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EXECUTIVE SUMMARY 

Naturalistic driving study is an innovative way of investigating traffic safety and driving 

behaviors.
(1)

 The method is characterized by instrumenting participant vehicles with data 

acquisition systems (DAS) that include cameras and various sensors to continuously monitor 

the driving process.  This type of study can record detailed vehicle kinematic information as 

well as traffic conditions with advanced instruments such as radar.  The rich information 

collected by naturalistic driving study provides numerous advantages over the traditional 

accident-database-based analyses or driving-simulator-based studies. However, the 

complicated data collection process also demands novel approaches for data analyses and 

modeling. This study developed an integrated framework for modeling the safety outcomes of 

naturalistic driving studies and addressed several critical methodological issues.  Specifically, 

the following research questions were addressed: 1) how to extract exposure information for 

safety events and baselines (the study design), 2) how to measure and interpret safety risks, 

and 3) how to statistically model safety risks.   

The proposed method was applied to the 100-Car Study.
(1)

 A total random baseline sampling 

scheme was adopted with a sample size of 17,344.  Two alternative statistical models, the 

generalized estimation equation and mixed-effect logistic regression, were used to incorporate 

driver-specific correlations and adjust for potential confounding effects.  The results indicate a 

certain level of discrepancy between the model-based approaches and the crude odds ratios.   

The Study Design and Measure of Risk 

The study design is concerned with how the safety outcomes are identified and how exposure 

information is extracted. The data collection process of a naturalistic driving study is prospective 

and is similar to a cohort study; but safety event and baseline identification follows a case-

control design. Thus the naturalistic driving study is analogous to the case-cohort type study as 

illustrated in figure 1.  The case-cohort is a two-stage study design in which the first step is to 

collect and save all relevant data and the second step is to extract information from the saved 

data for analyses. The case-cohort method combines the merits of both cohort and case-control 

studies. It is less prone to bias than a case-control study but is more efficient than a cohort study.  

As shown by this research, the case-based approach is the preferred method for analyzing 

naturalistic driving data unless full automated data reduction techniques are available.  
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(a) Case-cohort study data collection step 1: exposure information not extracted 

 
 

(b) Case-cohort study step 2: extract exposure information for case and control 

Figure 1. Diagram. Case-cohort study.  

There are three commonly used risk measures: risk ratio, odds ratio, and risk rate ratio (RRR).  

For most factors of interest, risk rate and RRR as measured by number of events per unit of 

exposure are most appropriate for naturalistic driving study.  However, the RRR is difficult to 

calculate due to the high cost of accurately extracting exposure duration information.  This study 

proposed to approximate RRR by odds ratio.  The approximation requires a combination of 

appropriate baseline sampling methods and statistical models.  It was shown that with a total 
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random baseline sampling method, the odds ratio will approximate the rate ratio. The sampling 

method is illustrated in figure 2, where PT+ and PT- is the exposure duration (person-time) for 

two exposure levels “+” and “-“; and B and D are the number of baseline line samples for each 

period.  The random sampling method satisfies the condition , which is the key to odds 

ratio to rate ratio approximation.  A stratified random re-sampling method, which shares the 

same properties as the total random sampling method, was implemented to combine an existing 

baseline data set and a new data reduction to generate a total of 17,344 baseline samples. 

 

Figure 2. Diagram. Random sampling scheme. 

Statistical Modeling and Results 

The statistical analyses focused on two issues: 1) to incorporate the correlation among 

observations from the same driver (the driver-specific correlation), and 2) to adjust for 

confounding effects through modeling.  Two logistic-regression-based models, the Generalized 

Estimation Equation method (GEE) and mixed effect logistic regression, were adopted to address 

those issues.  The models were applied to both the crashes and near-crashes. The modeling 

results are summarized in table 1 and table 2 and illustrated in figure 3 and figure 4. 

Table 1. Modeling results for crashes. 

 GEE Model Random  Effect  

Model 

Contingency Table:  

Crude Odds Ratio 

Factors Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% 

CI  

Low 

95% CI  

High 

Drowsy 6.35 3.38 11.91 6.31 3.30 12.08 7.12 3.94 12.87 

Weather: 

 Inferior versus 

Normal 

2.17 0.79 6.01 2.14 0.82 5.62 1.80 0.89 3.63 

Road Surface: 

 Other versus Dry 
4.81 1.98 11.71 4.79 2.27 10.11 3.10 1.81 5.32 

Lighting:  

Other versus Day 
1.04 0.58 1.86 0.97 0.57 1.65 1.41 0.86 2.29 

LOS B versus A 0.42 0.23 0.76 0.42 0.23 0.79 0.42 0.23 0.77 

LOS C versus A 0.89 0.38 2.08 0.89 0.39 2.02 0.89 0.40 1.99 

LOS DEF versus A 1.83 0.67 5.03 1.98 0.84 4.65 2.47 1.10 5.54 

Distraction:  

Complex versus Non 
3.51 1.18 10.41 3.40 1.36 8.51 3.31 1.4 7.82 

Distraction: 

 Moderate versus Non 
0.65 0.25 1.64 0.68 0.32 1.42 0.64 0.31 1.32 

Distraction:  

Simple versus Non 
0.54 0.26 1.11 0.51 0.26 1.01 0.49 0.25 0.96 

Junction versus  

Non-Junction 
5.89 3.51 9.86 6.05 3.71 9.85 5.38 3.35 8.64 



 

iv 

 

Table 2. Modeling results for near-crashes. 

 GEE Model Mixed  Effect  

Model 

Contingency Table:  

Crude Odds Ratio 

Factors Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Drowsy 3.67 2.69 5.01 3.5282 2.7040 4.6038 4.08 3.25 5.13 

Weather: 

 Inferior versus 

Normal 

1.94 1.22 3.10 1.8213 1.1792 2.8129 1.06 0.82 1.39 

Road Surface: 

 Other versus Dry 
2.17 1.38 3.40 2.0419 1.4356 2.9042 1.43 1.15 1.78 

Lighting:  

Other versus Day 
1.17 0.96 1.43 1.0372 0.8714 1.2344 1.12 1.03 1.40 

LOS* B versus A 1.18 0.98 1.43 1.1790 0.9724 1.4295 1.18 0.98 1.41 

LOS C versus A 4.06 3.17 5.20 3.9243 3.1674 4.8620 4.07 3.35 4.97 

LOS DEF versus A 4.99 3.63 6.87 5.3586 4.0405 7.1068 5.46 4.23 7.04 

Distraction:  

Complex versus Non 
2.02 1.30 3.12 1.9514 1.3601 2.7997 1.85 1.34 2.57 

Distraction: 

Moderate versus Non 
0.48 0.37 0.63 0.4844 0.3757 0.6244 0.46 0.36 0.58 

Distraction:  

Simple versus Non 
0.33 0.25 0.42 0.2976 0.2332 0.3799 0.30 0.24 0.38 

Junction versus  

Non-Junction 
3.36 2.74 4.12 3.4980 2.9576 4.1371 3.24 2.78 3.78 
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Figure 3. Graph. Crash odds ratios. 
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Figure 4. Graph. Near-crash odds ratios. 

The main findings are summarized as follows:  

 There are some discrepancies among results from the GEE, the mixed effect model, and 

the crude odds ratio estimation. The confidence intervals of the crude odds ratio are in 

general narrower than those from the two model-based approaches. However, this is 

considered as overly optimistic given that it ignores the driver-specific correlation and 

fails to adjust for potential confounding factors.   

 The GEE and mixed effect model can be used to evaluate the level of correlations among 

observations from the same driver.  The GEE analysis indicates that the marginal 

correlations among observations are weak.  The mixed effect logistic regression model 
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shows moderate variations among drivers.  This result is consistent with the fact that a 

small number of drivers contribute a large proportion of the safety events. The mixed 

effect model is preferred because of its connection with this individual variation.  

 The odds ratios for crashes are consistently larger than for near-crashes.  On the other 

side, the precision of the estimation for near-crashes, as measured by the length of the 

confidence interval, is substantially better than that for crashes.  This result has 

significant implications for using near-crashes as a safety surrogate for crashes.   

 Drowsiness will increase the risk of both crashes and near-crashes substantially (sixfold 

increase for crash and threefold increase for near-crash).  

 Inferior weather conditions will significantly increase the risk of near-crashes and also 

show a considerable impact on crashes.  

 Traffic densities show distinct patterns for crashes and near-crashes.  For crash risks, the 

Levels of Service [LOS] B and C, which represent a moderate level of interactions 

among vehicles, are not necessarily more dangerous than free flow condition (LOS A).  

This could be attributed to the increased driver vigilance.   However, LOS B and LOS C 

are associated with a high risk of near-crash.  For both crashes and near-crashes, high 

traffic density (LOS DEF) will lead to higher risks.  

 Complex secondary tasks will increase the risk of crashes by more than three times and 

the risk of near-crashes by two times.  The simple and moderate secondary tasks, on the 

other hand, show some level of protective effects for both crashes and near-crashes.   

 The highway junction is substantially more dangerous than the non-junction highway 

segment with a sixfold increase in crash risk and a threefold increase for near-crash.  

 

This study focuses on analysis methodology issues for naturalistic driving study.  The framework 

developed provides a solid theoretical justification for the case-based study method in 

naturalistic driving studies.  It addressed critical issues on how to measure risk, how to conduct 

data reduction, and how to model the reduced data statistically.  The framework can be directly 

applied to evaluate time-variant risk factors such as driver behavior and driving environmental 

factors.   
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CHAPTER 1. INTRODUCTION 

Naturalistic driving study is an innovative way of investigating traffic safety and driving 

behaviors.
 (1)

 The method is characterized by instrumenting participant vehicles with data 

acquisition systems (DAS) that include cameras and various sensors to continuously monitor 

the driving process.  This type of study can record detailed vehicle kinematic information and 

traffic conditions with advanced instruments such as radar.   The rich information collected by 

naturalistic driving study provides numerous advantages over the traditional accident-

database-based analyses or driving-simulator-based studies. However, the complicated data 

collection process also demands novel approaches for data analyses and modeling. This study 

developed an integrated framework for modeling the safety outcomes of naturalistic driving 

studies and addressed several critical methodological issues.  Specifically, the following 

research questions were addressed: 1) how to extract exposure information for safety events 

and baselines (the study design), 2) how to measure and interpret safety risks, and 3) how to 

statistically model safety risks.   

Highway crashes are one of the leading causes of death in the United States; there are more than 

40,000 deaths and approximately 2.5 million injuries annually that result from highway 

crashes.
(2)

  As a result,  safety has been a focus of transportation research for the last decade.  

Before the emergence of advanced data collection methods, accident databases and /police 

reports have been the main sources of traffic accident information.  There have been numerous 

efforts to establish the relationship between accident frequency and potential risk factors such as 

highway geometric features and traffic characteristics.  For this purpose, the accident data are 

commonly aggregated by intersection or highway segment.  Comparable with aggregated 

accident data, counting data models, such as Poisson and negative binomial regression models, 

have been the mainstream modeling techniques.
(3,4)

  Recently, more sophisticated models were 

developed incorporating spatial and temporal correlation and using full Bayesian framework.
(5,6)

   

 

One inherent drawback for aggregated analysis is that a large proportion of information for 

individual crashes was lost during aggregation.   Only those characteristics shared by all crashes 

within an aggregation stratum can be kept.  For example, in intersection safety analysis, the 

response is the number of crashes for each intersection. Only those properties shared by all 

crashes at a given intersection (such as intersection design and traffic characteristics) can be 

incorporated into analyses.  The risk factors for each crash, such as driver age, gender, vehicle 

type, etc., are different in most cases and thus cannot be considered as the attributes of 

aggregated crash counts. 

Only limited studies have considered traffic safety at the discrete/individual crash level.
(7)

  One 

critical issue in individual crash-based analysis is to find a proper control group and compare 

safety events with the control group.  In evaluating the effectiveness of electronic stability 

control (ESC), Dang
(7)

 used the crashes that were not directly related to ESC as the control 

group; e.g., crashes involving a parked vehicle, a backing up vehicle, vehicles entering/leaving a 

parking lot, and vehicles with a speed lower than 10 mi/h.  The quantitative comparison of ESC 

frequencies in ESC-related crashes and non-ESC-related crashes was then used to evaluate the 

effect of ESC.  The individual crash-based analysis can incorporate more information than the 

aggregated method.  For this type of analysis, the appropriateness of the control group directly 

determines validity of the study and sometimes can be difficult to define.   
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The details and quality of data that naturalistic driving studies have provided are unprecedented.   

The video image and kinematic measures can provide not only the exact driving behavior, 

vehicle kinematic, and driving environmental information, but also the sequence and precise time 

stamp for each sub-event.   This high resolution information is not readily available from the 

accident database.  The traditional accident reconstruction techniques can recover some vehicle 

kinematic information but are often fragmentary and lack the exact time stamp for the sequence 

of events.  To make maximum use of the rich information collected, individual safety-event-

based analysis is preferred to the aggregated method.  

Drivers’ behavior is the main contributor to traffic safety events. However, accurately retrieving 

driver behaviors from post-accident reconstruction is challenging if not impossible.  The records 

from accident databases are primarily based on the statements from driver(s)/witness(es) and that 

information is often fragmentary and based on witness' perception and memory.
(8)

 Accident 

reconstruction may suggest the driver’s behaviors before/during the crash but the results often 

tend to be speculative.  For this reason, many driver behavior studies are conducted in a 

controlled experimental environment or on a simulator.  However, the driver’s behavior in a 

simulator and in a controlled environment may substantially differ from behavior during natural 

driving conditions.  Therefore, simulator/controlled experiments cannot completely replace the 

field data collection.  The naturalistic driving study can overcome these challenges and provides 

an opportunity to quantitatively evaluate the safety impact of drivers’ behavior under natural 

driving conditions.  

Driver behavior, along with many other factors such as weather and traffic conditions, is time-

variant in that its status constantly changes over time.  Models based on aggregated data are 

difficult to be implemented for those time-variant exposures because the aggregation requires 

accurate exposure duration information for each factor, e.g., duration of each period when the 

driver is drowsy.  To extract this information is cost-prohibitive using the current data reduction 

method for naturalistic driving. The problem is further complicated when multiple factors are 

considered.  The lack of exact exposure duration information could be an obstacle for Poisson 

and negative binomial models, which are based on aggregated data and require exposure 

duration.  Therefore, the individual crash/discrete-based analysis method is preferred for 

analyzing naturalistic driving data.    

In this study, an integrated analysis framework was developed for modeling the safety outcomes 

of a naturalistic driving study based on individual safety events.  The focus is on time-variant 

risk factors.  The main components of this framework are addressed in the subsequent chapters.  

The overall structure of the report is as follows.   

 Chapter 2: the study design and some typical study design methods are introduced.  The 

merits of each design and their relationship with naturalistic driving study are discussed. 

In addition, various measures of risk and their relationship with the study design are 

discussed in detail. 

 Chapter 3: a random sampling scheme is introduced and implemented for the 100-Car 

Naturalistic Driving Study (100-Car Study).  
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 Chapter 4: several alternative models are introduced for the analysis of reduced data.  The 

method was applied to the reduced data from the 100-Car Study.   

 Chapter 5: summary and discussion.  
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CHAPTER 2. STUDY DESIGN AND BASELINE SAMPLING SCHEME 

One primary goal of naturalistic driving study is to identify and evaluate factors with significant 

impacts on traffic safety, which is typically measured by number of crashes or crash surrogates. 

The study design is a critical component of naturalistic driving study.  It guides the overall data 

collection and analyses and essentially determines the validity of a study.  For a naturalistic 

driving study design, three major questions shall be addressed: 1) what is characteristic of the 

overall study design, 2) how to measure a risk, and 3) how the baseline information should be 

extracted.  In this chapter, several typical epidemiology study design methods were introduced 

and their relationship with naturalistic driving study was investigated.   

STUDY DESIGN 

Naturalistic driving study investigates the factors that affect traffic safety.  This is a direct 

analogy to epidemiology study whose focus is to evaluate factors affecting public health.  

Therefore, the naturalistic driving study design is similar to epidemiology design. The 

framework developed in this research is built upon epidemiology methods.   The study design 

determines how the exposure information and health/safety events should be collected/extracted.  

To a large extent, it also determines how the data should be analyzed.  The naturalistic study, by 

definition, does not involve direct intervention in the driving process; thus, it belongs to the 

observational study category.  Unlike experimental studies in which exposure/treatment can be 

controlled by researchers, the participants in an observational study decide their own exposure 

status.  Similarly, drivers in a naturalistic driving study determine their own driving behaviors. 

For example, a driver can make his/her decision on whether to use a cell phone during driving.  

Besides driving behaviors, the exposure status of potential risk factors such as environmental and 

traffic conditions cannot be controlled by researchers.  Therefore, the study framework was 

developed based on observational study methods.    

Because of the inability to control exposure status, observational studies are more prone to bias 

than experimental studies.  In an experimental study, interaction and confounding factors can be 

addressed through randomization or appropriate assignment of exposure status.  In observational 

studies, however, there is no guarantee that the effects of particular risk factors will be isolated 

from other factors.  For example, texting might always be associated with eyes-off-road and, in 

this case, the effects of texting cannot be separated from the effect of eyes-off-road.  Appropriate 

study design and data analysis methods can address those issues and are critical components of 

an observational study. 

In a naturalistic driving study, the participants drive vehicles in a non-obstructive driving 

environment and their driving behaviors, environmental factors, vehicle kinematic information, 

and traffic conditions are continuously recorded through multiple video cameras and various 

instruments. Safety events (such as crashes, near-crashes, and critical incidents) are identified 

through kinematic signatures of the vehicle and confirmed through visual inspection for video 

recordings.  The main objective of studying these safety events is to identify factors that have a 

significant impact on traffic safety.  This is done by comparing the exposure status of risk factors 

that are present before/during safety events and during normal driving conditions.   Following 

the convention of epidemiology research, the safety outcomes, i.e., crash and near-crash, are 

used interchangeably with cases; and the factors that might contribute to safety are used 
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interchangeably with exposures.  Besides cases, the exposure status under normal driving 

conditions is also required, which is called baselines/controls. The quantitative evaluation of risk 

will be conducted through the comparison of the exposure status between cases and baselines.    

The study design concerns how cases and baselines are selected and how exposure information is 

extracted.  Depending on the order in which exposure and cases are identified and the timeline of 

a study, there are three basic types of studies: the cohort study, the case-control study, and the 

cross-sectional study. The basic setup for each study design and their characteristics are 

introduced as following. 

The Cohort Study 

In a cohort study, exposure information is identified first, and safety/disease outcomes (either 

case or non-case) are identified subsequently.  A cohort is a group of individuals with similar 

exposure status.  For example, in traffic safety studies, there could be a teenage driver cohort and 

an adult driver cohort.  These two cohorts will be followed through the study period and the 

safety outcomes for each cohort (i.e., crash or no-crash) are identified through the course of 

study.  For time-variant exposures such as weather and traffic conditions, the membership of 

cohort will change over time.  A dynamic cohort is used to refer to a group of individuals with 

the same exposure status at a given time point/period.  As will become apparent later, the 

majority of the risk factors in naturalistic driving study rely on the dynamic cohort concept.  A 

schematic plot of cohort design is shown in figure 5.  

 

Figure 5. Diagram. Cohort study.   
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Compared to other types of observational studies, the cohort study is the least prone to bias.  The 

direction of the study, i.e., from exposure to health outcomes, allows the risk to be evaluated 

directly.  However, the cohort study usually requires a lengthy data collection period and the cost 

is high. For example, the Framingham Heart Study has lasted for decades.
(9)

  When historical 

exposure data are available, the cohort study can be relatively time- and cost-efficient and is 

commonly used in occupational disease studies. 

 

The Case-control Study 

In a case-control study, cases and controls are identified first and their corresponding exposure 

status is subsequently extracted.  A group of observations, i.e., controls, are selected to represent 

the general exposure status of the study population. In traffic safety studies, the cases will be the 

drivers who had experienced a safety event or the events themselves. The controls are the drivers 

without safety events or segments of normal driving process.  The risk factors are evaluated by 

comparing the exposure frequencies for cases and for controls.  A schematic plot for case-control 

study is shown in figure 6. 

 

Depending on how cases are defined, the controls can either be drivers without any safety events 

or a short period of normal driving process.  The selection of controls will determine the validity 

of a case-control study to a large extent.  The general principle for control selection is that 

controls should reflect the characteristics of the source population from which cases are derived.  

How to implement this principle in practice, however, is context-dependent.  Note that in a 

cohort study the cases are always derived from source population and thus are less prone to bias 

than a case-control study.  Improper control selection can lead to invalid conclusions in a case-

control study.  A thorough consideration for baseline selection scheme is critical for the success 

of a study.  

 

Another disadvantage for case-control study is that the design does not allow direct evaluation of 

risk. This is a serious weakness but can be addressed by using appropriate control selection 

scheme and risk measures.  This research uses a combination of baseline sampling method and 

statistical analyses to address the risk measurement issue.  The details will be discussed in a later 

part of this report. 
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Figure 6. Diagram. Case-control study.  

The Cross-sectional Study 

In a cross-sectional study, the cases and baselines as well as the corresponding exposure 

information are collected at a particular time point (or time period).   Many traffic safety studies 

belong to this category. For example, the crash happened during a specific time period and the 

corresponding traffic conditions and infrastructure characteristics in the same period can be 

collected in a cross-sectional study.  A regression-based analysis is commonly used to connect 

safety outcomes with the exposures status.   The cross-sectional method works best for those 

factors that do not change for a long period of time. In traffic safety studies, the road geometric 

design and traffic demand characteristics are examples of those measures.  Due to the relatively 

small number of crashes that happen at each location, the duration of the cross-sectional time 

window is usually several years long.  A schematic plot for the cross-sectional study is shown in 

figure 7. 
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Figure 7. Diagram. Cross-sectional study.  

The Case-cohort Study 

The cohort, case-control, and cross-sectional studies are the three primary observational study 

designs.  In addition to those three methods, several hybrid design methods have been proposed 

to mitigate the drawback of the individual study design.  The case-cohort is a hybrid design that 

combines the characteristics of both cohort and case-control study.   In a case-cohort study, the 

data collection follows the procedure of a cohort study.  However, the exposure status, or the 

original cohort, is not extracted at the beginning of the study as is the case for typical cohort 

studies.  Instead, the information is “saved” for future analyses.  There could be a number of 

reasons for this approach, e.g., the cost of identifying exposure status is too high, it is technically 

not practical to identify exposure status for a large number of samples, or the research questions 

are not full determined at the time of data collection.   After the data collection process, the 

analysis, however, follows that of a case-control study in which the cases/safety outcomes are 

identified retrospectively from the original cohort.   Instead of finding exposure status for all 

samples, only a subset (i.e., the controls) will be selected from the saved information.  By doing 

this, only a subset of saved data needs to go through the exposure status identification process, 

thus significantly reducing the corresponding data reduction cost.   

 

The case-cohort method combines the advantages of both cohort and case-control studies.  The 

case-cohort study guarantees the cases are from the study population, thus reducing bias 

associated with control selection as in a case-control study.  At the same time, since only a small 

proportion of the study population needs to be examined for exposure status, the associated cost 

is much lower than that of the cohort study.   However, the case-cohort cannot totally eliminate 

the weakness of cohort and control studies, e.g., duration of the data collection cannot be 

reduced.  At the same time, caution is still needed in selecting the control from the study 
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population; that is, the controls should still represent the characteristics of the general population.  

As will be discussed later, the selection of control also depends on the risk measures used and the 

modeling approach. The two-step procedure of case-cohort is illustrated in figure 8. 

 

 
 

(a) Case-cohort study data collection step 1: exposure information not extracted 

 
 

(b) Case-cohort study step 2: extract exposure information for case and control 

Figure 8. Diagram. Case-cohort study.  

Case-crossover Design 

Case-crossover sampling is a matched sampling scheme for which a given number of baseline 

samples are selected for each case by matching certain conditions.  The case-crossover method 



 

11 

requires that baseline samples have the same potential confounding/interaction factors as the 

case, such as driver, location, time of day, and weather conditions.  In a case-crossover, the 

matching factors for a case are extracted first.  The controls are then identified by matching those 

factors with the case.  This procedure guarantees that the case and control have the same 

exposure for matched factors.  Thus, the confounding/interaction factors are controlled through 

sampling.  The case-crossover design is suitable for short exposures with transient effects such as 

drowsiness and inattention.   

 

There are some disadvantages for case-crossover design.  The matching process can be 

technically difficult. There are situations where no sufficient qualified baselines can be 

identified.   Due to the matching scheme, the observations for each matched set shall be 

considered as not independent.  Therefore, the analysis requires more sophisticated models.  

Furthermore, the baseline samples from case-crossover can only serve the specific analyses and 

are difficult to use in other studies.   A schematic plot of the case-crossover design is shown in 

Figure 9. 

 

 

Figure 9. Diagram. Case crossover study. 
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NATURALISTIC DRIVING STUDY AND ITS DESIGN CHARACTERISTICS 

Naturalistic driving study is characterized by its minimized interference with the driving process 

and the massive amount of information collection.  Consequently, the study is an observational-

type study.  The data collection process can be considered as a plain recording of reality for the 

next step analysis.  The rich information collected by naturalistic driving study allows various 

research questions to be answered.  In term of study design, the naturalistic driving study data 

collection is perspective-type study but in itself does not constitute one specific study design.  

The reason is that a study design usually targets specific research questions, which is generally 

not fully determined at the beginning of data collection.  There could be several alternative study 

designs for a given research question.   The thorough information collected through naturalistic 

driving study provides great flexibility in study design.  

 

There are some distinct characteristics for naturalistic driving studies.  The data are collected 

prospectively; that is, all relevant exposure information will be recorded regardless of future 

safety outcomes.  From this viewpoint, it has the characteristics of a cohort study.  The 

participants for a study are usually fixed and it is a fixed population study.  The cohort refers to a 

group of individuals with identical exposure status.  This is easy to define for time-invariant 

exposures such as driver genders and vehicle type; e.g., a cohort of male drivers and a cohort of 

sedans.   The cohort is difficult to be defined for time-variant exposures such as driver behavior, 

weather conditions, and traffic conditions.  Those exposures will change over time and one 

participant driver might be in a drowsiness cohort during one period of time and in a non-

drowsiness cohort during another time period.  The concept of dynamic cohort is used to refer to 

a cohort of participants who belong to a certain exposure group but might change their 

membership.  A dynamic cohort consists of participants at a certain exposure status for a given 

time point.   

 

An analysis based on dynamic cohort is commonly measured by risk rate, which requires the 

knowledge about the duration for each exposure level.  While the advances in technology may 

allow those durations to be calculated automatically in the future, this is obviously cost-

prohibitive given that current data reduction relies primarily on manual data reduction by trained 

data reductionists.  Therefore, a standard cohort-type analysis is not practical. Instead, case-based 

approaches are more appropriate.   

  

The case-based approach follows the general framework of a case-control study design.  For 

naturalistic driving data, the first step is to identify safety outcomes from the continuously 

recorded kinematic and image information.  The current Virginia Tech Transportation Institute 

(VTTI) practice is to use kinematic triggers (e.g., abnormally high deceleration rate or yaw rate, 

etc.) to identify segments potentially being related to safety events.  A visual inspection is then 

followed to each trigger to confirm the safety outcome.
(10)  

The safety outcomes are analogous to 

cases for a case-control study.   Similarly, a set of controls needs to be selected.  In the context of 

a naturalistic driving study, the controls are segments of driving records for normal driving 

conditions.  The exposure statuses for both cases and controls are extracted. The comparison of 

exposure statuses for cases and controls allows quantitative measure of the risk associated with 

each exposure.  
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The case-based approach for analyses of risk factors from naturalistic driving study is 

fundamentally different from a standard cohort study.  Although the exposure data were 

collected in the data collection process, they were not extracted immediately.  Instead, the raw 

data were simply stored and the exact exposure information is extracted later through the data 

reduction process.  This is more analogous to the case-cohort type study.  There are several 

alternative design methods for the case-based approach, including random baseline sampling and 

the case-crossover design method.  The random baseline sampling method was adopted in this 

report and will be discussed in detail in Chapter 3.    

 

MEASURE THE RISK OF EXPOSURE FACTORS  

The output from an observational study can be conveniently arranged in a contingency table 

form although the interpretation can be dramatically different.   For a simple dichotomous 

exposure factor, the output contingency table has the general form as shown in table 3. 

 

Table 3. Output of observational study. 

 E+ E- Total 

Crash A B A+B 

No crash  C D C+D 
Total A+C B+D A+B+C+D 

 

In the above table, the exposure is assumed to have two levels:  E+ and E-.  For example, E+ 

could represent young drivers or inferior weather conditions and E- could represent adult drivers 

or normal weather conditions.  In the first case, the value “A” is the number of young drivers 

having a crash during the study period and B is the number of adult drivers having a crash. The 

value C is the number of young drivers without a crash and D is the number of adult drivers 

without a crash.    

 

The main difference among study designs is how the marginal sample size is determined.  For 

cohort study, the sample size for each cohort is predetermined.  That is, the numbers A+C and 

B+D are predetermined before data collection.  For case-control study, the number of controls 

(i.e., the row marginal) is predetermined; e.g., A+B (the number of cases) is observed from the 

study and C+D (the number of controls) is predetermined.  For cross-sectional study, the total 

sample size, A+B+C+D, is predetermined.  This difference has a significant implication on what 

types of risk measures can be calculated.  The details are discussed in the following section on 

risk measures.    

 

The ultimate goal of the study is to establish the relationship between exposure and the safety 

outcome, commonly measured by crashes.  At the same time, it is desirable to measure the 

magnitude of the impacts of risk factors to safety. Thus, a quantitative measure of risk is desired.  

Depending on the study design and nature of safety outcomes, three different measures can be 

used: the risk, the odds, and the rate.   

 

Risk  

Risk is the probability of crash for a specific factor (or combination of factors) over a specific 

period of time.  As a probability measure, the risk is always between zero (i.e., no risk) and 1.  
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Risk is commonly evaluated by the relative frequency of cases in each cohort and can be directly 

calculated from the cohort study.   Following table 3, the risk for the E+ cohort is A/(A+C), 

which is the relative frequency of crash for the E+ group; similarly, the risk for the E- cohort is 

B/(B+D).  The risk has the direct interpretation of the probability of crash given exposure status; 

e.g., the risk for teen drivers is the probability of teen drivers having a crash.  

 

Note that in a case-control study, the risk cannot be directly calculated since the total number of 

observations for the exposure group (A+C and B+D) is not predetermined.  Instead, the numbers 

of cases and controls are observed/determined in advance; i.e., A+B and C+D.  Therefore, 

A/(A+C) does not represent the risk for E+ group.  The meaningful measure is the relative 

frequency A/(A+B), which is corresponding to the probability of exposure given that  there was a 

crash.   This measure is not as attractive as the risk of crash for a given exposure level.  For 

example, the value A/(A+C) represents the probability that the driver is a teenager given that 

there is an accident.   This is, of course, of less interest for the researcher and the general public 

than is the risk measure from cohort studies. 

 

The risk is associated with the duration of the study period.  For example, the risk of having a 

crash in 10 years will be much higher than the risk of having a crash in 1 year. For this reason, 

risk requires accurate information about the time at risk, i.e., the driving time or mileage.  This 

can be challenging for time-variant factors.  

 

Comparison of the relative risk of two exposure levels can be done through the comparison of 

the risk. Some commonly used measures include:  

 

1. Risk ratio (RR) for cohort study 

 

The neutral value is 1, which indicates that there is no difference in the risk of the exposure and 

non-exposure groups.  An RR greater than 1 indicates elevated risk and a RR of less than 1 

indicates a protective effect or a lessening of risk. Note that this value differs from that based on 

the case-control study.  

 

2. Risk difference (population attributable risk) 

 

 

 

A zero value risk difference implies there is no difference for the two exposure levels.  

 

Odds 

Odds are another measure of uncertainty.  The odds are defined as the ratio of the probability that 

an event will occur to the probability that an event will not occur; i.e.,  
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For a cohort study with the notation in table 3, the odds for young drivers to have a crash is  

 

 

 

Similarly, the odds for adult drivers are B/D.   

 
The two exposure levels can be compared using an odds ratio.  The odds ratio can be calculated 

as   

 

 

 

Note that the equation above is based on risk measure from cohort study, thus commonly known 

as the risk odds ratio (ROR).   

 

The odds ratio for case-control study has a different interpretation from the cohort study. 

Because the total numbers of cases and controls are fixed, the odds are based on the probability 

of exposure conditioning on case or control; that is, the probability of exposure given a 

crash/control has happened.  The probability of exposure is apparently less attractive than the 

risk probability in a cohort study.  The odds ratio calculation for case-control study is shown 

below.  

 

 

 

The odds ratio for case-control is based on the probability of exposure; thus, it is named the 

exposure odds ratio (EOR).  Although there are fundamental differences between risk odds ratio 

and exposure odds ratio, the formulas are identical.  Under appropriate conditions, the exposure 

odds ratio can be used to approximate the risk ratio.  

 

Risk Rate  

The risk and odds ratios are based on probability measures. As discussed previously, the 

probability has to be considered for a specific period.  To compare two exposure levels, the 

exposure duration for those two levels should be equal or comparable.  For example, to compare 

young drivers and adult drivers, the driving time for each driver should be comparable.  This is 

not necessarily true for naturalistic driving study where different drivers drive different amounts 

and distances.  Furthermore, the driving behaviors and driving environments are constantly 
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changing over time. For the dynamic cohort defined from time-variant exposures, it is 

challenging to conduct the comparison based on probability measure. The rate and rate ratio are 

more appropriate in this context.  The risk rate and risk rate ratio (RRR) is defined as  

 

 

 

 

       

 

Higher risk rate is associated with increased risks.  Similar to risk and odds, the RRR can be used 

to evaluate a particular factor.  For example, the RRR for driver distraction versus no distraction 

can be used to evaluate the safety impact of driver distraction.  Under certain conditions the RRR 

can be approximated by the EOR, which will be discussed later.  

 

Baseline Exposure Information  

The typical first step in analyzing naturalistic driving data is to identify safety events; i.e., crash, 

near-crash, or critical incident. After the safety events have been identified, data reduction is then 

conducted to extract information on driver behaviors and driving environments before and during 

the events.  However, as illustrated below, the exposure information for events alone is not 

sufficient for quantitatively evaluating the safety impact of a risk factor. This is partly due to the 

stochastic nature of a safety event.  

 

The occurrence of safety outcomes is random: even driving under the influence does not 

necessarily lead to an a crash every time. It is compelling to use the frequency of an exposure 

factor before crashes to evaluate its safety impact, in which case a higher exposure frequency 

would indicate elevated risk for that factor.  This seemingly reasonable approach actually does 

not reflect the true impact of a risk factor due to the lack of baseline driving conditions.  The 

following hypothetical example illustrates this idea.  Assume that 100 crashes were identified in 

a study and it was found that in 95 of them the drivers were listening to the radio and in 5 out of 

the 100 crashes the drivers were in a severely drowsy condition.  In this very-likely-to-happen 

scenario, one could incorrectly conclude that listening to the radio is more dangerous than severe 

drowsiness.  The reason for this counterintuitive result is that an observed high exposure 

frequency during crash could be due to its high frequency during normal driving conditions.  For 

example, if it was found that under normal driving conditions drivers will listen to the radio 95% 

of the time, then the fact that 95 out of l00 people involved in a crash were listening to the radio 

could be purely due to randomness.  On the other hand, if virtually no severe drowsiness 

occurred under normal driving conditions, the five drowsiness cases would indicate a strong 

association between crashes and drowsiness.  To evaluate the safety impact of a risk factor, the 

exposure status under normal driving conditions is also necessary.  Therefore, there is a need to 

extract exposure information under normal/non-crash driving conditions.  This is done through 

baseline sampling.  The appropriateness of the baseline sampling scheme has a critical impact on 
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the validity of the analysis.  In this report, a random sampling scheme stratified by participant 

drivers is used.  Its theoretical foundation and implications will be discussed in Chapter 3.  
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CHAPTER 3. A RANDOM SAMPLING SCHEME FOR BASELINE REDUCTION 

Chapter 2 concluded that the overall analysis framework for naturalistic driving study is 

analogous to a case-cohort type epidemiology study.  The data collection follows that of a cohort 

study while the analysis is based on case-control study.  In a case-based approach, the safety 

events are identified after the data collection has finished. The controls, which represent the non-

event, normal driving conditions, are selected subsequently.  The selection of baseline is critical 

to the validity of the study.  It is argued that the baseline sampling scheme should be considered 

in conjunction with appropriate risk measures and corresponding statistical models.  In this 

study, it is proposed that the appropriate measure of risk for naturalistic driving study is the 

RRR.  By using a random baseline sampling scheme the odds ratio can be used to approximate 

the RRR.  The details of the development are discussed in this chapter.  

The advantage of naturalistic driving study lies in the number of variables that can be collected.  

In particular, the video recordings can be used to assess driver behaviors which are difficult to 

retrieve from accident databases.  The driver behaviors, however, change constantly over the 

driving process.  Due to this time-variant property, the exposure status for a safety event is 

typically identified a short moment before the event. For example, the driver’s behavior and 

environmental factors were identified within 6 s before the onset of a safety event.
(1)   

To assess 

the exposure status of controls (which represent the exposure status under normal driving 

conditions), the critical question is where those controls should be located.   This problem should 

be considered in conjunction with the risk measure adopted.  

 

As discussed in the measure of the risk, it is difficult to assign probabilistic risk measures for 

time-variant exposures such as distraction and traffic conditions.  A proper measure is the RR 

under each exposure level.  An example using drowsiness is shown in figure 10.  The exposure 

status is categorized into two levels: drowsiness and non-drowsiness.  When the length of a 

segment is sufficiently small, the exposure status in this segment can be considered as 

homogeneous and can be categorized into either drowsy period or non-drowsy period.  

Conceptually, all the drowsy driving periods can be pulled together and all the non-drowsy 

driving periods can be pulled together.  Thus the whole driving period can be divided into two 

exposure levels: the drowsy period and the non-drowsy period.  As illustrated in figure 10

 
 

figure 10, the length of the drowsy period is represented by the red bar on the left and the non-

drowsy period is represented by the blue bar on the right.  The red stars represent crashes.  In this 

setup, the crash rates for drowsy and non-drowsy exposure are:    

 

 

   



 

20 

 

 

If  is significantly greater than  then we can conclude that 

drowsiness is a significant factor contributing to traffic safety.  The RRR for drowsiness is:   

 

 

Appropriate statistical tests can be used to test if the rate ratio is greater than 1, which 

corresponds to elevated risk for drowsiness.  This evaluation based on crash rate is more 

accurately defined for time-variant exposure than the probability measures. However, there is a 

challenge in using the above approach: the total duration of drowsy and non-drowsy periods 

cannot be measured exactly using current technology. Extracting driver behavior information 

still relies primarily on manual data reduction and it is not practical to manually check thousands 

of hours of video data.  Therefore, an alternative method has to be used.   

 

 

 
 

Figure 10. Diagram. Illustration of accident rate for time-variance exposure.  

The general principle for selecting controls is that “the controls should represent the population 

from which the cases were derived.”  Based on this general principle, a number of alternative 

sampling methods can be used; e.g., random sampling, matched sampling, case-crossover 

sampling, etc.  The baseline sampling method adopted in this study is a total random sampling 

scheme, which is based on the event rate measure.   

 

Consider the data collection process as a cohort study and let PT+ and PT- represent the 

exposure duration for E+ and E-, respectively.  The number of accidents and the corresponding 

exposure duration can be represented in the following table. 

  

Table 4. Crash rate. 

 E+ E- 

Crash A C 

Duration  PT+ PT- 

Crash rate  A/PT+ C/PT- 

 

The RRR will be  
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In a case control study, the total exposure durations PT+ and PT- are unknown. Instead, a set of 

baseline controls with size M0 (M0=C+D) are selected and their exposure statuses are identified 

as shown in table 5. 

Table 5. Case-control contingency table. 

 E+ E- Size 

Crash A B M1 

Control C D M0 

 

Like most contingency tables, the odds ratio can be calculated for the above table.   

 

 

 

When the following three conditions are satisfied, the EOR can be used to approximate the RRR: 

1. M0 subjects are randomly selected via source population  

2. Their exposure odds (B/D) are similar to that in source population (Time+/Time-). 

3. Steady state  

 

As a case-cohort study, the first condition is automatically satisfied.  If the duration of each 

baseline is short enough, the state within this short period can be considered as steady.  The key 

of the baseline sample scheme is to satisfy the second condition.  

 

 

In which case  

 

 

Two sampling methods can satisfy this critical condition: the total random sampling and 

systematic sampling. The details for each scheme are discussed below.  

 

Random sampling  

For random sampling, samples are randomly selected for the baselines.  Typically, the samples 

are stratified by drivers and the number of samples for each driver is proportional to the valid 

moving hours or miles traveled. Under this total random sampling scheme, the probability that a 

baseline is from the  period is proportional to its relative duration, i.e.,  

 

when the total sample size, , is large, the number of baseline falls in  is  

 

Similarly, the number of baseline falls in  is  
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Thus, critical condition for odds ratio to RR approximation holds as shown below.   

 

The random sampling method is illustrated in figure 11.   

  

 
 

Figure 11. Diagram. Random sampling scheme. 

There are several advantages of random sampling.  It is relatively easy to implement and easy to 

find replacement for invalid baselines. The random samples represent the general baseline status 

so they can be used in studies focusing on different risk factors.  Finally, the statistical analysis is 

relatively straightforward.  For the above reasons, the random sampling scheme was adopted in 

this study.  

 

Systematic sampling   

In a systematic sampling scheme, baseline samples are selected with equal intervals (moving 

hours or miles traveled) from the driving data.  Systematic sampling is based on the same 

principle as random sampling and it can be shown that the odds ratio to RR approximation will 

hold for the systematic sampling.  However, the systematic system scheme does have one 

drawback: when a control is not valid it is difficult to find alternatives. The invalid controls 

(baselines) are quite common because of misaligned video cameras, etc.  The statistical analysis 

for systematic sampling is identical to the random sampling method.   
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CHAPTER 4. STATISTICAL MODELING 

The objective of the statistical analysis is to quantitatively evaluate the safety impacts of risk 

factors and to conduct inference to the source population. As discussed previously, the odds 

ratio, which is an approximation to RRR, will be the primary risk measure.  Two aspects of odds 

ratio are of interest: the point estimate and precision of point estimate. The point estimate 

represents the magnitude of the impact of a factor; i.e., an odds ratio of 4 implies that one level 

of the factor is 4 times more dangerous than the reference level.  Another aspect is the precision 

of the estimation, which can be measured by the variance of estimates or the length of the 

confidence interval.  A risk factor is considered as significant only when the statistical test 

indicates that the estimated effect significantly differs from a null value, which is 1 for odds 

ratio.  The significant test has a direct relationship with the confidence interval: the odds ratio is 

statistically significantly different from 1 if and only if its 95% confidence interval does not 

include the null value 1.   

 

There are several challenges in the analysis of naturalistic driving data.  The 

confounding/interaction effects and driver-specific correlations are two main obstacles addressed 

in this report.  As an observational study, the safety impact of a factor of interest can be easily 

distorted by other factors.  The confounding and interaction effects could distort the true 

relationship between the factors of interest and safety outcome and have to be addressed in order 

to get a valid conclusion.  Secondly, there are multiple events/baselines for each driver and those 

events/baselines collected for the same driver should not be considered as independent.  

However, most simple statistical models assume independence among observations and a more 

sophisticated modeling method should be used.  It should be noted that the appropriate statistical 

method is always coupled with study design and baseline reduction methods.  For example, 

matched baseline sampling methods such as case-crossover will bring extra correlation in each 

matched set.   

 

The total random baseline sampling approach adopted in this study does not induce extra 

correlations and imposes few constraints.  Therefore, the analysis is quite flexible.  At the same 

time, the method is more prone to confounding and interaction effects.   In this report, several 

alternative analysis methods were discussed and compared, including the simple contingency 

table analysis, regular logistic regression modes, the Generalized Estimation Equation (GEE) 

models, and the mixed effect models.   

  

Simple contingency table analysis  

The contingency table analysis is the simplest method by which to calculate odds ratios.  The 

odds ratio and corresponding variance can be easily calculated.  However, this method only 

considers one factor at a time and cannot address interaction/confounding effects.  Furthermore, 

the contingency table analysis assumes observations are independent of each other, which does 

not fit the naturalistic driving study because of the unavoidable driver-specific correlations.  

Therefore, this method is more appropriate for exploratory analysis and caution should be given 

when using its results to draw formal conclusions.  
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The calculation for contingency table analysis is straightforward. For a factor with two exposure 

levels, E+ and E-, the safety events and exposure data can be arranged in a 2×2 contingency table 

as shown below.  

 
 E+ E- 

Safety event A B 

Control C D 

 

The point estimation for odds ratio is AD/BC.  Two popular types of methods can be used for 

statistical inference.  When the same size is large, an asymptotic normal approximation-based 

approach can be used with the following standard error.  

 

 

 

The corresponding Wald confidence interval is 

 

 

 

When the sample size is small, the Fisher’s exact test can also be used to conduct statistical 

inference.  

 

The analysis method above does not adjust for potential confounding and interaction factors.  

This is especially problematic since the random sampling scheme developed in this study does 

not control those factors during the sampling process.  If a random sampling method and a 

simple contingency table analysis are used together, the confounding and interaction effects will 

be totally ignored.  Not accounting for these effects can negate the validity of the conclusions.  

 

One remedy for this problem is to use stratified analysis.  In a stratified analysis, the data will be 

ground into strata for every level of a confounding/interaction factor.  One contingency table will 

be constructed for each stratum and the conclusion will be based on the results from stratified 

contingency tables.  The main drawback of the stratified analysis is that the sample size in each 

stratum quickly decreases with an increased number of factors.  For a naturalistic driving study, 

there will usually be a number of potential confounding/interaction factors and the number of 

safety events in each stratum is typically insufficient for a meaningful statistical conclusion.  

Therefore, the stratified analysis is not an attractive alternative.  Model-based approaches, such 

as logistic regression, can address those issues relatively easily.  

 

Ordinary Logistic Regression Models  

In a naturalistic driving study, safety outcomes are either safety events (e.g., crashes and near-

crashes) or baselines.  The logistic regression model can be used for this type of categorical 

outcomes.  For example, to model crashes and baselines, the model assumes the outcomes are 

from a binary distribution with two possible values. There is a single model parameter which is 

the probability of crash.   The crash probability is then connected with risk factors to be 

evaluated through a logit link function. The effect of risk factors can be evaluated by examining 

the regression coefficients.  The logistic regression model can accommodate multiple risk 



 

25 

factors, which allows those factors to be evaluated simultaneously.  The capability of multiple 

factor analysis provides a mechanism to address the confounding and interactive effects through 

modeling.  

 

The general setup for a logistic regression is described as follows.  Define a binary random 

variable  such that 

  

 

 

where  is the number of drivers and  is the number of observations for driver   Assume  

follows a Bernoulli distribution, i.e., 

            
  (1)  

     

 

The model coefficient  represents the probability of being a safety event for observation .  It 

is assumed that this probability will be influenced by factors such as driver behavior and driving 

environments, etc.  This connection between the safety impacts of a set of factors and the crash 

probability  is mathematically modeled through a logit link function with the following form 

 
 

 (2)  

 

where  is the variable based on a risk factor and k  is the corresponding regression 

coefficient.  With proper parameterization, it can be shown that the exponential of the regression 

coefficient  is corresponding to the odds ratio for the  factor.  Another merit of the odds 

ratio estimated from the logistic regression is that the odds ratio for a specific factor can be 

considered as an averaged value over all the levels of other factors included in the same model.  

Thus the confounding effect can be effectively addressed by simply including multiple factors 

that might confound with each other simultaneously in the model.   

 

The ordinary logistic regression discussed above assumes observations are independent of each 

other, which is obviously not appropriate as each participant might have multiple safety events 

and baselines.  In this report, two alternative methods were used to address this issue: the GEE 

and the mixed effect model.  

 

Generalized Estimation Equation 

The ordinary logistic regression model assumes independent observations.  For naturalistic 

driving data, it is argued that events/baselines for the same driver should be correlated instead of 

independent because a driver usually has some unique characteristics and those characteristics 

are shared by the events/baselines from this driver.  The GEE model can be used to incorporate 

this correlation.  Originally developed to model longitudinal data (i.e., measures from a same 

patient from different time points) by Liang and Zeger
(11)

,  the GEE model assumes that the 

observations are marginally correlated.   The GEE model specifies the mean and covariance (first 
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two moments) structures of a distribution from the exponential distribution family. For example, 

in naturalistic driving studies, the crash and baseline are assumed from a Bernoulli distribution 

(Equation 1). Similar to the ordinary logistic regression, the GEE model also assumes the logit of 

event probability  is associated with a set of risk factors through a logit link function as in 

Equation 2.  

   

In a GEE model, observations  and  from the same driver  are correlated and the 

correlation between is non-zero, i.e., .  This violates the independence 

property of a Bernoulli distribution. The GEE thus is not based on a proper 

distribution/likelihood function; instead it is a Quasi-Likelihood-based approach for which no 

proper probabilistic models exist.  For that reason the GEE should be considered as an estimation 

method rather than a modeling approach.  Also because of this, the GEE cannot be extended to 

Bayesian framework which depends on proper probabilistic models.   

 

The correlation structure  for the observations from the same driver needs to be 

pre-specified for the GEE model.  Denote the correlation matrix with the following general form  

 
 

 (3)  

 

where , and the vector  represents all events/baselines for driver , i.e., 

. 

 

In a GEE, the same correlation structure is assumed for all drivers.  Therefore, the matrix entries 

do not depend on the index for a particular driver .  In general, the number of observations for 

each driver is not exactly the same.  The  in above correlation matrix represents the maximum 

number of observations per driver, i.e., .   

 

There are a number of alternative covariance structures.  For an unstructured correlation matrix, 

each  in Equation 3 can take different values.  The unstructured correlation put the least 

constraints to the correlation structure but contains substantially more parameters.  This could be 

problematic when the sample size is small or when  is large. Another widely used structure is 

the exchangeable correlation matrix, in which all s are assumed be to equal, i.e., 

 
 

 (4)  

The exchangeable correlation matrix includes only one parameter and is easy for fitting.  

However, the assumption that all observations are equally correlated does not fit a real situation 

well.  The autoregressive (AR1) model is popular in time-series analysis.  The AR1 model 

assumes 

 

Thus, the correlation matrix has the following form.  The AR1 model also contains one extra 

parameter and imposes a pretty strong assumption for the correlation relationship.  
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As many researchers indicated, the GEE model is not sensitive to the choice of correlation 

structures and its quasi-likelihood estimator for regression parameter  is consistent, which 

means it will converge to the true value for a large sample, even when the correlation function is 

incorrectly specified.  

 

Mixed effect models  

The correlated categorical observations can also be modeled by the generalized linear mixed 

effect model (GLMM).  Similar to the GEE approach, observations from the same driver are also 

assumed to be correlated. However, instead of specifying the correlations marginally, the 

GLMM builds the correlation structure through a conditional specification.  More specifically, 

the GLMM model assumes that there is a random effect associated with each individual driver.  

One particular driver can be more likely to be associated with higher risk (if the random effect is 

positive), or less risk (if the random effect is negative).  This assumption fit the observation from 

the naturalistic driver results that a small number of drivers contribute a large proportion of 

safety events, thus GLMM is a rather attractive alternative model.  

 

The probability distribution part of the GLMM is identical to the ordinary logistic regression 

model and the GEE model (Equation 1).  The difference lies in the modeling structure for the 

Bernoulli parameter ,  which is specified through the conditional expectation of  given a 

random effect term; i.e., , where  is the random effect. The  is connected 

with a set of covariates with a logit link function; i.e.,  
 

 (5)  

For convenience, matrix notation was used in the above formulation.  Here  is the vector of 

covariates for observation , ; the  is the vector of regression 

parameters .  The  is a vector of mixed effects and the  is the 

corresponding design matrix.  For simplification, consider the special case with univariate mixed 

effect and .  The  is a random variable and is typically assumed from a normal 

distribution .   

 

In the mixed effect logistic model, the observations from the same driver, , share the same 

random term , which induces the driver-specific correlations.  In this setup, the univariate 

mixed effect adjusts the intercept of the linear regression part but does not modify the fixed 

effect . This model is also called random intercept model.   

 

The above formula implies that there is a random effect  associated with driver . This random 

effect will vary among drivers and follows a normal distribution.  The value of   is directly 
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related to the probability of driver  being involved in a safety event.  When  is large, the 

probability of this driver being involved in a safety event, i.e., , will be high and vice versa.    

 

The GLMM is an extension of the basic logistic regression to allow correlations among data to 

be incorporated.  Compared to the GEE model, the GLMM has several advantages.  The GLMM 

has a clear interpretation for the driver-specific correlation and fits the observed “good driver, 

bad driver” in naturalistic driving study.  Furthermore, the GLMM is based on a proper 

probabilistic model and can be relatively easily extended to the Bayesian framework.  The 

Bayesian approach has several advantages over the classical statistical approach.  For example, it 

can easily incorporate prior information into the estimation of risk, which is very useful for small 

scale study when the researchers have good a priori knowledge about the risks.  The hierarchical 

Bayesian models can combine multiple studies together and are especially useful for multi-center 

studies. The GLMM model developed in this project can be readily extended to a Bayesian 

framework.   

 

APPLICATION 

The 100-Car Study was a large scale naturalistic driving study for which more than 100 

participant drivers were recruited from the Northern Virginia/Washington, DC area.
(1)

  Various  

types of instrumentation were installed on the participant vehicles, including: five-channel video 

cameras, front and rear radar sensors, accelerometers,  and global positioning systems (GPS).  In 

addition, the ability to obtain information from the vehicle network (e.g., speed) and track lanes 

using machine-vision was possible.   The study lasted for over a year and collected 

approximately 2 million miles and 43,000 hours of driving data. Three different types of safety 

event were defined: crash, near-crash, and critical incident. Those safety events were identified 

retrospectively. Altogether, 69 crashes, 761 near-crashes, and 8,295 critical incidents were 

identified.    

 

The main focus of event-based analysis is to identify factors having significant impacts on traffic 

safety. The continuously recorded naturalistic driving data, including the vehicle kinematic 

characteristics, the driving environments, and driver behavior, provide an unprecedented 

opportunity to evaluate the safety impacts of those factors.   In this study, it is believed that the 

status of factors immediately before a safety event shall have a direct impact on safety. 

Therefore, the exposure status for a 6-second time period, 5 s before and 1 s after the onset of a 

crash or near-crash, were extracted from the video and instrument data.  The kinematic features 

could be extracted automatically.  However, the information for driver behavior and the 

environmental factors relied on examining the video files visually by trained data reductionists.  

A rigorous data reduction protocol was implemented throughout the data reduction process.  

More details about data reduction and quality control can be found in the report by Klauer et 

al.
(10)

 

 

As discussed in Chapter 3, the exposure information from safety events needs to be compared 

with that from normal driving conditions in order to quantitatively evaluate risks.   To make the 

exposure information comparable, the same time duration of 6 s was adopted for both event and 

baseline data reduction. The data reduction for baselines followed the exact same protocol as that 

for safety events to ensure comparability.   Conceptually, the selection of baseline samples 



 

29 

followed a total random sampling scheme as discussed in the methodology section (Chapter 3).  

In practice, a two-stage sampling approach was implemented to utilize a previously reduced 

baseline data set and supplement it with additional samples as necessary. 

 

Initially, 20,000 baseline samples were reduced according to a proportional sampling scheme.  In 

the proportional sampling scheme, the number of baselines for a given driver is proportional to 

the number of safety events for that driver.  Therefore, no baseline samples were reduced if the 

driver had no safety events.   After the number of baselines for a driver was determined, a 

random sampling scheme was then used to randomly sample from the driver’s trips.  The 

proportional sampling scheme, of course, does not fit the total random sampling scheme 

developed for this study.  However, due to the high cost of data reduction, there was motivation 

to maximize the use of existing data.  The within driver random sampling of the proportional 

sampling scheme makes it possible to use part of the existing data for the total random sampling 

scheme.  The details of this approach are discussed below.  

 

The total random sampling scheme adopted in this study requires equal probability for each 6-

second period for all recorded data. So for a baseline sample, the probability that it will be 

located for a specific driver is proportional to the driver’s total driving time; i.e., 

 

 

 

When the sample size is large, the number of baselines for a given driver  will be proportional to 

this probability  

 

where  is the expected number of baselines for driver  and  is the total number of 

baselines.   

 

The above calculation indicates that when the sample size is large, the desired number of 

baseline samples for a specific driver can be predetermined.  The total random sampling 

condition can be satisfied if baseline samples were randomly selected from within each driver’s 

data.  In this study a stratified random sampling approach was adopted.  The method consists of 

two steps: the first step is to predetermine the number of baselines for each driver and the second 

step is a total random sampling within each driver.   

 

The sampling rate is approximately 0.5 baselines per subject-driving hours.  Based on the total 

length of available video files, this translated into approximately 17,660 baseline samples.  The 

driving time for each driver is extracted and the expected number of baselines for each driver is 

calculated accordingly.  This expected number is then compared with that from the original 

proportional sampling data (existing baselines).  For each driver, two possible actions were taken 

based on the comparison.  Let  denote the expected number of baselines for driver  by the 

stratified random sampling scheme and  represent the number of baselines for driver  from 

the existing proportional samples.  Specifically, 
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1. If , that is, the number of existing baseline is more than desired,  baselines 

will be randomly drawn from the existing  baselines. 

2. If , a new supplemental reduction will be conducted with sample size 

 , randomly drawn from the driving data of driver .  

This procedure guarantees that each driver will have the expected number of baselines. At the 

same time, the randomization in every step also guarantees the randomness within each driver.  

Thus the properties of a total random sampling scheme were ensured and the method maximally 

utilized the existing baseline reduction results.  The summary of the data reduction results is 

shown in table 6. 

Table 6. Baseline sample size. 

SAMPLING RATE 

(SAMPLE/SUB_MOV_HR) 

TOTAL 

EXPECTED 

SAMPLES 

RESAMPLE FROM 

EXISING BASELINE 

NEW SAMPLES 

NEEDED 

0.5 17660 14036 3624 

    

Because of the missing/invalid video file, the final data reduction resulted in a total of 17,344 

baseline samples.  

 

STATISTICAL ANALYSIS  

The final data set includes 69 crashes, 761 near-crashes, and 17,344 baseline samples.  The 

factors of interest are mostly time-variant exposure factors, including: drowsiness, distraction, 

traffic density (level of service – LOS), lighting conditions, relationship to junction, road surface 

conditions, and weather conditions.  Three alternative analyses methods were presented in the 

order of simple contingency table analysis, the GEE, and the mixed effect models.  The outputs 

from various analyses were also compared.  

 

Simple contingency table analysis 

The risk associated with each factor was analyzed using the simple contingency table analysis.  

Note that this analysis approach does not adjust for the potential interaction and confounding 

effects; nor does it incorporate the correlations among observations from the same driver.  The 

contingency table analysis shall thus be considered as an exploratory analysis tool. The odds 

ratio estimation results for the risk factors are presented below.  

 

Drowsiness  

The drowsiness was evaluated by visually inspecting the driver’s behaviors and eye closure 

information.  The drowsiness refers to a driver who is either moderately to severely drowsy, 

as defined by Wierwille and Ellsworth. (12 ) A driver who is moderately drowsy will exhibit 

slack musculature in the facial muscles and limited overall body movement as well as a 

noticeable reduction in eye scanning behaviors. A severely drowsy driver will exhibit all the 

above behaviors as well as extended eyelid closures and will have difficulties keeping his/ her 

head in a lifted position. The status was classified as either drowsy or non-drowsy.  The 

contingency table for drowsiness is shown in table 7 and the odds ratio estimation is presented in  
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table 8.  As can be seen, drowsiness significantly increases both crash risk and near-crash risk. 

  

Table 7. Contingency table for drowsiness. 

 Drowsy  Not Drowsy  Total 

Crash  14 55 69 

Near-crash 97 664 761 

Baseline 599 16,745 17344 

 

 

Table 8. Odds ratio estimation for drowsiness. 

 Odds Ratio p-value 95% Confidence Limits 

Crash 7.12 <0.001 3.94 12.87 

Near-crash 4.08 <0.001 3.25 5.13 

 

Traffic flow 

The traffic density is evaluated by the LOS, which includes six levels as shown in table 9.  The 

definitions of the six LOS levels are as follows:  

 LOS A: Free flow 

 LOS B: Flow with some restrictions 

 LOS C: Stable flow, maneuverability and speed are more restricted     

 LOS D: Unstable flow, temporary restrictions substantially slow driver 

 LOS E: Flow is unstable, vehicles are unable to pass, temporary stoppages, etc. 

 LOS F: Forced traffic flow condition, with low speeds and traffic volumes below 

capacity 

Table 9. Contingency table for LOS. 

Severity(Severity) LOSs 

Frequency LOS 

A 

LOS 

B 

LOS 

C 

LOS 

D 

LOS 

E 

LOS 

F Total 

Crash 41 14 7 4 2 1 69 

Near-crash 244 233 191 64 26 2 760 

Baseline 8370 6789 1606 322 160 96 17343 

 

 

Due to the small sample size for LOS E and LOS F, some LOS categories were aggregated.  For 

crashes, LOS D, LOS E, and LOS F were aggregated and for near-crashes, LOS E and LOS F 

were aggregated.   
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Table 10. Odds ratio estimation for LOS. 

 Odds Ratio p-value 95% Confidence Limits 

Crash     

LOS B versus A 0.42 <0.01 0.23 0.77 

LOS C versus A 0.89 0.78 0.40 1.99 

LOS DEF versus A 2.47 0.03 1.10 5.54 

Near-crash     

LOS B versus A 1.18 0.08 0.98 1.41 

LOS C versus A 4.08 <0.0001 3.35 4.97 

LOS D versus A 6.82 <0.0001 5.07 9.18 

LOS EF versus A 3.75 <0.0001 2.49 5.66 

 

There are some interesting patterns that can be seen from table 10.  For crash, the odds ratio of 

LOS B versus LOS A is significantly lower than 1, which indicated some protective effect.   On 

the other side, high traffic densities, i.e., LOS DEF, are associated with elevated risk compared 

to LOS A.  

 

A quite different pattern exists for near-crash. LOS A is associated with the lowest risk. There is 

no significant difference between LOS B and LOS A.  The LOS D is associated with the highest 

risk.  

 

The above results have some interesting implications for the relationship between safety events 

and traffic density.  Some level of interaction between vehicles (such as for LOS B and LOS C) 

will not necessarily increase the crash risk.  However, the chance of near-crash will increase 

monotonically with the increase in traffic density.   

 

Distraction 

Distraction is commonly presented during driving.  The level of distraction is associated with the 

complexity of non-driving-related tasks.  Three levels of manual/visual complexity (complex 

secondary tasks, moderate secondary tasks, and simple secondary tasks) were defined as shown 

in table 11.  The complexity levels are based on whether the task requires multi-step, multiple 

eye glances away from the forward roadway, and/or multiple button presses.
(13)

  Moderate tasks 

are those that require at most two glances away from the roadway and/or at most two button 

presses, while simple tasks are those that require no or one button press(es) and/or one glance 

away from the forward roadway.  The contingency table for distraction is shown in table 12 and 

the odds ratio estimations are shown in  

table 13. 
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Table 11. Three levels of manual/visual complexity. 

Simple Secondary Tasks Moderate Secondary Tasks Complex Secondary Tasks 

1. Adjusting radio 1. Talking/listening to 

handheld device 

1. Dialing a handheld device 

2. Adjusting other devices 

integral to the vehicle 

2. Handheld device-other 2. Locating/reaching/ 

answering handheld device 

3. Talking to passenger in 

adjacent seat 

3. Inserting/retrieving CD 3. Operating a personal digital 

assistant (PDA) 

4. Talking/Singing: no 

passenger present 

4. Inserting/retrieving cassette 4. Viewing a PDA 

5. Drinking 5. Reaching for object (not 

handheld device) 

5. Reading 

6. Smoking 6. Combing or fixing hair 6. Animal/object in vehicle 

7. Lost in thought 7. Other personal hygiene 7. Reaching for a moving 

object 

8. Other simple tasks 8. Eating  8. Insect in vehicle 

  9. Looking at external object 9. Applying makeup 

 

 

Table 12. Contingency table for distraction.  

Frequency Complex Moderate Simple No Distraction Total 

Crash 6 9 11 43 69 

Near-crash 43 83 85 550 761 

Baseline 388 3001 4759 9196 17344 

 

 

Table 13. Odds ratio estimation for distraction. 

 Odds Ratio p-value 95% Confidence Limits 

Crash     

Simple versus Non 0.49 0.037 0.25 0.96 

Moderate versus Non 0.64 0.226 0.31 1.32 

Complex versus Non 3.31 0.006 1.40 7.82 

Near-crash     

Simple versus Non 0.30 <0.001 0.24 0.38 

Moderate versus Non 0.46 <0.001 0.36 0.58 

Complex versus Non 1.85 0.0002 1.34 2.57 

 

As shown in  

table 13, the complex secondary task significantly increases the risk of crash and near-crash. It is 

also interesting to observe that simple and moderate secondary tasks actually show protective 

effect (the odds ratio is smaller than 1).  This protective effect may be due to drivers selecting a 

relatively safe point to engage in secondary tasks whereas the complex task may require enough 

resources that it increases risk regardless of when the task is performed.  
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Weather 

The contingency table for weather conditions is presented in table 14. Due to small samples size, 

the weather conditions were aggregated into two categories: the normal weather conditions and 

the inferior weather conditions.  The normal conditions include clear and cloudy.  The inferior 

weather conditions include fog, mist, raining, sleeting, and snowing.  The aggregated table is 

shown in table 15 and the odds ratio estimations are shown in table 16. As can be seen, there are 

no statistically significant results for both crash and near-crash, though the odds ratio for crash 

shows a moderately elevated risk at 1.8.  

Table 14. Contingency table for weather conditions. 

Frequency Clear Cloudy Fog Mist Raining Sleeting Snowing Other Total 

Crash 54 6 0 0 8 0 1 0 69 

Near-crash 599 99 1 1 57 0 3 1 761 

Baseline 15436 562 29 20 1235 9 42 11 17344 

 

Table 15. Aggregated contingency table for weather conditions. 

Frequency 
Inferior  

weather 

Normal 

Weather 

Total 

Crash 9 60 69 

Near-crash 62 699 761 

Baseline 1335 16009 17344 

 

Table 16. Odds ratio estimation for weather conditions. 

 Odds Ratio p-value 95% Confidence Limits 

Crash 1.80 0.10 0.89 3.63 

Near-crash 1.06 0.65 0.82 1.39 

 

Lighting conditions 

The lighting conditions for event and baseline data are shown in table 17. Due to the small 

sample size for crashes, the data were aggregated into two categories: daylight condition and 

other lighting condition, as shown in 

table 18. 
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Table 17. Contingency table for lighting conditions. 

Frequency Darkness 

lighted 

Darkness 

not 

lighted Dawn Daylight Dusk Total 

Crash 17 5 1 43 3 69 

Near -crash 126 54 14 502 65 761 

Baseline 2600 1633 75 12126 910 17344 

 

 

Table 18. Aggregated contingency table for lighting conditions. 

Frequency 
Other 

lighting Daylight Total 

Crash 26 43 69 

Near-crash 259 502 761 

Baseline 5218 12126 17344 

 

 

The odds ratio estimations for lighting conditions are shown in table 19.  As can be seen, the 

other lighting condition is associated with slightly increased risk with odds ratios of 1.41 and 

1.12 for crash and near-crash, respectively.  However, the odds ratio for crash is not significantly 

different from the neutral value of 1.  

 

Table 19. Odds ratio estimation for lighting conditions. 

 Odds Ratio p-value 95% Confidence Limits 

Crash 1.41 0.17 0.86 2.29 

Near-crash 1.12 0.02 1.03 1.40 

 

 

Road surface condition 

The contingency table for surface conditions is shown in table 20.   Due to the small number of 

observations in each category, the data were aggregated into two categories: the dry road surface 

and the other road surface, as shown in  

table 21. 
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Table 20. Contingency table for road surface conditions. 

Frequency Dry Icy Muddy Snowy Wet Other Total 

Crash 51 1 0 4 13 0 69 

Near-crash 654 4 0 4 98 1 761 

Baseline 15573 9 1 127 1630 4 17344 

 

 

Table 21. Contingency table for road surface conditions. 

Frequency Others Dry Total 

Crash 18 51 69 

Near-crash 107 654 761 

Baseline 1771 15573 17344 

 

As can be seen from  

table 22, the non-dry surface condition has a significant association with safety events.  In 

particular, the non-dry surface conditions are 3 times more dangerous compared to the dry 

surface condition.   

 

Table 22. Odds ratio estimation for road surface condition. 

 Odds Ratio p-value 95% Confidence Limits 

Crash 3.10 0.0002 1.81 5.32 

Near-crash 1.43 0.0007 1.15 1.78 

 

 

Relationship to junctions 

 

Table 23 is the contingency table for relationship to junction. Again, the data were aggregated 

into junction and non-junction categories, as shown in  

table 24. 
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Table 23. Contingency table for relationship to junction. 

Frequency 

Crash 
Critical 

Incident 

Near-

crash Baseline 

Driveway alley access, etc. 2 138 8 53 

Entrance/exit ramp 6 311 40 396 

Interchange area 0 71 16 255 

Intersection 17 858 149 1065 

Intersection-related 11 1742 76 926 

Non-junction 26 5065 456 14194 

Parking lot 6 90 14 408 

Rail grade crossing 0 4 0 4 

Other/No data 1 16 2 43 

Total 69 8295 761 17344 

 

 

Table 24. Aggregated contingency table for relationship to junction. 

Frequency Junction Non-junction Total 

Crash 34 35 69 

Critical Incident 2986 5309 8295 

Near-crash 281 480 761 

Baseline 2646 14645 17291 

 

The odds ratio estimation for relationship to junction is shown in table 25.  As can be seen, 

junction is much more dangerous than non-junction with an odds ratio of 5.38.  

Table 25. Odds ratio estimation for relationship to junction. 

 Odds Ratio p-value 95% Confidence Limits 

Crash 5.38 <0.0001 3.35 8.64 

Near-crash 3.24 <0.0001 2.78 3.78 

 

 

GEE and Mixed Effect Model Fitting 

 

The GEE model was implemented to the total random samples from this project. The results for 

crash and near-crash are shown in table 26 and table 27, respectively. The GEE model fitting 

used an exchangeable working correlation function.  The estimations for the correlation are small 

(0.003 for crashes and 0.035 for near-crashes). These small values indicate a rather weak 

marginal correlation among the observations.   
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The mixed effect model fitting results for crashes are shown in table 28.  The estimated variance 

for mixed effect is 0.713 with a standard deviation of 0.28. The mixed effect model fitting results 

for near-crashes are shown in table 29.  The corresponding estimated variance for the random 

intercept is 0.888 with a standard deviation of 0.173.  Compared to the rest of the parameter 

estimations, this does indicate that there are considerable individual variations among drivers.  

This result is consistent with the fact that a small number of drivers contribute a large proportion 

of the safety events.  

Table 26. GEE model results for crash. 

Label Odds Ratio 

Standard 

Error 

95% 

Confidence Limits p-value 

Drowsy 6.35 2.04 3.38 11.91 <.0001 

Weather: 

 Inferior versus Normal 
2.17 1.13 0.79 6.01 0.13 

Road Surface: 

 Dry versus Other 
4.81 2.18 1.98 11.71 <0.001 

Lighting:  

Day versus Other 
1.04 0.31 0.58 1.86 0.89 

LOS B versus A 0.42 0.13 0.23 0.76 <0.001 

LOS C versus A 0.89 0.38 0.38 2.08 0.79 

LOS DEF versus A 1.83 0.94 0.67 5.03 0.24 

Distraction:  

Complex versus Non 
3.51 1.95 1.18 10.41 0.02 

Distraction: 

 Moderate versus Non 
0.65 0.31 0.25 1.64 0.36 

Distraction:  

Simple versus Non 
0.54 0.20 0.26 1.11 0.09 

Junction versus  

Non-junction 
5.89 1.55 3.51 9.86 <.0001 
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Table 27. GEE model results for near-crash. 

Label Odds Ratio 

Standard 

Error 

97% 

Confidence Limits p-value 

Drowsy 3.67 0.58 2.69 5.01 <.0001 

Weather: 

 Inferior versus Normal 
1.94 0.46 1.22 3.10 0.01 

Road Surface: 

Dry versus Other 
2.17 0.50 1.38 3.40 <0.001 

Lighting:  

Day versus Other 
1.17 0.12 0.96 1.43 0.13 

LOS B versus A 1.18 0.12 0.98 1.43 0.09 

LOS C versus A 4.06 0.51 3.17 5.20 <.0001 

LOS DEF versus A 4.99 0.81 3.63 6.87 <.0001 

Distraction:  

Complex versus Non 
2.02 0.45 1.30 3.12 <0.001 

Distraction: 

 Moderate versus Non 
0.48 0.07 0.37 0.63 <.0001 

Distraction:  

Simple versus Non 
0.33 0.04 0.25 0.42 <.0001 

Junction versus  

Non-Junction 
3.36 0.35 2.74 4.12 <.0001 
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Table 28. Mixed-effect model results for crash.  

Label Estimate 

Standard 

Error Pr > |t| Odds Ratio 

95% CL 

Lower 

95% CL 

Upper 

 Drowsy 1.8424 0.3310 <.0001 6.3120 3.2988 12.0774 

 Weather: 

 Inferior versus Normal 
0.7631 0.4915 0.1206 2.1449 0.8184 5.6214 

 Road Surface: 

 Dry versus Other 
1.5665 0.3812 <.0001 4.7897 2.2688 10.1114 

 Lighting:  

 Day versus Other 
-0.03134 0.2716 0.9081 0.9691 0.5691 1.6503 

 LOS B versus A -0.8619 0.3170 0.0066 0.4224 0.2269 0.7863 

 LOS C versus A -0.1207 0.4191 0.7733 0.8863 0.3897 2.0154 

 LOS DEF versus A 0.6836 0.4355 0.1165 1.9809 0.8436 4.6516 

 Distraction:  

 Complex versus Non 
1.2244 0.4676 0.0088 3.4021 1.3604 8.5075 

 Distraction: 

 Moderate versus Non 
-0.3861 0.3770 0.3058 0.6797 0.3246 1.4232 

 Distraction:  

 Simple versus Non 
-0.6699 0.3470 0.0536 0.5118 0.2592 1.0103 

 Junction versus 

 Non-Junction 
1.7997 0.2491 <.0001 6.0477 3.7116 9.8541 

 

Table 29. Mixed-effect model results for near-crash.  

Label Estimate 

Standard 

Error Pr > |t| Odds Ratio 

95% CL 

Lower 

95% CL 

Upper 

 Drowsy 1.2608 0.1358 <.0001 3.5282 2.7040 4.6038 

 Weather: 

 Inferior versus Normal 
0.5995 0.2218 0.0069 1.8213 1.1792 2.8129 

 Road Surface: 

 Dry versus Other 
0.7139 0.1797 <.0001 2.0419 1.4356 2.9042 

 Lighting:  

 Day versus Other 
0.03648 0.08884 0.6813 1.0372 0.8714 1.2344 

 LOS B versus A 0.1647 0.09829 0.0938 1.1790 0.9724 1.4295 

 LOS C versus A 1.3672 0.1093 <.0001 3.9243 3.1674 4.8620 

 LOS DEF versus A 1.6787 0.1440 <.0001 5.3586 4.0405 7.1068 

 Distraction:  

 Complex versus Non 
0.6685 0.1842 0.0003 1.9514 1.3601 2.7997 

 Distraction: 

 Moderate versus Non 
-0.7249 0.1295 <.0001 0.4844 0.3757 0.6244 

 Distraction:  

 Simple versus Non 
-1.2119 0.1245 <.0001 0.2976 0.2332 0.3799 

 Junction versus  

 Non-Junction 
1.2522 0.08561 <.0001 3.4980 2.9576 4.1371 



 

42 

 

Table 30. Modeling comparison for crashes. 

 GEE Model Random  Effect  

Model 

Contingency Table:  

Crude Odds Ratio 

Factors Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% CI  

Low 

95% CI  

High 

Odds  

Ratio 

95% 

CI  

low 

95% CI  

High 

Drowsy 6.35 3.38 11.91 6.31 3.30 12.08 7.12 3.94 12.87 

Weather: 

 Inferior versus 

Normal 

2.17 0.79 6.01 2.14 0.82 5.62 1.80 0.89 3.63 

Road Surface: 

 Dry versus 

Other 

4.81 1.98 11.71 4.79 2.27 10.11 3.10 1.81 5.32 

Lighting:  

Day versus 

Other 

1.04 0.58 1.86 0.97 0.57 1.65 1.41 0.86 2.29 

LOS B versus A 0.42 0.23 0.76 0.42 0.23 0.79 0.42 0.23 0.77 

LOS C versus A 0.89 0.38 2.08 0.89 0.39 2.02 0.89 0.40 1.99 

LOS DEF 

versus A 

1.83 0.67 5.03 1.98 0.84 4.65 2.47 1.10 5.54 

Distraction:  

Complex versus 

Non 

3.51 1.18 10.41 3.40 1.36 8.51 3.31 1.4 7.82 

Distraction: 

 Moderate 

versus Non 

0.65 0.25 1.64 0.68 0.32 1.42 0.64 0.31 1.32 

Distraction:  

Simple versus 

Non 

0.54 0.26 1.11 0.51 0.26 1.01 0.49 0.25 0.96 

Junction versus 

Non-Junction 

5.89 3.51 9.86 6.05 3.71 9.85 5.38 3.35 8.64 

 

To compare the contingency table, the GEE model, and mixed effect models, the estimations for 

odds ratios from the three methods are pooled into table 30 and table 31 and also illustrated in 

figure 12 and figure 13.  There are some discrepancies among the three methods.   For example, 

for LOS DEF versus LOS A, the crude odds ratio is significant greater than 1 but odds ratios 

from GEE and mixed effect models show non-significant results.    

 

The drowsiness shows a large impact on the crash risk with an odds ratio of 6.31 to 7.12.  The 

model-based results are lower than the crude odds ratio.   The weather condition shows no 

significant effects on crash risks.  The road surface, however, significantly impacts traffic safety.  

The estimated odds ratios for GEE (4.81) and for mixed effect model (4.79) are substantially 

higher than the crude odds ratio of 3.10.  This could be caused by the interaction between 

weather conditions and road surface conditions.   

 

Lighting conditions do not show a significant impact for traffic safety.  The traffic density as 

measured by the LOS shows some interesting patterns.  The LOS B (free flow with some 
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restrictions) appears safer than LOS A (the free flow).  The safety for LOS C, (stable flow with 

more restrictions) statistically is similar to LOS A.  Due to limited observations, LOS D, LOS E, 

and LOS F were aggregated for the analysis; the results for simple contingency table and model 

base approaches are different.  The crude odds ratio for LOS DEF is 2.47, which significantly 

differs from neutral value 1.  However, the odds ratios from GEE and mixed effect models are 

statistically non-significant.  The results for traffic density indicate that some level of interaction 

among vehicles will not necessarily lead to increased risk.   However, high traffic density could 

have some negative impact on traffic safety.  

 

Distraction shows mixed messages for safety.  The complex tasks as defined in table 11 have a 

definite impact on safety with an odds ratio of 3.5.  The effect of moderate tasks is inconclusive 

(statistically not significant).  The simple tasks, however, show a protective effect and reduce the 

crash risk by half (odds ratio is about 0.5).   The small odds ratio indicated that the relative 

frequency of simple tasks during crash/near-crash is smaller than that during normal driving 

conditions.  There are several possible causes for this protective effect.  First, simple tasks might 

increase driver alertness without impairing driving capability.  This would benefit safety.  

Another possible explanation is that during crash/near-crash events, the drivers might be 

involved in more hazardous situations, e.g., drowsiness or engaging in complex secondary tasks.  

As a result, the driver is less likely to engage in simple tasks.  This can also explain the low 

relative frequency of simple tasks (the protective effects) during safety events.  A detailed review 

of the interactions among simple tasks and other risk factors is needed for a better understanding 

of the role of simple tasks on safety risk.    

 

Junctions are among the most dangerous locations on the highway. The analysis indicates that 

the crash risk at junctions is 6 times more than at non-junction segments.  

 

Due to the limited number of crashes, the odds ratios as shown in table 30 have relatively large 

confidence intervals.  For example, the odds ratio for inferior weather condition shows a 

considerably large point estimate of around 2.  However, it is statistically non-significant partly 

due to the larger variation caused by the small number of observations. The near-crash represents 

a safety event that is not as severe as a crash but also contains important information on the risk 

associated with a factor.  Table 31 provides the results from the simple contingency table, the 

GEE model, and the mixed effect model.  
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Table 31. Modeling comparison for near-crashes. 

 GEE Model Mixed  Effect  

Model 

Contingency Table:  

Crude Odds Ratio 

Factors Odds  

Ratio 

95% CI  

low 

95% CI  

High 

Odds  

Ratio 

95% CI  

low 

95% CI  

High 

Odds 

Ratio 

95% CI 

low 

95% CI  

High 

Drowsy 3.67 2.69 5.01 3.5282 2.7040 4.6038 4.08 3.25 5.13 

Weather: 

 Inferior 

versus 

Normal 

1.94 1.22 3.10 1.8213 1.1792 2.8129 1.06 0.82 1.39 

Road 

Surface: 

 Dry versus 

Other 

2.17 1.38 3.40 2.0419 1.4356 2.9042 1.43 1.15 1.78 

Lighting:  

Day versus 

Other 

1.17 0.96 1.43 1.0372 0.8714 1.2344 1.12 1.03 1.40 

LOS B 

versus A 
1.18 0.98 1.43 1.1790 0.9724 1.4295 1.18 0.98 1.41 

LOS C 

versus A 
4.06 3.17 5.20 3.9243 3.1674 4.8620 4.07 3.35 4.97 

LOS DEF 

versus A 
4.99 3.63 6.87 5.3586 4.0405 7.1068 5.46 4.23 7.04 

Distraction:  

Complex 

versus Non 
2.02 1.30 3.12 1.9514 1.3601 2.7997 1.85 1.34 2.57 

Distraction: 

 Moderate 

versus Non 
0.48 0.37 0.63 0.4844 0.3757 0.6244 0.46 0.36 0.58 

Distraction:  

Simple 

versus Non 
0.33 0.25 0.42 0.2976 0.2332 0.3799 0.30 0.24 0.38 

Junction 

versus 

Non-Junction 

3.36 2.74 4.12 3.4980 2.9576 4.1371 3.24 2.78 3.78 
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Figure 12. Graph. Crash odds ratios.  
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Figure 13. Graph. Near-crash odds ratios.  

 

 

Compared to crash, the odds ratios for near-crash are smaller.  For example, the odds ratio of 

drowsiness for near-crash is around 4 compared to 6-plus for crashes. At the same time, the 

precision of the estimation as indicated by the length of the 95% confidence interval is better; for 

example, the length of the CI of drowsiness odds ratio is 8.53 (11.91-3.38) for crash and 2.32 

(5.01-2.69) for near-crash.  The improved precision for estimation of the near-crash odds ratio is 

a direct consequence of the larger number of near-crashes.   
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The inferior weather conditions show a similar odds ratio as crash.  However, results are 

statistically significant for near-crash based on GEE and random effect models.  The inferior 

weather will significantly increase the risk of near-crash twofold.   

 

Consistent with the results from crash, the lighting condition does not show a significant impact 

on the risk of near-crash.  

 

The safety impacts of traffic density for near-crash show different patterns compared to crash. 

Higher traffic density shows consistent increase for the risk of near-crash.  The odds ratios for 

LOS B, LOS C, and LOS DEF, contrasted with LOS A, increase monotonically.  The LOS B 

shows no significant effect with a point estimation of 1.18. For LOS C, the risk of near-crash 

increases 4 times compared to LOS A, and the LOS DEF shows a fivefold increase for near-

crash risk compared to LOS A.  This result implies that with the increase in traffic density, there 

are increased interactions among vehicles and the possibilities of requiring evasive maneuvers 

will increase.  However, for the alert driver the majority of those evasive maneuvers can be 

controlled so the risk of crash will not necessarily increase.  

 

The effects of distraction for near-crash are similar to those for crash. Specifically, the complex 

secondary tasks show increased near-crash risk but the simple and moderate tasks show reduced 

near-crash risk.   

 

The odds ratio for relationship to junction (3.36) indicates that near-crashes are more likely to 

happen at junctions.  
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CHAPTER 5. SUMMARY AND CONCLUSION 

Naturalistic driving study is an innovative approach for studying traffic safety and driver 

behavior.  The massive information collected provides an unprecedented opportunity for 

investigating research questions that cannot be addressed by accident databases or simulation 

studies.  At the same time the naturalistic driving study approach also brings serious challenges 

for data analysis and modeling.  This report focused on methodological issues for evaluating the 

risks using the safety outcomes of a naturalistic study.  A comprehensive analysis framework 

was developed which consists of study design, measure of safety risk, and statistical models.  

The proposed framework was applied to the crash and near-crash safety events from the 100-Car 

Study.  

 

The naturalistic study data collection shares the major characteristics of a perspective cohort 

study.  However, the analysis of safety outcomes should follow a case-control design.  Therefore, 

the study design is analogous to a case-cohort design in epidemiology study.  The interpretation 

of risk and baseline sampling will follow the principles from the case-cohort study.   

 

One major criticism for a case-based study design is that the corresponding risk estimation is 

based on exposure probability, which is undesirable for most researchers.  This study addressed 

this issue by using an integrated baseline-sampling method and appropriate risk measures.  It was 

argued that for most time-variant exposures, the risk rate as measured by number of safety events 

per unit of driving time/distance is the appropriate measure.  Furthermore, it was shown that with 

a proper baseline sampling method, the odds ratio is an approximation for the RRR.  This 

framework provides a solid theoretical foundation for safety-event-based risk analysis.  It also 

provides a more intuitive interpretation of the main risk measure–the odds ratio–in the context of 

naturalistic driving study.  

 

Another major concern for the analyses of naturalistic driving study is that there are multiple 

safety events and baselines for a single driver, thus the data are correlated instead of 

independent.  Furthermore, the confounding and interaction among risk factors could impair the 

validity of the research.  This study addressed those issues by proposing two logistic regression-

based models, namely the GEE model and the mixed effect model.  Although based on distinct 

statistical assumptions, both models can satisfactorily incorporate the within driver correlation.  

Furthermore, when multiple factors were input into a single model, the confounding and 

interaction among factors can be effectively adjusted.  The validity of the results can be assured 

when the models were properly implemented.  

 

The proposed framework was applied to the 100-Car Study.   A random baseline sampling 

scheme stratified by the driving time of each driver was adopted.  A total of 17,344 baseline 

samples were generated by re-sampling from an existing baseline set and a data reduction with 

more than 3,000 new baselines.  Both crash and near-crash were modeled and the three analysis 

methods (the simple contingency table analysis, the GEE model, and the mixed effect logistic 

regression model) were applied to the reduced data.  Following is a summary of the major 

conclusions from this analysis.  
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 There are some discrepancies among results from the GEE, the mixed effect model, and 

the crude odds ratio estimation. The confidence intervals of the crude odds ratio are in 

general narrower than those from two model-based approaches. However, this is 

considered overly optimistic given that it ignores the driver-specific correlation and fails 

to adjust for potential confounding factors.   

 The GEE and mixed effect models can be used to evaluate the level of correlations 

among observations from the same driver.  The GEE analysis indicates that the marginal 

correlations among observations are weak.  The mixed effect logistic regression model 

shows moderate variations among drivers.  This is consistent with the fact that a small 

number of drivers contribute a large proportion of the safety events.     

 The odds ratio for crash is always larger than for near-crash.  However, the precision of 

the estimation for near-crash, as measured by the length of the confidence interval, is 

substantially better than that for crashes.  This result has significant implications for using 

near-crashes as a safety surrogate for crashes.   

 The odds ratio results for crash and near-crash indicate that drowsiness will increase the 

risk of safety events substantially.  

 The inferior weather condition will significantly increase the risk of near-crash and also 

show a considerable impact on crashes.  

 Traffic condition shows complex effects on safety. Compared to free flow traffic 

condition (LOS A), high traffic density (as measured by LOS D, E, and F) is associated 

with higher risk for both crash and near-crash.  Moderate levels of interactions among 

vehicles (as measured by LOS B and LOS C) provide a protective effect for crash, which 

could contribute to increased driver alert.  However, LOS B and LOS C are associated 

with higher risk of near-crash.   

 Complex secondary tasks will increase the risk of crash by more than 3 times.  However, 

the simple and moderate secondary tasks show smaller exposure in crashes and near-

crashes.   

 The highway junction is much more dangerous than the non-junction highway segment.  

 

In summary, the modeling results indicate that there are some discrepancies among model-based 

approaches (the GEE and random effect models) and the crude odds ratio. The model-based 

estimations considered both the among-driver correlations and the potential confounding effect 

among risk factors, thus they are considered to more accurately reflect the true underlying risk 

levels.  The mixed effect model is considered as a preferred alternative due to two advantages. 

First, the mixed effect model is based on a proper distribution function and solid theoretical 

foundation. Second, the mixed effect model can directly reflect the variation of risk associated 

with drivers.  This is consistent with observation that the number of safety events varies 

substantially among drivers.  

 

The odds ratio results for crash and near-crash indicate that drowsiness will increase the risk of 

safety events substantially. The inferior weather conditions will significantly increase the risk of 

near-crash and also show a considerable impact on crashes. Certain levels of interactions among 

vehicles (LOS B and LOS C) do not provide a protective effect for the risk of crash, which could 

contribute to the increased driver alert.   However, the LOS B and LOS C are associated with 

high risk of near-crash.  For both crash and near-crash, a high level of traffic density (LOS DEF) 

is associated with higher risks.  
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Complex secondary tasks will increase the risk of crash by more than 3 times.  However, the 

simple and moderate secondary tasks show smaller exposure in crashes and near-crashes.   

The highway junction is much more dangerous than the non-junction highway segment.  

 

The framework developed in this study provides a theoretical justification for the case-based 

study method in naturalistic driving studies.  The framework can be implemented on studying 

time-variance exposures such as distraction, drowsiness, and weather conditions.    

 

There are several possible extensions for this study.  The current analysis framework is based on 

data reduction in which all exposure factors were treated equally and independently.  However, 

some crucial information was lost during the current data reduction and analysis method: 1) the 

sequence of the events happened before/during a crash and 2) the interaction between driver, 

vehicle, and driving environments.  It is argued that the combination of factors, the sequence of 

events, and the chain of driver’s reactions during a safety event contains far more information 

than each individual risk factor. For example, the AAA Foundation for Safety has listed the 

chain of events that lead to an accident and an accident can be avoided by breaking any of the 

links in the chain.   An accident reconstruction and causal analysis can provide more insights into 

the true causal relationship between exposure and safety events.  To assess and understand the 

effects of the combination and sequence of factors can shed light on the causal effects and help 

in developing safety countermeasures.  This will bring more challenge into the analysis and will 

be worth further investigation. There is a need to develop a systematic approach to reconstruct 

the complete process of a crash and identify the corresponding critical factors, and this project 

will address these two issues.   

There are two methods for accident reconstruction and critical risk set identification.  Unlike the 

traditional accident reconstruction techniques that rely on post-accident evidence recovery, the 

naturalistic driving data not only have the true driver behavior and vehicle kinematic information 

but also the precise time stamps and order of events.  Thus the proposed analysis will focus on 

the sequential relationships and interactions between events and the risk factors that happened 

before and during a crash. Three major components will be considered: the driver, the vehicle, 

and the outside driving environment. Various sequence diagram techniques will be explored for 

the reconstruction including the Event and Causal Factor Charting 
(14)

, Multiple Events 

Sequencing, and the Sequentially Timed Events Plotting Procedure.  

Identification of critical risk set is based on the reconstruction results. A systematic approach is 

needed to minimize the impact of subjective judgment. Tree-based methods such as Fault Tree 

Analysis as well as other causal analysis methods, e.g., Root-Cause-Analysis and Barrier 

Analysis, will be considered in developing an appropriate analysis framework for naturalistic 

driving data.  

 

The current analysis was conducted in a classical statistical framework and there are several 

benefits to extend this approach to Bayesian framework.  Bayesian method has become popular 

in transportation safety study in recent years.  Compared to the classical statistical method, 

Bayesian method has advantages of ease of interpretation, flexibility to accommodate 

spatial/temporal correlation, ability to incorporate prior information, and natural hierarchical 

structure in modeling multi-center/group studies.  The most distinguishing characteristic of 

Bayesian method is its ability to incorporate a priori information. It is especially useful when 
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sample size in each individual study is small but there are multiple similarly structured studies 

available.  With the popularity of naturalistic study, we expect there will be more naturalistic 

studies needing statistical analysis and appropriate Bayesian methodology will enable 

researchers to combine information from multiple sources to achieve more power in modeling.  
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