Our Weapons against Malaria

From the days of Cleopatra’s mosquito net to DDT, malaria has managed to breach through men’s defences. Now it is setting a new problem — for which, however, the World Health Organisation proposes a new strategy of attack.

In the French Cameroons, the assistant to the entomologist attached to the Yaoundé experimental malaria control centre identifies anopheles caught in the nets of neighbouring villages.

A quick survey of the methods of man in his fight against malaria from the days of Cleopatra to the era of DDT.

This appentixin, which seems to have come straight out of a work of science fiction, is taking part in testing a recently-developed insecticide (dieltix) in the islands of Lamus, in the Philippines. Some experts believe this insecticide to be more effective than DDT, as it is said that equivalent results can be obtained with smaller doses. Until its properties are better known, however, it is being used with every precaution.

In Sarawak, a national auxiliary worker, trained in modern laboratory techniques, examines blood samples taken from malaria suspects.

During the recent malaria control campaign conducted in Lebanon with the help of WHO, mosquito counting stations were installed at a number of points throughout the country. This method of control had been introduced in Lebanon to meet the increasing demand for control of the mosquito during the summer season.

In medicine, however, malaria is a pre-eminent rural disease, it is a disease of villages and hamlets. It is for this very reason that malaria is important to all even to countries where it does not exist. It is because it prevents the cultivation of fertile land and thus reduces the productivity of food supplies in a world which is short of them.

When antimalarial measures are used it is obvious that larger the population to be protected the less will be the cost per head. Such measures may be an economic proposition for a locality with 50,000 inhabitants, but they will be extremely expensive for a community of 100 persons. In fact, it was found that large-scale larval control measures could not be economically applied in rural areas.

Recently, the myxomatosis virus appeared in France (and elsewhere) and it spread so quickly that almost all rabbits were destroyed. Although the virus was not dangerous in humans (it is an example of a biological method controlling a species). Similar methods have been employed by man in the campaign against anopheles, by destroying large numbers of a small fable of American origins (Gambusia affinis) which is a voracious eater of mosquito larvae, and thus a benefactor of the place of mosquitoes in Europe, Asia, Asia and the Pacific.

Although these fish multiply rapidly, the result hoped for was not achieved, except in the Hawaiian peninsula. Anopheles were able to breed only in one or two years of a specific kind (adada) where Gambusia could feed on them free. Such favourable circumstances were not often found elsewhere.

Larvicide and gambusia were intended to destroy the vector in the larval stage, in water. As early as 1959 however, the League of Nations Malaria Commission emphasized the importance of destroying adult mosquitoes in houses where they are directly responsible for spreading malaria, since man is usually bitten during the night, and when it is bit by an infected anopheles.

The spraying of pyrethrum or "biting", as it was not then called, then began and it gave very good results in South Africa and in the Mediterranean. This spraying, however, needs to be repeated at least once a week and is, therefore, not practical for a large public health measure.

During the last war, the Swiss scientist and Nobel prize winner, Paul Muller, discovered dichloro-diphenyl-trichloroethane (DDT) as a very effective insecticide which killed insects by simple contact. Moreover, this is a great advantage in that it is sprayed on walls and remains deadly for weeks and months to insects which come into contact with it for only a few moments. Therefore, by spraying the inside walls of houses with - and the residual insecticides — not only DDT, but benzene hexachloride (BHC), chloroform or dieldrin — a country can be protected at a uniform per capita cost, whether the houses are many or few or whether they are situated in towns or very small communities. This cost is rather low. In the East Asia it is about 45 cents per person per year; in the Western Pacific 17 cents, and in the Americas it is 45 cents. (In English currency about 2d, 4d or 5d.)

In this way, a method of preventing rural malarias has been found. Since these insecticides were discovered...
Our Weapons against Malaria

For the past several decades, malaria has been a significant public health concern, particularly in tropical and subtropical regions. The disease is caused by the Plasmodium parasite, which is transmitted to humans by the bite of an infected Anopheles mosquito. Malaria can lead to severe illness and, in some cases, death. Over the years, various strategies have been developed to combat the spread of malaria, including the use of insecticides, vaccines, and antimalarial drugs. In this article, we will explore some of the key strategies that have been employed to fight malaria and discuss the ongoing efforts to control this disease.

A physician in the French Cameroons feels the spine of a young patient. The spleen becomes much enlarged after repeated attacks of malaria and such examinations give evidence to the incidence of the disease.

This appearance, which seems to have come straight out of a work of science fiction, is taking part in testing a recently-developed insecticide (aerosol) in the isolated villages of the Philippine. Some experts believe this insecticide is as effective as DDT, and it is said that equivalent results can be obtained with smaller doses. Until its properties are better known, however, it is being used with every precaution.

From the days of Cleopatra's mosquito net to DDT, malaria has managed to breach through men's defences. Now it has set him another problem—for which, however, the World Health Organisation proposes a new strategy of attack.

The disease is transmitted to man by the bite of the female mosquito in specially infected mosquitoes of the kind known as Anopheles. To prevent a man from being bitten by a mosquito, it is necessary to know where and when to find the infected mosquito. This problem is being studied by the World Health Organisation in the hope of finding a means of controlling the mosquito population. The organisation is also working on the development of a vaccine against malaria, which could provide a long-term solution to the problem.

The mosquito-control programme is being carried out in many countries, including India, where it has been particularly successful. The programme involves the use of insecticides, such as DDT, to kill the mosquitoes that carry the disease. This has led to a significant reduction in the number of malaria cases in India. The programme is also being expanded to other countries, and it is hoped that it will eventually be used throughout the world.

Dr. E. J. Pampana
Chief of the Malaria Section, WHO

A.fortnight, to millions of people. It would be a task beyond the powers of most health administration to see to such a colossal task.

When it was proved in 1917 that malaria is transmitted only by anophelines, it seemed that a whole new field of study had been opened up to the medical world. The anophelines are divided into two groups—the first is known as the "Aedes" and the second the "Culex". The Aedes, which is the most common type of mosquito, is the one responsible for the transmission of malaria. The Culex, on the other hand, is a much smaller type of mosquito and is not known to be a carrier of malaria.

The Aedes is a black fly, which is found in the tropics. The Culex, on the other hand, is a much smaller type of mosquito and is not known to be a carrier of malaria.

In the past, the only way to control malaria was through the use of insecticides, such as DDT. However, this approach has been less effective in recent years, and it is now believed that the best way to control malaria is to use insecticidal sprays.

Insecticidal sprays are effective against both the Aedes and Culex mosquitoes, and they are used to kill the adult mosquitoes that carry the disease. The sprays are applied to the ground, and they kill the mosquitoes within a few hours.

The insecticidal sprays are applied to the ground, and they kill the mosquitoes within a few hours. This is an effective way to control malaria, and it is the method that is now being used in the majority of countries.

In addition to insecticidal sprays, there is another method of controlling malaria—vaccination. This is being studied by the World Health Organisation, and it is hoped that a vaccine will be developed in the near future.

However, even with these advances, malaria remains a threat to mankind. It is estimated that there are currently 300 million cases of malaria worldwide, and it is responsible for the death of more than one million people each year. The challenge is to develop effective ways to control malaria and to find a way to eliminate it completely.