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Manhattan Channel Routing is NP-Complete
under Truly Restricted Settings

Martin Middendorf

30 December, 1996

Abstract

Settling an open problem that is over ten years old, we show thatAbstract-1

Manhattan channel routing—with doglegs allowed—is NP-complete
when all nets have two terminals. This result fills the gap left by
Szymanski [Szy85], who showed the NP-completeness for nets with
four terminals. Answering a question posed by Schmalenbach [Sch90]
and Greenberg, Jájá, and Krishnamurty [GJK92], we prove that the
problem remains NP-complete if in addition the nets are single-sided
and the density of the bottom nets is at most one. Moreover, we
show that Manhattan channel routing is NP-complete if the bottom
boundary is irregular and there are only 2-terminal top nets. All of
our results also hold for the restricted Manhattan model where doglegs
are not allowed.

1 Introduction

The channel-routing problem is a basic problem in the layout design of VLSI1-1

circuits. A channel consists of a rectilinear grid with top and bottom bound-
aries. A (k-terminal) net is a set of (k) terminals that are located at grid
points on the boundaries. The channel-routing problem is to find, for a given
set of nets, a set of edge-disjoint subgraphs of the grid connecting the ter-
minals of the nets, while minimizing the number of horizontal lines (tracks).
There are additional possible restrictions that are important in practice. We
can restrict the number of terminals in a net (two terminals is the simplest

1
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subcase, and it does arise in applications), and whether the nets are single-
sided (all terminals of a net lie on the same boundary). The status of these
restricted problems is discussed below.

The routing subgraphs consist of horizontal and vertical segments. In1-2

the Manhattan model, all the horizontal segments of the routing subgraphs
are assigned to one layer, and all the vertical segments to another layer.
Connections between horizontal and vertical segments are made via holes.
No two segments of the same layer are allowed to share a common grid
point. Thus, segments may cross only if they are on different layers. We
also consider a restricted version of this general Manhattan model. In the
restricted (dogleg-free) Manhattan model, no routing subgraph for a net
is allowed to have more than one horizontal segment (i.e., doglegs are not
allowed).

It has been shown by LaPaugh [LaP80] that the decision version of the1-3

dogleg-free Manhattan channel-routing problem is NP-complete, even when
all nets have only two terminals. This result has been independently extended
by Schmalenbach [Sch90] and Greenberg, Jájá, and Krishnamurty [GJK92].
They showed that restricted Manhattan channel routing with 2-terminal nets
is NP-complete even when all nets are single-sided (i.e., both terminals lie
on the same boundary).

The general Manhattan channel-routing problem—where doglegs are1-4

allowed—seems harder to analyze, and its complexity is not well under-
stood. Szymanski [Szy85] showed that the general Manhattan channel-
routing problem is NP-complete even if all nets have at most four terminals.
He claimed that his proof can be extended to show that the problem remains
NP-complete if all nets have only two terminals. Unfortunately, he did not
provide a proof of this claim, and it is not clear how to extend Szymanski’s
technique to handle this case. In fact, Schmalenbach [Sch90] and Green-
berg, Jájá, and Krishnamurty [GJK92] stated that it is an interesting open
problem whether Manhattan channel routing with 2-terminal, single-sided
nets is also NP-complete in the general model, where doglegs are allowed.
In this paper, we solve this problem and close the gap left by Szymanski.
We show that Manhattan channel routing is NP-complete when all nets are
single-sided, 2-terminal nets and doglegs are allowed. Our result holds even
when we further assume the bottom nets have density one. This is somewhat
surprising, since the “slightly” simpler problem of routing single-sided nets
with possibly more than two terminals to only one boundary is polynomially
solvable. Our proof is easier than that of Szymanski, and and we believe

2

Chicago Journal of Theoretical Computer Science 1996-6



Middendorf Manhattan Channel Routing §1

Figure 1: A knock-knee

that it gives a good insight as to why routing in the Manhattan model is
difficult. Moreover, the case that all nets are two-sided is investigated. We
show that general Manhattan channel routing is NP-complete when all nets
are two-sided, 2-terminal nets, even when each net has its left terminal on
the bottom boundary and its right terminal on the top boundary.

All of our results also hold in the restricted Manhattan model. Thus, by1-5

showing that Manhattan channel routing with single-sided, 2-terminal nets is
NP-complete when doglegs are not allowed and the bottom nets have density
one, we have extended the results of Schmalenbach and Greenberg, Jájá, and
Krishnamurty.

Comparing Manhattan channel routing with knock-knee routing (where1-6

the nets are allowed not only to cross at a grid point, but also to form a
knock-knee [see Figure 1], i.e., to bend away from each other [Len90]), our
results show that Manhattan channel routing is the harder problem (unless
P = NP). It is known that knock-knee routing is polynomial time solvable
for 2-terminal nets [Fra82], [FWW93], whereas it is shown in this paper that
general Manhattan channel routing is an NP-complete problem even for very
restricted sets of 2-terminal nets. For nets with a larger number of terminals,
knock-knee routing becomes NP-complete too. (It is NP-complete for 5-
terminal nets [Sar87]. The complexity for 3-terminal and 4-terminal nets is
open.)

Our proof technique is also used to show that a quite restricted case of1-7

routing in a channel where one boundary is slightly irregular is NP-complete.
Note that this means that all practical cases which include our case are NP-
complete too.

In Section 2, we introduce some notation and another channel-routing1-8

problem as a preparation of our main results. In Section 3, we show the
NP-completeness of this problem. Minor modifications of this proof yield
proofs of our results about the complexity of Manhattan channel routing.

3
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In Section 4, we give our result for routing in a channel with an irregular
boundary.

2 Preliminaries

A channel with a right boundary consists of a rectilinear grid that has bound-2-1

aries at three sides, namely, the top boundary, the bottom boundary, and the
right boundary. The horizontal grid lines between the top and the bottom
boundaries are called tracks . They are numbered 1, . . . , k from the topmost
track to the bottommost track. The vertical grid lines (including the right
boundary) are the columns . Columns are numbered from left to right, with
the right boundary at column p.

A 2-terminal net consists of two terminals located at grid points on the2-2

boundaries. All the nets we deal with in this paper are 2-terminal nets,
so we often omit the term “2-terminal.” Throughout, we assume that the
terminals of a net are in different columns. In our model, terminals on the
right boundary are movable in the vertical direction. No two terminals can
be on the same grid point. A net with terminals in columns a and b (a < b)
starts at a and terminates at b. A net is a top (respectively bottom) net if it
starts at the top (respectively bottom) boundary and terminates at the top
(respectively bottom) boundary or at the right boundary. It is denoted by
(a, b)t (respectively (a, b)b). If we do not want to specify the type of a net,
i.e., whether it is a top or bottom net, we omit the index t or b, respectively.
A net is single-sided if it is a top or bottom net.

A supernet N for a channel with the right boundary at column p is a2-3

set of nets { (ai, bi)xi
| i ∈ [1 : r], xi ∈ {t, b} } with a1 < b1 < a2 < b2 <

· · · < ar < br ≤ p. A supernet starts (respectively terminates) at a column
if it contains a net that starts (respectively terminates) at this column. A
supernet is single-sided if all of its nets are single-sided.

For a set of nets M , the local density at column q is the number of nets2-4

in M of the form (a, b) with a ≤ q ≤ b. The density of M is the maximum
of the local densities over all columns.

Let N be a set of single-sided supernets for a channel with k tracks2-5

and a right boundary at column p. A routing for N is an arrangement of
routing paths in the channel for all the nets contained in the supernets in
N with respect to the Manhattan model. Let N ′ ⊂ N be the set of those
supernets in N containing a net with a terminal on the right boundary. An

4
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column 1 2 . . . 7 column 1 2 . . . 7

N1

Figure 2: Two routings for supernets N1, . . . , N4

injective function f : N ′ → [1 : k] is called an assignment function for N . An
assignment function is feasible if there exists a routing for N such that for
each supernet N ∈ N ′, the terminal on the right boundary of N is placed on
track Tf(N).

Example 1 Consider the set N = {N1, N2, N3, N4} of single-sided supernets
for a channel with four tracks and a right boundary at column 7 where N1 =
{(1, 7)t}, N2 = {(1, 3)b, (6, 7)t}, N3 = {(2, 4)t, (5, 7)b}, N4 = {(3, 7)t}. Two
possible routings for N are given in Figure 2.

Our problem can now be formulated as follows.2-6

Definition 1 (Channel Routing with Right Boundary)

Instance: A triple I = (k, p, N ) with integers k, p and a set N =
{N1, N2, . . . , Nk} of k single-sided supernets for a channel with k tracks
and a right boundary at column p.

Question: Is there a routing for I, i.e., does there exist a feasible assign-
ment function for N in a channel with k tracks and right boundary at
column p?

We abbreviate this problem as CRRB.
Let I = (k, p, N ) be an instance of CRRB. An extension of I is an2-7

instance I ′ = (k, q,N ′) with q > p and N ′ = {N ′
1, N

′
2, . . . , N

′
k} such that for

all i ∈ [1 : k], the following hold:
5
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N1

N2

N3

N4

N2 N2 N3N2

N3N2N2N3N4N3N1

column 1 2 . . . 7 8 9 10

N3

Figure 3: A routing for extension I ′

1. For all (a, b)x with b < p, x ∈ {b, t}, we have (a, b)x ∈ Ni if and only if
(a, b)x ∈ N ′

i .

2. If Ni contains a net of the form (a, p)x, x ∈ {b, t}, then N ′
i contains a

net of the form (a, p′)x for a p′ with p < p′ ≤ q.

To simplify the notation, we will denote the set of supernets for an in-2-8

stance I of CRRB and an extension I ′ of I with the same character. The same
will be done for the corresponding supernets and the corresponding nets con-
tained in the supernets. Let I ′ be an extension of an instance I = (k, p, N )
for CRRB. A routing for I ′ is an extension of a routing for I if both routings
are identical on all columns up to column p − 1.

Example 2 Consider the instance I = (4, 7, N ) where N is as in Example 1.
Let I ′ = (4, 10, N ), where N = {N1, N2, N3, N4} of I ′ contains the supernets
N1 = {(1, 10)t}, N2 = {(1, 3)b, (6, 8)t, (9, 10)b}, N3 = {(2, 4)t, (5, 8)b, (9, 10)t},
and N4 = {(3, 10)t}. Then, I ′ is an extension of I. A routing for I ′ that is
an extension of the routing for I from the right part of Figure 2 is given in
Figure 3.

An extension I ′ = (k, q,N ) of an instance I = (k, p, N ) is M-safe for2-9

I, M ⊂ N , if for every routing for I ′ and each N ∈ M the supernet N
terminates on track i in column q if and only if N is on track i in column p.

Lemma 1 Let I = (k, p, N ) be an instance of CRRB where all k supernets
in N terminate with a top net on the right boundary. Then, for each two

6
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different nets N, N ′ ∈ N , there is an extension I ′ = (k, p + 5, N ) of I such
that:

1. the extension I ′ is N -safe for I,

2. all nets in I ′ terminate with a top net on the right boundary in column
p + 5, and

3. an assignment function f : N → [1 : k] is feasible for the set N of
supernets of I’, if and only if f is feasible for the set N of supernets of
I and f(N) > f(N ′).

Proof of Lemma 1 Let N of I ′ be such that each net of the form (a, p)tProve Lemma 1-1

that is contained in any of the supernets in N − {N, N ′} of I is replaced
with a net (a, p + 5)t. Let supernets N and N ′ in N of I ′ be as in Figure 4.
By construction, condition 2 holds. To show conditions 1 and 3, assume
that we have a feasible assignment function f ′ for N of I ′, together with a
corresponding routing for I ′. Let f be the assignment function where f(N ′′)
is the number of the track that is occupied by supernet N ′′ in column p, for
each N ′′ ∈ N . Clearly, f is feasible for N of I. Supernet N terminates with
a top net in column p + 1, leaving track f(N) free. Since track f(N) is the
only free track between columns p+1 and p+2, the supernet N must occupy
track f(N) again in column p + 2. Supernet N ′ terminates in column p + 2
with a top net. This is possible only if f(N) > f(N ′) holds. Since f(N ′)
is the only free track between columns p + 2 and p + 3, supernet N ′ must
occupy track f(N ′) again in column p + 3. Supernet N terminates with a
bottom net in column p + 3, leaving track f(N) free; it occupies track f(N)
in column p + 4, again starting with a top net. Clearly, no other supernet
can change its track in columns p + 1 to p + 4. We have f(N ′′) = f ′(N ′′) for
each supernet N ′′ ∈ N . Thus, f ′(N) > f ′(N ′), f ′ is feasible for N of I, and
condition 1 holds.

On the other hand, if we have a feasible assignment function f for NProve Lemma 1-2

of I with f(N) > f(N ′), then it is easy to show that f is also a feasible
assignment function for N of I ′.

Proof of Lemma 1 2

With the help of this tool (Lemma 1), every order on the right border2-10

can be enforced.

7

Chicago Journal of Theoretical Computer Science 1996-6



Middendorf Manhattan Channel Routing §3

=

column . . .p + 1 p + 5

N→N ′

NN ′N N ′

N ′

N

NN

N
N ′

Figure 4: The supernets N and N ′

Lemma 2 For each k, there is an instance I = (k, p, N ) of CRRB such that:

• all k supernets in N terminate with a top net on the right boundary,
and

• the only feasible assignment function is defined by f(Ni) = i, i.e., in
every routing for I, supernet Ni must terminate on track i on the right
boundary.

Proof of Lemma 2 First, define an instance I = (k, k + 1, N ) of CRRB
where Ni = {(i, k + 1)t}. Obviously, for any assignment function f : N →
[1 : k] we can find a routing for I. By repeatedly using Lemma 1 we can
extend I to an instance I ′ such that there exists a routing for I ′ if and only
if for all i ∈ [1 : k] supernet Ni terminates with a top net that has a terminal
on track i of the right boundary.

Proof of Lemma 2 2

3 The Main Theorems

We begin with a result about the complexity of CRRB. This result is then3-1

used to show our main theorems about the complexity of Manhattan channel
routing with single-sided nets.

Theorem 1 CRRB is NP-complete even if the bottom nets have density one
and doglegs are allowed.

8
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Proof of Theorem 1 Obviously, our problem is in NP. To prove the com-Prove Theorem 1-1

pleteness for NP, we reduce the exactly-one-in-three 3SAT problem to our
problem. Let a set C = {C1, C2, . . . , Cm} of clauses, each of size 3 over a
set Σ = {v1, v2, . . . , vn} of variables, be an instance of exactly-one-in-three
3SAT. Without loss of generality we can assume that no clause contains a
negated literal (this restriction is known to be NP-complete [GJ79]). Recall
that the exactly-one-in-three 3SAT problem asks whether there is a truth
assignment of the variables in Σ such that each clause in C contains exactly
one true literal.

The idea of the proof is as follows. We begin by constructing an instanceProve Theorem 1-2

of CRRB. We divide the tracks of the channel into five consecutive groups
G1, . . . , G5. Tracks in Gi are above the tracks in Gi+1 for i ∈ [1 : 4]. For
each clause Cl = {vh, vi, vj}, we introduce three supernets V l

h, V l
i , and V l

j

that must terminate on tracks in group G2 on the right boundary in each
routing. Furthermore, for each variable vi we introduce two supernets Hi and
Li that must terminate on tracks in group G3 on the right boundary in each
routing. Then we extend our instance and enforce that for each variable vi,
either Hi changes to a track in group G1 or Li changes to a track in group
G5. This will give us a truth assignment for the variables. Furthermore, we
force all supernets of the form V l

i to change to a track of group G4 if and
only if for the corresponding variable vi the supernet Li is on a track in group
G5. In addition, we require that exactly one of the three supernets V l

h, V l
i ,

and V l
j for a clause Cl will change to a track in group G4. Thus, there will

be a routing if and only if there exists a truth assignment for the variables
satisfying C.

We formalize these ideas. Let k = 8n + 7m be the number of tracks.Prove Theorem 1-3

We divide the channel into the five groups G1 = { track i | i ∈ [1 : 3n] },
G2 = { track i | i ∈ [3n + 1 : 3n + 6m] }, G3 = { track i | i ∈ [3n + 6m + 1 :
5n+6m] }, G4 = { track i | i ∈ [5n+6m+1 : 5n+7m] }, and G5 = { track i |
i ∈ [5n + 7m + 1 : 8n + 7m] }. Based on Lemma 2, we construct an instance
I0 = (k, p0, N ) of CRRB as follows:

1. For each variable vi, i ∈ [1 : n], we have a set Vi consisting of 8 supernets

Vi = {Ai, A
′
i, Bi, B

′
i, B

′′
i , B′′′

i , Hi, Li}
2. For each clause Cl = {vh, vi, vj}, l ∈ [1 : m], we have a set Cl of 7

supernets
Cl = {V l

h, V l
i , V l

j , Xl, X
′
l , X

′′
l , Yl}

9
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Now we set N =
⋃

i∈[1:n] Vi ∪ ⋃
l∈[1:m] Cl. Further, I0 = (k, p, N ) is con-Prove Theorem 1-4

structed such that there exists a routing for I0 if and only if the supernets
in N terminate with a top net on the right boundary in the following ways:

3. For each variable vi, i ∈ [1 : n], the terminals on the right boundary
for the supernets are as follows:

(a) Bi, B′
i, A′

i are in this order on neighboring tracks in G1 (more
precisely, they are on tracks 3i − 2, 3i − 1, and 3i).

(b) Li, Hi are in this order on neighboring tracks in G3 (more precisely,
they are on tracks 3n + 6m + 2i − 1 and 3n + 6m + 2i).

(c) Ai, B′′
i , B′′′

i are in this order on neighboring tracks in G5 (more
precisely, they are on tracks 5n + 7m + 3i − 2, 5n + 7m + 3i − 1,
and 5n + 7m + 3i).

4. For each clause Cl = {vh, vi, vj}, l ∈ [1 : m], h < i < j, the terminals
on the right boundary for the supernets are as follows:

(a) Xl, V l
h, V l

i , V l
j , X ′

l , X ′′
l are in this order on neighboring tracks in

G2 (more precisely, they are on tracks 3n + 6l − 5, . . . , 3n + 6l).

(b) Yl is on a track in G4 (more precisely, it is on track 5n + 6m + l).

We now extend our instance I0 step by step, in such a manner thatProve Theorem 1-5

we can fix a truth assignment for the variables in Σ. One extension step is
performed for each variable in V . Let Ii = (k, pi, N ) be the extended instance
after the ith extension step. The effect of the ith extension will be that there
is a routing for the extended instance Ii if and only if either supernet Hi

terminates on a track in G1 on the right boundary, or Li terminates on a
track in G5 on the right boundary. In the first case, variable vi will be false;
in the other case, it will be true. The extension Ii is given in Figures 5 and 6.

Claim 1 For all i ∈ [1 : n]:

1. Extension Ii is (N − Vi)-safe for Ii−1.

2. All supernets of Ii terminate with a top net on the right boundary.

3. In each routing for Ii, either

10
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Figure 5: Routing for extension Ii: vi false
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Figure 6: Routing for extension Ii: vi true
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(a) Hi terminates on a track in G1 and Li terminates on a track in
G3 on the right boundary, or

(b) Hi terminates on a track in G3 and Li terminates on a track in
G5 on the right boundary.

4. For both cases in condition 3, there exist such a routing.

Proof of Claim 1 By construction, condition 2 holds. We must show con-Prove Claim 1-1

ditions 1, 3, and 4. We are given a routing for Ii−1. Let Bi, Li, and Ai

terminate on tracks r, s, and t, respectively (see Figures 5 and 6). We want
to find all possible extensions of this routing to a routing for Ii.

The supernets B′
i, B′′

i , and B′′′
i terminate in columns pi−1 + 1 to pi−1 + 3.Prove Claim 1-2

There is only one possibility to route in these three columns (see Figure 5).
Since we force A′

i → Ai behind column pi+9 and we have Ai → A′
i in column

pi−1+3, it must be the case that Ai and A′
i change the order of their tracks in

columns pi−1+4 to pi−1+9. Obviously, this change is not possible in columns
pi−1 + 8 and pi−1 + 9 (in these columns, B′′′

i terminates with a bottom net
and starts again with a top net, and no other net can change its track). In
columns pi−1+5 to pi−1+7, the supernets B′′

i , B′
i, and Bi start with top nets.

Since we force B′′
i → B′

i and B′
i → Bi behind column pi−1 + 9, the supernet

B′′
i has to start on the bottommost free track in column pi−1 + 5, and B′

i has
to start on the bottommost free track in column pi−1 + 6. No net other than
B′′

i , B′
i, or Bi can change its track in columns pi−1 + 5 to pi−1 + 7. Hence,

nets A′
i and Ai must change the order of their tracks in column pi−1 + 4.

Assume that Ai changes its track in column pi−1 + 4 in such a way thatProve Claim 1-3

A′
i → Ai holds. See Figure 5 for this case. The only possibility is that Ai

changes to track r+1 in column pi−1 +4. Further, B′′′
i starts on track t+2 of

column pi−1 + 5. B′′′
i cannot start on track t + 1, because we force B′′′

i → B′′
i

behind column pi−1 + 9 and B′′′
i cannot change its track in columns pi−1 + 5

to pi−1 + 9. No net other than Bi, Ai, or B′′′
i can change its track in column

pi−1 + 4. Thus, there is only one possible routing in columns pi−1 + 5 to
pi−1 + 9 for the case that Ai changes its track.

In column qi − 1 we have Hi → Li, and we force Li → Hi behind columnProve Claim 1-4

qi + 2. Hence, Li and Hi must change the order of their tracks in columns
qi to qi + 2. Ai terminates in column qi on a track in G1 and starts again
in column qi + 2. The only possibility for Li and Hi to change their tracks
is that Hi changes its track in column qi + 1 to the free track in G1 (see

13
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Figure 5). No net other than Hi or Ai can change its track in columns qi to
qi + 2.

In view of the above, there is only one possible routing for the case thatProve Claim 1-5

Ai changes its track (see Figure 5). This routing is (N −Vi)-safe for Ii−1, Hi

terminates on a track in G1, and Li terminates on a track in G3 on the right
boundary. Analogously, it can be seen that there is only one routing for the
case that A′

i changes its track (see Figure 6). This routing is (N − Vi)-safe
for Ii−1, Hi terminates on a track in G3, and Li terminates on a track in G5

on the right boundary.

Proof of Claim 1 2

Now, we extend our instance In step by step in such a way that weProve Theorem 1-6

can choose exactly one true variable in each clause. One extension step is
performed for each clause. Let In+l = (k, pn+l, N ) be the instance after the
lth extension step. The effect of the lth extension step will be that there is
a routing for In+l if and only if exactly one of the three supernets V l

h, V l
i , or

V l
j changes to a track in G4. The extension In+l is given in Figure 7.

Claim 2 For each clause Cl = {vh, vi, vj} ∈ C, the following hold:

1. Extension In+l is (N − Cl)-safe for In+l−1.

2. k supernets of In+l terminate with a top net on the right boundary.

3. In each routing for In+l, exactly one of the three supernets V l
h, V l

i , or
V l

j terminates on a track in G4, and the other two terminate on a track
in G2 on the right boundary.

4. For all three cases in condition 3, there exists such a routing.

Proof of Claim 2 This claim is easily verified using arguments similar to
the ones used in the proof of Claim 1. The three possible routings for columns
pn+l−1 + 1 to pn+l−1 + 3 are shown in Figure 7.

Proof of Claim 2 2

To finish our construction for Theorem 1, we extend the instance In+mProve Theorem 1-7

to the instance I = (k, p, N ) by using the construction of Lemma 1 in such
a way that:

14
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X ′′
l

X ′
l

V l
j

V l
h

Xl

V l
i

X ′′
l

X ′
l

V l
j

V l
h

Xl

V l
i

X ′′
l

X ′
l

V l
j

V l
h

Xl

V l
i

Yl Yl Yl Yl Yl Yl

(c)(b)(a)

X ′′
l →Yl

X ′
l→Yl

Yl→Xl

X ′′
l →X ′

l

X ′′
l →Yl

X ′
l→Yl

Yl→Xl

X ′′
l →X ′

l

X ′′
l →Yl

X ′
l→Yl

Yl→Xl

X ′′
l →X ′

l

pn+l−1 + 1 pn+l pn+l−1 + 1 pn+l pn+l−1 + 1 pn+l

Yl Yl Yl

Figure 7: Three routings for extension In+1
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5. For all i ∈ [1 : n] and each l ∈ [1 : m] with vi ∈ Cl, we have V l
i → Hi

and Li → V l
i .

Observe that the bottom nets in N of I have density one. It remains toProve Theorem 1-8

show that there exists a routing for I if and only if there is a C-satisfying
truth assignment for the variables in Σ such that there is exactly one true
literal in each clause.

Assume that there exists a routing for I = (k, p, N ). Now, set vi to true ifProve Theorem 1-9

Li terminates on a track in G5 and Hi terminates on a track in G3 at the right
boundary. Otherwise, set vi to false. Claim 1 and condition 5 imply that for
each variable vi that has the value false, all supernets of the form V l

i with
vi ∈ Cl terminate on a track in G2 on the right boundary. Furthermore, for
each true variable vi, all supernets of the form V l

i with vi ∈ Cl terminate on
a track in G4 on the right boundary. Since by Claim 2 and our construction
for each clause Cl = {vh, vi, vh} exactly one of the supernets V l

h, V l
i , or V l

j can
terminate on a track in G4 on the right boundary and the other two supernets
terminate on a track in G2, there must be exactly one true variable in each
clause. On the other hand, if we have a truth assignment satisfying C, we
can easily find a routing for I using Claims 1 and 2.

Proof of Theorem 1 2

3-2

Theorem 2 The general Manhattan channel-routing problem (where doglegs
are allowed) and the restricted Manhattan channel-routing problem (where
doglegs are not allowed) are both NP-complete for 2-terminal nets in all of
the following cases:

1. All nets are single-sided nets and the bottom nets have density one.

2. All nets are two-sided, with the left terminal on the bottom boundary
and the right terminal on the top boundary.

3. All nets are single-sided top nets or two-sided nets with the left terminal
on the bottom boundary and the right terminal on the top boundary, and
the two-sided nets have density one.

Proof of Theorem 2 First, we show that general Manhattan channel rout-Prove Theorem 2-1

ing is NP-complete in Case 1. It is easy to reduce CRRB with bottom nets of
16
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hmax = 4, hmin = 2, ∆ = 2

Figure 8: A channel with an irregular bottom boundary

density one to our problem. Let I ′ = (k, p, N ) be an instance of CRRB. To
construct an instance I of our problem, replace each net of the form (a, p)t of
a supernet Ni with the net (a, p+ i)t. Then, let instance I be the union of all
the nets of the supernets in N . Clearly, there is a routing for I if and only
if there is a routing for I ′. Slight variations of the proofs of Theorem 1 and
Lemmas 1 and 2 show that the cases of CRRB corresponding to Cases 2 and 3
of Theorem 2 are NP-complete. Then, using the same reduction as in Case 1
above, one obtains that general Manhattan channel routing is NP-complete
in Cases 2 and 3.

To show the results for restricted Manhattan channel routing is much eas-Prove Theorem 2-2

ier. Simplifications of the proofs for the general Manhattan channel-routing
problem will do.

Proof of Theorem 2 2

4 Routing in Irregular Channels

In this section, we consider Manhattan channel routing for channels that4-1

have an irregular bottom boundary.

Definition 2 A channel boundary is called irregular if it is not a straight
line. For a channel with an irregular bottom boundary, let hmax (hmin) be the
maximum (respectively minimum) number of (partial) tracks in one column,
and set ∆ = hmax − hmin.

Theorem 3, stated below, shows that even very simple routing problems4-2

are NP-complete in this model.

17
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Theorem 3 General and restricted Manhattan channel routing are both NP-
complete for channels with irregular bottom boundaries, even if ∆ = 1 and
there are only 2-terminal top nets.

We omit the somewhat technical proof. Its overall structure is similar to4-3

that of Theorem 2: first, one shows that results analogous to Lemmas 1 and 2
hold, then one uses them to prove the appropriate analogue of Theorem 1.

5 Conclusion

We have shown that Manhattan channel routing with only single-sided or5-1

only two-sided 2-terminal nets is NP-complete even for very restricted sets of
instances, regardless of whether or not doglegs are allowed. Moreover, a quite
restricted case of Manhattan channel routing for a channel with one irregular
boundary has been shown to be NP-complete. Consequently, deterministic
polynomial algorithms for all Manhattan channel-routing problems that in-
volve one of our NP-complete problems are unlikely to exist. This emphasizes
the importance of heuristic methods and approximation algorithms.
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