ݅ being involved in a safety event.  When ݑ௜ is large, the 
probability of this driver being involved in a safety event, i.e., ݌௜௝, will be high and vice versa.    
 
The GLMM is an extension of the basic logistic regression to allow correlations among data to 
be incorporated.  Compared to the GEE model, the GLMM has several advantages.  The GLMM 
has a clear interpretation for the driver-specific correlation and fits the observed “good driver, 
bad driver” in naturalistic driving study.  Furthermore, the GLMM is based on a proper 
probabilistic model and can be relatively easily extended to the Bayesian framework.  The 
Bayesian approach has several advantages over the classical statistical approach.  For example, it 
can easily incorporate prior information into the estimation of risk, which is very useful for small 
scale study when the researchers have good a priori knowledge about the risks.  The hierarchical 
Bayesian models can combine multiple studies together and are especially useful for multi-center 
studies. The GLMM model developed in this project can be readily extended to a Bayesian 
framework.   
 
APPLICATION 

The 100-Car Study was a large scale naturalistic driving study for which more than 100 
participant drivers were recruited from the Northern Virginia/Washington, DC area.(1)  Various  
types of instrumentation were installed on the participant vehicles, including: five-channel video 
cameras, front and rear radar sensors, accelerometers,  and global positioning systems (GPS).  In 
addition, the ability to obtain information from the vehicle network (e.g., speed) and track lanes 
using machine-vision was possible.   The study lasted for over a year and collected 
approximately 2 million miles and 43,000 hours of driving data. Three different types of safety 
event were defined: crash, near-crash, and critical incident. Those safety events were identified 
retrospectively. Altogether, 69 crashes, 761 near-crashes, and 8,295 critical incidents were 
identified.    
 
The main focus of event-based analysis is to identify factors having significant impacts on traffic 
safety. The continuously recorded naturalistic driving data, including the vehicle kinematic 
characteristics, the driving environments, and driver behavior, provide an unprecedented 
opportunity to evaluate the safety impacts of those factors.   In this study, it is believed that the 
status of factors immediately before a safety event shall have a direct impact on safety. 
Therefore, the exposure status for a 6-second time period, 5 s before and 1 s after the onset of a 
crash or near-crash, were extracted from the video and instrument data.  The kinematic features 
could be extracted automatically.  However, the information for driver behavior and the 
environmental factors relied on examining the video files visually by trained data reductionists.  
A rigorous data reduction protocol was implemented throughout the data reduction process.  
More details about data reduction and quality control can be found in the report by Klauer et 
al.(10) 
 
As discussed in Chapter 3, the exposure information from safety events needs to be compared 
with that from normal driving conditions in order to quantitatively evaluate risks.   To make the 
exposure information comparable, the same time duration of 6 s was adopted for both event and 
baseline data reduction. The data reduction for baselines followed the exact same protocol as that 
for safety events to ensure comparability.   Conceptually, the selection of baseline samples 
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followed a total random sampling scheme as discussed in the methodology section (Chapter 3).  
In practice, a two-stage sampling approach was implemented to utilize a previously reduced 
baseline data set and supplement it with additional samples as necessary. 
 
Initially, 20,000 baseline samples were reduced according to a proportional sampling scheme.  In 
the proportional sampling scheme, the number of baselines for a given driver is proportional to 
the number of safety events for that driver.  Therefore, no baseline samples were reduced if the 
driver had no safety events.   After the number of baselines for a driver was determined, a 
random sampling scheme was then used to randomly sample from the driver’s trips.  The 
proportional sampling scheme, of course, does not fit the total random sampling scheme 
developed for this study.  However, due to the high cost of data reduction, there was motivation 
to maximize the use of existing data.  The within driver random sampling of the proportional 
sampling scheme makes it possible to use part of the existing data for the total random sampling 
scheme.  The details of this approach are discussed below.  

 
The total random sampling scheme adopted in this study requires equal probability for each 6-
second period for all recorded data. So for a baseline sample, the probability that it will be 
located for a specific driver is proportional to the driver’s total driving time; i.e., 

Prሺݎ݁ݒ݅ݎ݀ ݎ݋݂ ݏ݅ ݈݁݊݅݁ݏܾܽ ܣ ݅ሻ ൌ
݅ ݎ݁ݒ݅ݎ݀ ݎ݋݂ ݁݉݅ݐ ݃݊݅ݒ݅ݎܦ

ݏݎ݁ݒ݅ݎ݀ ݈݈ܽ ݎ݋݂ ݁݉݅ݐ ݃݊݅ݒ݅ݎ݀ ݈ܽݐ݋ݐ

 

 

 
When the sample size is large, the nu n driver ݅ will be proportional to 
this probability  

mber of baselines for a give

ሾܧ ௜ܰሿ ൌ
݅ ݎ݁ݒ݅ݎ݀ ݎ݋݂ ݁݉݅ݐ ݃݊݅ݒ݅ݎܦ

݈ܽ ݎ݋݂ ݁݉݅ݐ ݃݊݅ݒ݅ݎ݀ ݈ܽݐ݋ݐ ݏݎ݁ݒ݅ݎ݀  כ ܰ  ݈
where ܧሾ ௜ܰሿ is the expected number of baselines for driver ݅ and ܰ is the total number of 
baselines.   
 
The above calculation indicates that when the sample size is large, the desired number of 
baseline samples for a specific driver can be predetermined.  The total random sampling 
condition can be satisfied if baseline samples were randomly selected from within each driver’s 
data.  In this study a stratified random sampling approach was adopted.  The method consists of 
two steps: the first step is to predetermine the number of baselines for each driver and the second 
step is a total random sampling within each driver.   
 
The sampling rate is approximately 0.5 baselines per subject-driving hours.  Based on the total 
length of available video files, this translated into approximately 17,660 baseline samples.  The 
driving time for each driver is extracted and the expected number of baselines for each driver is 
calculated accordingly.  This expected number is then compared with that from the original 
proportional sampling data (existing baselines).  For each driver, two possible actions were taken 
based on the comparison.  Let ௜ܰ denote the expected number of baselines for driver ݅ by the 
stratified random sampling scheme and ௜ܰ

଴ represent the number of baselines for driver ݅ from 
the existing proportional samples.  Specifically, 
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1. If , that is, the number of existing baseline is more than desired, ௜ܰ baselines 
i omly drawn from the existing ௜ܰ

଴ baselines. 
௜ܰ ൏ ௜ܰ

଴

w ll be rand
2. If ௜ܰ ൐ ௜ܰ

଴, a new supplemental reduction will be conducted with sample size 
௜ܰ െ ௜ܰ

଴ , randomly drawn from the driving data of driver ݅.  
This procedure guarantees that each driver will have the expected number of baselines. At the 
same time, the randomization in every step also guarantees the randomness within each driver.  
Thus the properties of a total random sampling scheme were ensured and the method maximally 
utilized the existing baseline reduction results.  The summary of the data reduction results is 
shown in table 6. 

Table 6. Baseline sample size. 
SAMPLING RATE 

(SAMPLE/SUB_MOV_HR) 
TOTAL 

EXPECTED 
SAMPLES 

RESAMPLE FROM 
EXISING BASELINE 

NEW SAMPLES 
NEEDED 

0.5 17660 14036 3624 
    
Because of the missing/invalid video file, the final data reduction resulted in a total of 17,344 
baseline samples.  
 
STATISTICAL ANALYSIS  

The final data set includes 69 crashes, 761 near-crashes, and 17,344 baseline samples.  The 
factors of interest are mostly time-variant exposure factors, including: drowsiness, distraction, 
traffic density (level of service – LOS), lighting conditions, relationship to junction, road surface 
conditions, and weather conditions.  Three alternative analyses methods were presented in the 
order of simple contingency table analysis, the GEE, and the mixed effect models.  The outputs 
from various analyses were also compared.  
 
Simple contingency table analysis 

The risk associated with each factor was analyzed using the simple contingency table analysis.  
Note that this analysis approach does not adjust for the potential interaction and confounding 
effects; nor does it incorporate the correlations among observations from the same driver.  The 
contingency table analysis shall thus be considered as an exploratory analysis tool. The odds 
ratio estimation results for the risk factors are presented below.  
 
Drowsiness  

The drowsiness was evaluated by visually inspecting the driver’s behaviors and eye closure 
information.  The drowsiness refers to a driver who is either moderately to severely drowsy, as 
defined by Wierwille and Ellsworth.(12) A driver who is moderately drowsy will exhibit slack 
musculature in the facial muscles and limited overall body movement as well as a noticeable 
reduction in eye scanning behaviors. A severely drowsy driver will exhibit all the above 
behaviors as well as extended eyelid closures and will have difficulties keeping his/her head in a 
lifted position. The status was classified as either drowsy or non-drowsy.  The contingency table 
for drowsiness is shown in table 7 and the odds ratio estimation is presented in table 8.  As can 
be seen, drowsiness significantly increases both crash risk and near-crash risk. 
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Table 7. Contingency table for drowsiness. 

 Drowsy Not Drowsy Total 
Crash  14 55 69
Near-crash 97 664 761
Baseline 599 16,745 17344

 
 

Table 8. Odds ratio estimation for drowsiness. 

 Odds Ratio p-value 95% Confidence Limits 
Crash 7.12 <0.001 3.94 12.87 
Near-crash 4.08 <0.001 3.25 5.13 

 
Traffic flow 

The traffic density is evaluated by the LOS, which includes six levels as shown in table 9.  The 
definitions of the six LOS levels are as follows:  

• LOS A: Free flow 
• LOS B: Flow with some restrictions 
• LOS C: Stable flow, maneuverability and speed are more restricted     
• LOS D: Unstable flow, temporary restrictions substantially slow driver 
• LOS E: Flow is unstable, vehicles are unable to pass, temporary stoppages, etc. 
• LOS F: Forced traffic flow condition, with low speeds and traffic volumes below 

capacity 

Table 9. Contingency table for drowsiness. 

Severity(Severity) LOSs 
Frequency LOS 

A 
LOS 

B 
LOS 

C 
LOS 

D 
LOS 

E 
LOS 

F Total
Crash 41 14 7 4 2 1 69 

Near-crash 244 233 191 64 26 2 760
Baseline 8370 6789 1606 322 160 96 17343 

 
 
Due to the small sample size for LOS E and LOS F, some LOS categories were aggregated.  For 
crashes, LOS D, LOS E, and LOS F were aggregated and for near-crashes, LOS E and LOS F 
were aggregated.   
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Table 10. Odds ratio estimation for LOS. 

 Odds Ratio p-value 95% Confidence Limits 
Crash     
LOS B versus A 0.42 <0.01 0.23 0.77 
LOS C versus A 0.89 0.78 0.40 1.99 
LOS DEF versus A 2.47 0.03 1.10 5.54 
Near-crash  
LOS B versus A 1.18 0.08 0.98 1.41 
LOS C versus A 4.08 <0.0001 3.35 4.97 
LOS D versus A 6.82 <0.0001 5.07 9.18 
LOS EF versus A 3.75 <0.0001 2.49 5.66 

 
There are some interesting patterns that can be seen from table 10.  For crash, the odds ratio of 
LOS B versus LOS A is significantly lower than 1, which indicated some protective effect.   On 
the other side, high traffic densities, i.e., LOS DEF, are associated with elevated risk compared 
to LOS A.  
 
A quite different pattern exists for near-crash. LOS A is associated with the lowest risk. There is 
no significant difference between LOS B and LOS A.  The LOS D is associated with the highest 
risk.  
 
The above results have some interesting implications for the relationship between safety events 
and traffic density.  Some level of interaction between vehicles (such as for LOS B and LOS C) 
will not necessarily increase the crash risk.  However, the chance of near-crash will increase 
monotonically with the increase in traffic density.   
 
Distraction 

Distraction is commonly presented during driving.  The level of distraction is associated with the 
complexity of non-driving-related tasks.  Three levels of manual/visual complexity (complex 
secondary tasks, moderate secondary tasks, and simple secondary tasks) were defined as shown 
in table 11.  The complexity levels are based on whether the task requires multi-step, multiple 
eye glances away from the forward roadway, and/or multiple button presses.(13)  Moderate tasks 
are those that require at most two glances away from the roadway and/or at most two button 
presses, while simple tasks are those that require no or one button press(es) and/or one glance 
away from the forward roadway.  The contingency table for distraction is shown in table 12 and 
the odds ratio estimations are shown in table 13. 
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Table 11. Three levels of manual/visual complexity. 

Simple Secondary Tasks Moderate Secondary Tasks Complex Secondary Tasks
1. Adjusting radio 1. Talking/listening to 

handheld device 
1. Dialing a handheld device 

2. Adjusting other devices 
integral to the vehicle 

2. Handheld device-other 2. Locating/reaching/ 
answering handheld device 

3. Talking to passenger in 
adjacent seat 

3. Inserting/retrieving CD 3. Operating a personal digital 
assistant (PDA) 

4. Talking/Singing: no 
passenger present 

4. Inserting/retrieving cassette 4. Viewing a PDA 

5. Drinking 5. Reaching for object (not 
handheld device) 

5. Reading 

6. Smoking 6. Combing or fixing hair 6. Animal/object in vehicle 
7. Lost in thought 7. Other personal hygiene 7. Reaching for a moving 

object 
8. Other simple tasks 8. Eating  8. Insect in vehicle 
  9. Looking at external object 9. Applying makeup 
 
 

Table 12. Contingency table for distraction.  

Frequency Complex Moderate Simple No Distraction Total 
Crash 6 9 11 43 69 

Near-crash 43 83 85 550 761 
Baseline 388 3001 4759 9196 17344 

 
 

Table 13. Odds ratio estimation for distraction. 

 Odds Ratio p-value 95% Confidence Limits 
Crash     
Simple versus Non 0.49 0.037 0.25 0.96 
Moderate versus Non 0.64 0.226 0.31 1.32 
Complex versus Non 3.31 0.006 1.40 7.82 
Near-crash     
Simple versus Non 0.30 <0.001 0.24 0.38 
Moderate versus Non 0.46 <0.001 0.36 0.58 
Complex versus Non 1.85 0.0002 1.34 2.57 

 
As shown in table 13, the complex secondary task significantly increases the risk of crash and 
near-crash. It is also interesting to observe that simple and moderate secondary tasks actually 
show protective effect (the odds ratio is smaller than 1).  This protective effect may be due to 
drivers selecting a relatively safe point to engage in secondary tasks whereas the complex task 
may require enough resources that it increases risk regardless of when the task is performed.  
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Weather 

The contingency table for weather conditions is presented in table 14. Due to small samples size, 
the weather conditions were aggregated into two categories: the normal weather conditions and 
the inferior weather conditions.  The normal conditions include clear and cloudy.  The inferior 
weather conditions include fog, mist, raining, sleeting, and snowing.  The aggregated table is 
shown in table 15 and the odds ratio estimations are shown in table 16. As can be seen, there are 
no statistically significant results for both crash and near-crash, though the odds ratio for crash 
shows a moderately elevated risk at 1.8.  

Table 14. Contingency table for weather conditions. 
Frequency Clear Cloudy Fog Mist Raining Sleeting Snowing Other Total 

Crash 54 6 0 0 8 0 1 0 69
Near-crash 599 99 1 1 57 0 3 1 761

Baseline 15436 562 29 20 1235 9 42 11 17344
 

Table 15. Aggregated contingency table for weather conditions. 

Frequency Inferior 
weather

Normal
Weather

Total

Crash 9 60 69 
Near-crash 62 699 761 

Baseline 1335 16009 17344 
 

Table 16. Odds ratio estimation for weather conditions. 

 Odds Ratio p-value 95% Confidence Limits 
Crash 1.80 0.10 0.89 3.63 
Near-crash 1.06 0.65 0.82 1.39 

 

Lighting conditions 

The lighting conditions for event and baseline data are shown in table 17. Due to the small 
sample size for crashes, the data were aggregated into two categories: daylight condition and 
other lighting condition, as shown in table 18. 
 

Table 17. Contingency table for lighting conditions. 

Frequency Darkness 
lighted 

Darkness 
not 

lighted Dawn Daylight Dusk Total 

Crash 17 5 1 43 3 69 
Near -crash 126 54 14 502 65 761 

Baseline 2600 1633 75 12126 910 17344 
 

34 



 

 
Table 18. Aggregated contingency table for lighting conditions. 

Frequency Other 
lighting Daylight Total 

Crash 26 43 69
Near-crash 259 502 761

Baseline 5218 12126 17344
 
 
The odds ratio estimations for lighting conditions are shown in table 19.  As can be seen, the 
other lighting condition is associated with slightly increased risk with odds ratios of 1.41 and 
1.12 for crash and near-crash, respectively.  However, the odds ratio for crash is not significantly 
different from the neutral value of 1.  
 

Table 19. Odds ratio estimation for lighting conditions. 

 Odds Ratio p-value 95% Confidence Limits 
Crash 1.41 0.17 0.86 2.29 
Near-crash 1.12 0.02 1.03 1.40 

 
 
Road surface condition 

The contingency table for surface conditions is shown in table 20.   Due to the small number of 
observations in each category, the data were aggregated into two categories: the dry road surface 
and the other road surface, as shown in table 21. 
 

Table 20. Contingency table for road surface conditions. 

Frequency Dry Icy Muddy Snowy Wet Other Total 

Crash 51 1 0 4 13 0 69 
Near-crash 654 4 0 4 98 1 761 

Baseline 15573 9 1 127 1630 4 17344 
 
 

Table 21. Contingency table for road surface conditions. 

Frequency Others Dry Total

Crash 18 51 69
Near-crash 107 654 761

Baseline 1771 15573 17344
 

35 



 

As can be seen from table 22, the non-dry surface condition has a significant association with 
safety events.  In particular, the non-dry surface conditions are 3 times more dangerous 
compared to the dry surface condition.   
 

Table 22. Odds ratio estimation for road surface condition. 

 Odds Ratio p-value 95% Confidence Limits 
Crash 3.10 0.0002 1.81 5.32 
Near-crash 1.43 0.0007 1.15 1.78 

 
 
Relationship to junctions 

Table 23 is the contingency table for relationship to junction. Again, the data were aggregated 
into junction and non-junction categories, as shown in table 24. 
 

Table 23. Contingency table for relationship to junction. 

Frequency 
Crash

Critical 
Incident

Near-
crash Baseline 

Driveway alley access, etc. 2 138 8 53 
Entrance/exit ramp 6 311 40 396 

Interchange area 0 71 16 255 
Intersection 17 858 149 1065 

Intersection-related 11 1742 76 926 
Non-junction 26 5065 456 14194 

Parking lot 6 90 14 408 
Rail grade crossing 0 4 0 4 

Other/No data 1 16 2 43 
Total 69 8295 761 17344 

 
 

Table 24. Aggregated contingency table for relationship to junction. 

Frequency Junction Non-junction Total

Crash 34 35 69
Critical Incident 2986 5309 8295

Near-crash 281 480 761
Baseline 2646 14645 17291
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The odds ratio estimation for relationship to junction is shown in table 25.  As can be seen, 
junction is much more dangerous than non-junction with an odds ratio of 5.38.  

Table 25. Odds ratio estimation for relationship to junction. 

 Odds Ratio p-value 95% Confidence Limits 
Crash 5.38 <0.0001 3.35 8.64 
Near-crash 3.24 <0.0001 2.78 3.78 

 
 
GEE and Mixed Effect Model Fitting 
 
The GEE model was implemented to the total random samples from this project. The results for 
crash and near-crash are shown in table 26 and table 27, respectively. The GEE model fitting 
used an exchangeable working correlation function.  The estimations for the correlation are small 
(0.003 for crashes and 0.035 for near-crashes). These small values indicate a rather weak 
marginal correlation among the observations.   

The mixed effect model fitting results for crashes are shown in table 28.  The estimated variance 
for mixed effect is 0.713 with a standard deviation of 0.28. The mixed effect model fitting results 
for near-crashes are shown in table 29.  The corresponding estimated variance for the random 
intercept is 0.888 with a standard deviation of 0.173.  Compared to the rest of the parameter 
estimations, this does indicate that there are considerable individual variations among drivers.  
This result is consistent with the fact that a small number of drivers contribute a large proportion 
of the safety events.  

Table 26. GEE model results for crash. 

Label Odds Ratio
Standard

Error 
95% 

Confidence Limits p-value
Drowsy 6.35 2.04 3.38 11.91 <.0001
Weather: 
 Inferior versus Normal 

2.17 1.13 0.79 6.01 0.13

Road Surface: 
 Dry versus Other 

4.81 2.18 1.98 11.71 <0.001

Lighting:  
Day versus Other 

1.04 0.31 0.58 1.86 0.89

LOS B versus A 0.42 0.13 0.23 0.76 <0.001
LOS C versus A 0.89 0.38 0.38 2.08 0.79
LOS DEF versus A 1.83 0.94 0.67 5.03 0.24
Distraction:  
Complex versus Non 

3.51 1.95 1.18 10.41 0.02

Distraction: 
 Moderate versus Non 

0.65 0.31 0.25 1.64 0.36

Distraction:  
Simple versus Non 

0.54 0.20 0.26 1.11 0.09

Junction versus  
Non-junction 

5.89 1.55 3.51 9.86 <.0001
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Table 27. GEE model results for near-crash. 

Label Odds Ratio
Standard

Error 
97% 

Confidence Limits p-value
Drowsy 3.67 0.58 2.69 5.01 <.0001
Weather: 
 Inferior versus Normal 

1.94 0.46 1.22 3.10 0.01

Road Surface: 
Dry versus Other 

2.17 0.50 1.38 3.40 <0.001

Lighting:  
Day versus Other 

1.17 0.12 0.96 1.43 0.13

LOS B versus A 1.18 0.12 0.98 1.43 0.09
LOS C versus A 4.06 0.51 3.17 5.20 <.0001
LOS DEF versus A 4.99 0.81 3.63 6.87 <.0001
Distraction:  
Complex versus Non 

2.02 0.45 1.30 3.12 <0.001

Distraction: 
 Moderate versus Non 

0.48 0.07 0.37 0.63 <.0001

Distraction:  
Simple versus Non 

0.33 0.04 0.25 0.42 <.0001

Junction versus  
Non-Junction 

3.36 0.35 2.74 4.12 <.0001

 



 

Table 28. Mixed-effect model results for crash.  

Label Estimate
Standard

Error Pr > |t| Odds Ratio
95% CL 

Lower 
95% CL

Upper

 Drowsy 1.8424 0.3310 <.0001 6.3120 3.2988 12.0774
 Weather: 
 Inferior versus Normal 

0.7631 0.4915 0.1206 2.1449 0.8184 5.6214

 Road Surface: 
 Dry versus Other 

1.5665 0.3812 <.0001 4.7897 2.2688 10.1114

 Lighting:  
 Day versus Other 

-0.03134 0.2716 0.9081 0.9691 0.5691 1.6503

 LOS B versus A -0.8619 0.3170 0.0066 0.4224 0.2269 0.7863
 LOS C versus A -0.1207 0.4191 0.7733 0.8863 0.3897 2.0154
 LOS DEF versus A 0.6836 0.4355 0.1165 1.9809 0.8436 4.6516
 Distraction:  
 Complex versus Non 

1.2244 0.4676 0.0088 3.4021 1.3604 8.5075

 Distraction: 
 Moderate versus Non 

-0.3861 0.3770 0.3058 0.6797 0.3246 1.4232

 Distraction:  
 Simple versus Non 

-0.6699 0.3470 0.0536 0.5118 0.2592 1.0103

 Junction versus 
 Non-Junction 

1.7997 0.2491 <.0001 6.0477 3.7116 9.8541

 
Table 29. Mixed-effect model results for near-crash.  

Label Estimate
Standard

Error Pr > |t| Odds Ratio
95% CL 

Lower 
95% CL

Upper

 Drowsy 1.2608 0.1358 <.0001 3.5282 2.7040 4.6038
 Weather: 
 Inferior versus Normal 

0.5995 0.2218 0.0069 1.8213 1.1792 2.8129

 Road Surface: 
 Dry versus Other 

0.7139 0.1797 <.0001 2.0419 1.4356 2.9042

 Lighting:  
 Day versus Other 

0.03648 0.08884 0.6813 1.0372 0.8714 1.2344

 LOS B versus A 0.1647 0.09829 0.0938 1.1790 0.9724 1.4295
 LOS C versus A 1.3672 0.1093 <.0001 3.9243 3.1674 4.8620
 LOS DEF versus A 1.6787 0.1440 <.0001 5.3586 4.0405 7.1068
 Distraction:  
 Complex versus Non 

0.6685 0.1842 0.0003 1.9514 1.3601 2.7997

 Distraction: 
 Moderate versus Non 

-0.7249 0.1295 <.0001 0.4844 0.3757 0.6244

 Distraction:  
 Simple versus Non 

-1.2119 0.1245 <.0001 0.2976 0.2332 0.3799

 Junction versus  
 Non-Junction 

1.2522 0.08561 <.0001 3.4980 2.9576 4.1371
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Table 30. Modeling comparison for crashes. 

  GEE Model Random  Effect  
Model 

Contingency Table:  
Crude Odds Ratio 

Factors Odds  
Ratio 

95% CI  
Low 

95% CI 
High 

Odds 
Ratio

95% CI 
Low 

95% CI 
High 

Odds  
Ratio 

95% 
CI  
low 

95% CI 
High 

Drowsy 6.35 3.38 11.91 6.31 3.30 12.08 7.12 3.94 12.87
Weather: 
 Inferior versus 
Normal 

2.17 0.79 6.01 2.14 0.82 5.62 1.80 0.89 3.63

Road Surface: 
 Dry versus 
Other 

4.81 1.98 11.71 4.79 2.27 10.11 3.10 1.81 5.32

Lighting:  
Day versus 
Other 

1.04 0.58 1.86 0.97 0.57 1.65 1.41 0.86 2.29

LOS B versus A 0.42 0.23 0.76 0.42 0.23 0.79 0.42 0.23 0.77
LOS C versus A 0.89 0.38 2.08 0.89 0.39 2.02 0.89 0.40 1.99
LOS DEF 
versus A 

1.83 0.67 5.03 1.98 0.84 4.65 2.47 1.10 5.54

Distraction:  
Complex versus 
Non 

3.51 1.18 10.41 3.40 1.36 8.51 3.31 1.4 7.82

Distraction: 
 Moderate 
versus Non 

0.65 0.25 1.64 0.68 0.32 1.42 0.64 0.31 1.32

Distraction:  
Simple versus 
Non 

0.54 0.26 1.11 0.51 0.26 1.01 0.49 0.25 0.96

Junction versus 
Non-Junction 

5.89 3.51 9.86 6.05 3.71 9.85 5.38 3.35 8.64

 
To compare the contingency table, the GEE model, and mixed effect models, the estimations for 
odds ratios from the three methods are pooled into table 30 and table 31 and also illustrated in 
figure 12 and figure 13.  There are some discrepancies among the three methods.   For example, 
for LOS DEF versus LOS A, the crude odds ratio is significant greater than 1 but odds ratios 
from GEE and mixed effect models show non-significant results.    
 
The drowsiness shows a large impact on the crash risk with an odds ratio of 6.31 to 7.12.  The 
model-based results are lower than the crude odds ratio.   The weather condition shows no 
significant effects on crash risks.  The road surface, however, significantly impacts traffic safety.  
The estimated odds ratios for GEE (4.81) and for mixed effect model (4.79) are substantially 
higher than the crude odds ratio of 3.10.  This could be caused by the interaction between 
weather conditions and road surface conditions.   
 
Lighting conditions do not show a significant impact for traffic safety.  The traffic density as 
measured by the LOS shows some interesting patterns.  The LOS B (free flow with some 
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restrictions) appears safer than LOS A (the free flow).  The safety for LOS C, (stable flow with 
more restrictions) statistically is similar to LOS A.  Due to limited observations, LOS D, LOS E, 
and LOS F were aggregated for the analysis; the results for simple contingency table and model 
base approaches are different.  The crude odds ratio for LOS DEF is 2.47, which significantly 
differs from neutral value 1.  However, the odds ratios from GEE and mixed effect models are 
statistically non-significant.  The results for traffic density indicate that some level of interaction 
among vehicles will not necessarily lead to increased risk.   However, high traffic density could 
have some negative impact on traffic safety.  
 
Distraction shows mixed messages for safety.  The complex tasks as defined in table 11 have a 
definite impact on safety with an odds ratio of 3.5.  The effect of moderate tasks is inconclusive 
(statistically not significant).  The simple tasks, however, show a protective effect and reduce the 
crash risk by half (odds ratio is about 0.5).   The small odds ratio indicated that the relative 
frequency of simple tasks during crash/near-crash is smaller than that during normal driving 
conditions.  There are several possible causes for this protective effect.  First, simple tasks might 
increase driver alertness without impairing driving capability.  This would benefit safety.  
Another possible explanation is that during crash/near-crash events, the drivers might be 
involved in more hazardous situations, e.g., drowsiness or engaging in complex secondary tasks.  
As a result, the driver is less likely to engage in simple tasks.  This can also explain the low 
relative frequency of simple tasks (the protective effects) during safety events.  A detailed review 
of the interactions among simple tasks and other risk factors is needed for a better understanding 
of the role of simple tasks on safety risk.    
 
Junctions are among the most dangerous locations on the highway. The analysis indicates that 
the crash risk at junctions is 6 times more than at non-junction segments.  
 
Due to the limited number of crashes, the odds ratios as shown in table 30 have relatively large 
confidence intervals.  For example, the odds ratio for inferior weather condition shows a 
considerably large point estimate of around 2.  However, it is statistically non-significant partly 
due to the larger variation caused by the small number of observations. The near-crash represents 
a safety event that is not as severe as a crash but also contains important information on the risk 
associated with a factor.  Table 31 provides the results from the simple contingency table, the 
GEE model, and the mixed effect model.  
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Table 31. Modeling comparison for near-crashes. 
 GEE Model Mixed  Effect  

Model 
Contingency Table:  
Crude Odds Ratio 

Factors Odds  
Ratio 

95% CI  
low 

95% CI 
High 

Odds  
Ratio 

95% CI 
low 

95% CI 
High 

Odds 
Ratio 

95% CI
low 

95% CI 
High 

Drowsy 3.67 2.69 5.01 3.5282 2.7040 4.6038 4.08 3.25 5.13
Weather: 
 Inferior 
versus 
Normal 

1.94 1.22 3.10 1.8213 1.1792 2.8129 1.06 0.82 1.39

Road 
Surface: 
 Dry versus 
Other 

2.17 1.38 3.40 2.0419 1.4356 2.9042 1.43 1.15 1.78

Lighting:  
Day versus 
Other 

1.17 0.96 1.43 1.0372 0.8714 1.2344 1.12 1.03 1.40

LOS B 
versus A 1.18 0.98 1.43 1.1790 0.9724 1.4295 1.18 0.98 1.41

LOS C 
versus A 4.06 3.17 5.20 3.9243 3.1674 4.8620 4.07 3.35 4.97

LOS DEF 
versus A 4.99 3.63 6.87 5.3586 4.0405 7.1068 5.46 4.23 7.04

Distraction:  
Complex 
versus Non 

2.02 1.30 3.12 1.9514 1.3601 2.7997 1.85 1.34 2.57

Distraction: 
 Moderate 
versus Non 

0.48 0.37 0.63 0.4844 0.3757 0.6244 0.46 0.36 0.58

Distraction:  
Simple 
versus Non 

0.33 0.25 0.42 0.2976 0.2332 0.3799 0.30 0.24 0.38

Junction 
versus 
Non-Junction 

3.36 2.74 4.12 3.4980 2.9576 4.1371 3.24 2.78 3.78
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Figure 12. Graph. Crash odds ratios.  
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Figure 13. Graph. Near-crash odds ratios.  
 
 
Compared to crash, the odds ratios for near-crash are smaller.  For example, the odds ratio of 
drowsiness for near-crash is around 4 compared to 6-plus for crashes. At the same time, the 
precision of the estimation as indicated by the length of the 95% confidence interval is better; for 
example, the length of the CI of drowsiness odds ratio is 8.53 (11.91-3.38) for crash and 2.32 
(5.01-2.69) for near-crash.  The improved precision for estimation of the near-crash odds ratio is 
a direct consequence of the larger number of near-crashes.   
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The inferior weather conditions show a similar odds ratio as crash.  However, results are 
statistically significant for near-crash based on GEE and random effect models.  The inferior 
weather will significantly increase the risk of near-crash twofold.   
 
Consistent with the results from crash, the lighting condition does not show a significant impact 
on the risk of near-crash.  
 
The safety impacts of traffic density for near-crash show different patterns compared to crash. 
Higher traffic density shows consistent increase for the risk of near-crash.  The odds ratios for 
LOS B, LOS C, and LOS DEF, contrasted with LOS A, increase monotonically.  The LOS B 
shows no significant effect with a point estimation of 1.18. For LOS C, the risk of near-crash 
increases 4 times compared to LOS A, and the LOS DEF shows a fivefold increase for near-
crash risk compared to LOS A.  This result implies that with the increase in traffic density, there 
are increased interactions among vehicles and the possibilities of requiring evasive maneuvers 
will increase.  However, for the alert driver the majority of those evasive maneuvers can be 
controlled so the risk of crash will not necessarily increase.  
 
The effects of distraction for near-crash are similar to those for crash. Specifically, the complex 
secondary tasks show increased near-crash risk but the simple and moderate tasks show reduced 
near-crash risk.   
 
The odds ratio for relationship to junction (3.36) indicates that near-crashes are more likely to 
happen at junctions.  
 





 

CHAPTER 5. SUMMARY AND CONCLUSION 

Naturalistic driving study is an innovative approach for studying traffic safety and driver 
behavior.  The massive information collected provides an unprecedented opportunity for 
investigating research questions that cannot be addressed by accident databases or simulation 
studies.  At the same time the naturalistic driving study approach also brings serious challenges 
for data analysis and modeling.  This report focused on methodological issues for evaluating the 
risks using the safety outcomes of a naturalistic study.  A comprehensive analysis framework 
was developed which consists of study design, measure of safety risk, and statistical models.  
The proposed framework was applied to the crash and near-crash safety events from the 100-Car 
Study.  
 
The naturalistic study data collection shares the major characteristics of a perspective cohort 
study.  However, the analysis of safety outcomes should follow a case-control design.  Therefore, 
the study design is analogous to a case-cohort design in epidemiology study.  The interpretation 
of risk and baseline sampling will follow the principles from the case-cohort study.   
 
One major criticism for a case-based study design is that the corresponding risk estimation is 
based on exposure probability, which is undesirable for most researchers.  This study addressed 
this issue by using an integrated baseline-sampling method and appropriate risk measures.  It was 
argued that for most time-variant exposures, the risk rate as measured by number of safety events 
per unit of driving time/distance is the appropriate measure.  Furthermore, it was shown that with 
a proper baseline sampling method, the odds ratio is an approximation for the RRR.  This 
framework provides a solid theoretical foundation for safety-event-based risk analysis.  It also 
provides a more intuitive interpretation of the main risk measure–the odds ratio–in the context of 
naturalistic driving study.  
 
Another major concern for the analyses of naturalistic driving study is that there are multiple 
safety events and baselines for a single driver, thus the data are correlated instead of 
independent.  Furthermore, the confounding and interaction among risk factors could impair the 
validity of the research.  This study addressed those issues by proposing two logistic regression-
based models, namely the GEE model and the mixed effect model.  Although based on distinct 
statistical assumptions, both models can satisfactorily incorporate the within driver correlation.  
Furthermore, when multiple factors were input into a single model, the confounding and 
interaction among factors can be effectively adjusted.  The validity of the results can be assured 
when the models were properly implemented.  
 
The proposed framework was applied to the 100-Car Study.   A random baseline sampling 
scheme stratified by the driving time of each driver was adopted.  A total of 17,344 baseline 
samples were generated by re-sampling from an existing baseline set and a data reduction with 
more than 3,000 new baselines.  Both crash and near-crash were modeled and the three analysis 
methods (the simple contingency table analysis, the GEE model, and the mixed effect logistic 
regression model) were applied to the reduced data.  Following is a summary of the major 
conclusions from this analysis.  
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• There are some discrepancies among results from the GEE, the mixed effect model, and 
the crude odds ratio estimation. The confidence intervals of the crude odds ratio are in 
general narrower than those from two model-based approaches. However, this is 
considered overly optimistic given that it ignores the driver-specific correlation and fails 
to adjust for potential confounding factors.   

• The GEE and mixed effect models can be used to evaluate the level of correlations 
among observations from the same driver.  The GEE analysis indicates that the marginal 
correlations among observations are weak.  The mixed effect logistic regression model 
shows moderate variations among drivers.  This is consistent with the fact that a small 
number of drivers contribute a large proportion of the safety events.     

• The odds ratio for crash is always larger than for near-crash.  However, the precision of 
the estimation for near-crash, as measured by the length of the confidence interval, is 
substantially better than that for crashes.  This result has significant implications for using 
near-crashes as a safety surrogate for crashes.   

• The odds ratio results for crash and near-crash indicate that drowsiness will increase the 
risk of safety events substantially.  

• The inferior weather condition will significantly increase the risk of near-crash and also 
show a considerable impact on crashes.  

• Traffic condition shows complex effects on safety. Compared to free flow traffic 
condition (LOS A), high traffic density (as measured by LOS D, E, and F) is associated 
with higher risk for both crash and near-crash.  Moderate levels of interactions among 
vehicles (as measured by LOS B and LOS C) provide a protective effect for crash, which 
could contribute to increased driver alert.  However, LOS B and LOS C are associated 
with higher risk of near-crash.   

• Complex secondary tasks will increase the risk of crash by more than 3 times.  However, 
the simple and moderate secondary tasks show smaller exposure in crashes and near-
crashes.   

• The highway junction is much more dangerous than the non-junction highway segment.  
 
In summary, the modeling results indicate that there are some discrepancies among model-based 
approaches (the GEE and random effect models) and the crude odds ratio. The model-based 
estimations considered both the among-driver correlations and the potential confounding effect 
among risk factors, thus they are considered to more accurately reflect the true underlying risk 
levels.  The mixed effect model is considered as a preferred alternative due to two advantages. 
First, the mixed effect model is based on a proper distribution function and solid theoretical 
foundation. Second, the mixed effect model can directly reflect the variation of risk associated 
with drivers.  This is consistent with observation that the number of safety events varies 
substantially among drivers.  
 
The odds ratio results for crash and near-crash indicate that drowsiness will increase the risk of 
safety events substantially. The inferior weather conditions will significantly increase the risk of 
near-crash and also show a considerable impact on crashes. Certain levels of interactions among 
vehicles (LOS B and LOS C) do not provide a protective effect for the risk of crash, which could 
contribute to the increased driver alert.   However, the LOS B and LOS C are associated with 
high risk of near-crash.  For both crash and near-crash, a high level of traffic density (LOS DEF) 
is associated with higher risks.  
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Complex secondary tasks will increase the risk of crash by more than 3 times.  However, the 
simple and moderate secondary tasks show smaller exposure in crashes and near-crashes.   
The highway junction is much more dangerous than the non-junction highway segment.  
 
The framework developed in this study provides a theoretical justification for the case-based 
study method in naturalistic driving studies.  The framework can be implemented on studying 
time-variance exposures such as distraction, drowsiness, and weather conditions.    
 
There are several possible extensions for this study.  The current analysis framework is based on 
data reduction in which all exposure factors were treated equally and independently.  However, 
some crucial information was lost during the current data reduction and analysis method: 1) the 
sequence of the events happened before/during a crash and 2) the interaction between driver, 
vehicle, and driving environments.  It is argued that the combination of factors, the sequence of 
events, and the chain of driver’s reactions during a safety event contains far more information 
than each individual risk factor. For example, the AAA Foundation for Safety has listed the 
chain of events that lead to an accident and an accident can be avoided by breaking any of the 
links in the chain.   An accident reconstruction and causal analysis can provide more insights into 
the true causal relationship between exposure and safety events.  To assess and understand the 
effects of the combination and sequence of factors can shed light on the causal effects and help 
in developing safety countermeasures.  This will bring more challenge into the analysis and will 
be worth further investigation. There is a need to develop a systematic approach to reconstruct 
the complete process of a crash and identify the corresponding critical factors, and this project 
will address these two issues.   

There are two methods for accident reconstruction and critical risk set identification.  Unlike the 
traditional accident reconstruction techniques that rely on post-accident evidence recovery, the 
naturalistic driving data not only have the true driver behavior and vehicle kinematic information 
but also the precise time stamps and order of events.  Thus the proposed analysis will focus on 
the sequential relationships and interactions between events and the risk factors that happened 
before and during a crash. Three major components will be considered: the driver, the vehicle, 
and the outside driving environment. Various sequence diagram techniques will be explored for 
the reconstruction including the Event and Causal Factor Charting (14), Multiple Events 
Sequencing, and the Sequentially Timed Events Plotting Procedure.  

Identification of critical risk set is based on the reconstruction results. A systematic approach is 
needed to minimize the impact of subjective judgment. Tree-based methods such as Fault Tree 
Analysis as well as other causal analysis methods, e.g., Root-Cause-Analysis and Barrier 
Analysis, will be considered in developing an appropriate analysis framework for naturalistic 
driving data.  
 
The current analysis was conducted in a classical statistical framework and there are several 
benefits to extend this approach to Bayesian framework.  Bayesian method has become popular 
in transportation safety study in recent years.  Compared to the classical statistical method, 
Bayesian method has advantages of ease of interpretation, flexibility to accommodate 
spatial/temporal correlation, ability to incorporate prior information, and natural hierarchical 
structure in modeling multi-center/group studies.  The most distinguishing characteristic of 
Bayesian method is its ability to incorporate a priori information. It is especially useful when 
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sample size in each individual study is small but there are multiple similarly structured studies 
available.  With the popularity of naturalistic study, we expect there will be more naturalistic 
studies needing statistical analysis and appropriate Bayesian methodology will enable 
researchers to combine information from multiple sources to achieve more power in modeling.  
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