
Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1998, Article 1
10 March 1998

ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge,
MA 02142-1493 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in LATEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

• http://mitpress.mit.edu/CJTCS/

• http://www.cs.uchicago.edu/publications/cjtcs/

• ftp://mitpress.mit.edu/pub/CJTCS

• ftp://cs.uchicago.edu/pub/publications/cjtcs



Thierauf The Isomorphism Problem (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert,R©SciSearch, R©Current ContentsR©/Engineering Com-
puting & Technology, and CompuMath Citation Index. R©

c©1998 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics
in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Editors: Martin Abadi Greg Frederickson John Mitchell
Pankaj Agarwal Andrew Goldberg Ketan Mulmuley
Eric Allender Georg Gottlob Gil Neiger
Tetsuo Asano Vassos Hadzilacos David Peleg
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The Isomorphism Problem for Read-Once
Branching Programs and Arithmetic Circuits

Thomas Thierauf

10 March, 1998

Abstract

We investigate the computational complexity of the isomorphismAbstract-1

problem for read-once branching programs (1-BPI): upon input of two
read-once branching programs B0 and B1, decide whether there exists
a permutation of the variables of B1 such that it becomes equivalent
to B0.

Our main result is that 1-BPI cannot be NP-hard unless the poly-Abstract-2

nomial hierarchy collapses. The result is extended to the isomorphism
problem for arithmetic circuits over large enough fields.

We use the known arithmetization of read-once branching pro-Abstract-3

grams and arithmetic circuits into multivariate polynomials over the
rationals. Hence, another way of stating our result is: the isomor-
phism problem for multivariate polynomials over large enough fields
is not NP-hard unless the polynomial hierarchy collapses.

We derive this result by providing a two-round interactive proofAbstract-4

for the nonisomorphism problem for multivariate polynomials. The
protocol is based on the Schwartz-Zippel theorem for probabilistically
checking polynomial identities.

Finally, we show that there is a perfect zero-knowledge interactiveAbstract-5

proof for the isomorphism problem for multivariate polynomials.

1 Introduction

An interesting computational issue is to decide the equivalence of two given1-1

programs with respect to some computational model such as Boolean circuits,
branching programs, or Boolean formulas. A more general problem is to

1
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Thierauf The Isomorphism Problem §1

decide the isomorphism of two given circuits (for example), that is, whether
the circuits become equivalent after permuting the input variables of one of
the circuits. Isomorphism is one way of formalizing the idea that two circuits
are “almost” equivalent.

The isomorphism problem for Boolean circuits is in fact a very old one,1-2

dating back to the last century (see [BRS96] for background and early ref-
erences on this problem and variants of it). More recently, the problem has
been reconsidered with respect to its computational complexity (see, for ex-
ample, [AT96, BR93, BRS96, CK91]).

The equivalence problems for Boolean circuits, branching programs, and1-3

Boolean formulas are known to be coNP-complete. Asking for isomorphism
roughly amounts to putting an existential quantifier in front of the problem.
Therefore, the corresponding isomorphism problems are in the second level of
the polynomial hierarchy, Σp

2. An obvious question is whether these isomor-
phism problems are complete for Σp

2. This question was solved by Agrawal
and Thierauf [AT96], who showed that none of these isomorphism problems
is complete for Σp

2 unless the polynomial hierarchy collapses. Thus, loosely
speaking, the existential quantifier we get by seeking an isomorphism does
not seem to add full NP-power to the corresponding equivalence problem.

The most prominent example that supports the latter observation might1-4

be the graph isomorphism problem, GI. Here, the equivalence problem for
graphs, which is in fact an equality problem, is trivially solvable in polynomial
time; therefore, GI is in NP. However, GI is not NP-complete unless the
polynomial hierarchy collapses [GMW91, BHZ87] (see also [Sch89]).

For a restricted class of branching programs, namely, the read-once branch-1-5

ing programs, where on each path, each variable is tested at most once (see the
next section for precise definitions), the equivalence problem is easier: it can
be efficiently solved by a randomized Monte-Carlo type algorithm [BCW80]
with one-sided error, and is in the complexity class coRP. Therefore, when
an existential quantifier is put in front, the isomorphism problem for read-
once branching programs, 1-BPI, is in NP·coRP. Motivated by the examples
above, we ask whether 1-BPI is NP-hard.

In this paper, we show that 1-BPI is also in the Arthur-Merlin class,1-6

coAM = BP · coNP. As a consequence, it is not NP-hard unless the poly-
nomial hierarchy collapses. The result is extended to arithmetic circuits (or
straight-line programs) over large enough fields.

One crucial point required to prove these results is that both read-once1-7

branching programs and arithmetic circuits can be arithmetized, yielding
2
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Thierauf The Isomorphism Problem §2.1

equivalent multivariate polynomials [BCW80, IM83]. In the case of read-
once branching programs, these polynomials are multilinear. Therefore, our
main results can be restated in purely algebraic terms: the isomorphism
problem for multivariate polynomials over large enough fields is not NP-hard
unless the polynomial hierarchy collapses.

Our proof is based on a two-round interactive proof for the nonisomor-1-8

phism problem for multivariate polynomials. In principle, the interactive
proof protocol follows the one for graph nonisomorphism, GNI. However,
there is a crucial difference: in our protocol, the verifier needs to compute
a normal form of a polynomial to hide the syntactic structure of the in-
put polynomials that are manipulated. This problem does not occur when
working with graphs; however, this requirement seems to exceed the compu-
tational power of the verifier. We get around this difficulty by computing a
randomized normal form instead. The randomized normal form is based on
the Schwartz-Zippel theorem for testing polynomial identities.

Combining these ideas with the ones from Goldreich, Micali, and Wigder-1-9

son [GMW91], we obtain perfect zero-knowledge interactive proofs for these
isomorphism problems.

An extension of an isomorphism is a congruence, where in addition to1-10

permuting variables, one can exchange a variable with its negation. Although
we formulate our results only for isomorphism problems, it can easily be
checked that all our theorems also hold for the corresponding congruence
problems.

2 Preliminaries

2.1 Basic Definitions

We use fairly standard notions of complexity theory. We refer the reader2.1-1

to [BDG88, BDG91, HU79] for definitions of complexity classes such as P,
NP, RP, or BPP. The kth level of the polynomial hierarchy is denoted by
Σp

k. For any class C, we denote the complement class by co C.
Class BP · NP is the class of sets L such that there exist a set A ∈ NP2.1-2

and a polynomial p such that for every x:

x ∈ L =⇒ Pr[(x, y) ∈ A] = 1

x 6∈ L =⇒ Pr[(x, y) ∈ A] ≤ 1
2

3
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Thierauf The Isomorphism Problem §2.1

where y is chosen uniformly at random from Σp(|x|). The obvious definition
of BP · NP would be with two-sided error, but this is equivalent with the
definition given here.

Class NP ·coRP is the class of sets L such that there exist a set A ∈ coRP2.1-3

and a polynomial p such that for every x, we have:

x ∈ L ⇐⇒ ∃y ∈ Σp(|x|) : (x, y) ∈ A

Interactive proofs were defined in [GMR89]. An interactive proof system2.1-4

for a set L consists of a prover P and a verifier V . The verifier is a random-
ized polynomial-time algorithm that can communicate with the prover. The
prover can make arbitrary computations. After following some communica-
tion protocol, the verifier finally has to accept or reject a given input, such
that:

x ∈ L =⇒ ∃ prover P : Pr[(V, P )(x) accepts] = 1

x 6∈ L =⇒ ∀ prover P : Pr[(V, P )(x) accepts] ≤ 1
2

where the probability is taken over the random choices of the verifier.
Class IP is the class of sets that have an interactive proof system, and2.1-5

IP[k] is the subclass of IP where the verifier and the prover exchange at most
k messages.

Arthur-Merlin games were introduced in [Bab85]. They are defined sim-2.1-6

ilarly to interactive proofs, with Arthur corresponding to the verifier and
Merlin to the prover. The only difference is that Arthur has to make his
random bits available to Merlin, whereas in the interactive proof model, the
prover does not know the random bits of the verifier. The notation AM[k]
denotes when k messages can be sent, and AM = AM[2].

In this paper, we are interested in constant-round interactive proof sys-2.1-7

tems. It is known that for both interactive proof systems and Arthur-
Merlin games, constantly many rounds are the same as one round: for
any k ≥ 2, IP[k] = AM[k] = AM [Bab85, GS89]. Moreover, it is known
that AM = BP · NP.

An IP protocol for a set L is a perfect zero-knowledge protocol [GMR89]2.1-8

if it decides L correctly in the usual way and, in addition, for any x ∈ L, the
prover does not reveal any extra information to any verifier V ∗ besides the
fact that x is in L: the messages exchanged with the prover appear random
to V ∗ (that is, these messages could have been produced by V ∗ himself).

2.1-9

4
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Definition 1 A prover P is perfectly zero knowledge on L if, for any interac-Definition 1-1

tive machine V ∗ running in expected polynomial time, there is a probabilistic
machine MV ∗ running in expected polynomial time such that for any x ∈ L
and any string H, |H| ≤ |x|c for some c > 0, and the communication be-
tween P and V ∗ on input (x, H), seen as a random variable, is identically
distributed to the output of MV ∗ on the same input.

Together, P and V form a perfect zero-knowledge proof system for L ifDefinition 1-2

the system is an interactive proof system for L, and if P is perfectly zero
knowledge on L.

The string H in the definition is needed if we wish to combine two zero-2.1-10

knowledge protocols into one zero-knowledge protocol: the history H from
the first protocol, which is known to the verifier in the second protocol, does
not help the verifier. For a more detailed discussion of this definition and the
need for expected polynomial time, see [GMR89, GMW91].

2.2 Verifying Polynomial Identities

Let F be some field, and p = p(x1, . . . , xn) be a multivariate polynomial over2.2-1

F. The degree of p is the maximum exponent of any variable when p is written
as a sum of monomials. Polynomials of degree 1 are called multilinear . Note
the difference from the total degree of a polynomial, where one first adds the
exponents of the variables in each monomial and then takes the maximum
over these sums.

Given some polynomial p written as an arithmetic expression, we want2.2-2

to find out whether p is in fact the zero polynomial. The obvious algorithm,
namely, to transform the arithmetic expression in a sum of monomials and
check whether all coefficients are zero, can have up to exponential running
time (in the size of the input). Efficient probabilistic zero tests were developed
by Schwartz [Sch80] and Zippel [Zip79]. The version below is a variant shown
by Ibarra and Moran [IM83]. They extended the corresponding theorem for
multilinear polynomials shown by Blum, Chandra, and Wegman [BCW80]
to arbitrary degrees. We give a proof for completeness.

Theorem 1 ([IM83, Sch80, Zip79]) Let p(x1, . . . , xn) be a multivariate
polynomial of degree d over field F that is not the zero polynomial. Let T ⊆ F
with |T | ≥ d. Then there are at least (|T |−d)n points (a1, . . . , an) ∈ T n such
that p(a1, . . . , an) 6= 0.

5
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Proof of Theorem 1 The proof is by induction on n. For n = 1 the theo-
rem is true, because a degree-d polynomial has at most d roots in F.

Let n > 1 and let p(x1, . . . , xn) be a nonzero polynomial of degree d.2.2-3

Furthermore, let a = (a1, . . . , an) be a point such that p(a) 6= 0. We define
two polynomials, both of which are subfunctions of p:

p0(x1, . . . , xn−1) = p(x1, . . . , xn−1, an)
p1(xn) = p(a1, . . . , an−1, xn)

By construction, both polynomials are nonzero and have degree bounded
by d: p0 has n−1 variables, and therefore differs from 0 on at least (|T |−d)n−1

points in T n (by the induction hypothesis). Similarly, p1 has one variable,
and therefore has at least |T | − d nonzero points.

For each of the |T |−d choices for an where p1 is nonzero, the corresponding2.2-4

polynomial p0 has (|T | − d)n−1 nonzero points. Therefore, the number of
nonzero points of p in T n is at least (|T | − d)(|T | − d)n−1 = (|T | − d)n.

Proof of Theorem 1 2

We mention two important consequences of this theorem. First of all, let2.2-5

T be any subset of F that has at least d + 1 elements. Then any nonzero
polynomial of degree d has a nonzero point in T n.

Corollary 1 Let p(x1, . . . , xn) be a polynomial of degree d over F, and T ⊆
F with |T | > d. Then p 6≡ 0 ⇐⇒ ∃a ∈ T n p(a) 6= 0.

By enlarging T even further, we can show that any nonzero polynomial2.2-6

p does not vanish on most of the points of T n. This provides the tool for the
probabilistic zero test.

Corollary 2 Let p(x1, . . . , xn) be a polynomial of degree d over F, and T ⊆
F with |T | ≥ 2nd. Let r = (r1, . . . , rn) be a random element from T n. Then
p(r) 6= 0, with probability at least 1/2.

Proof of Corollary 2

Pr[p(r) 6= 0] ≥
( |T | − d

|T |
)n

≥
(
1 − 1

2n

)n

≥ 1
2

Proof of Corollary 2 2

6
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2.3 Branching Programs

A branching program B in n Boolean variables x1, . . . , xn is a directed acyclic2.3-1

graph with the following types of nodes. There is a single node of indegree
zero, the initial node of B. All nodes have outdegree two or zero. A node
with outdegree two is an internal node of B. One of its edges is labeled with
xi, the other with xi, for some i ∈ {1, . . . , n}. A node with outdegree zero is
a final node of B. The final nodes are labeled by either accept or reject .

We call a branching program read-once if, on each path from the initial2.3-2

node to a final node, every variable or its complement occurs at most once
as an edge label.

A read-once branching program is called ordered if the order of variable2.3-3

occurence on each path is consistent with some ordering on the set of vari-
ables.

Branching programs are also called binary decision diagrams (BDD) or2.3-4

Boolean graphs . Read-once branching programs and ordered branching pro-
grams are also called free binary decision diagrams (FBDD) or free Boolean
graphs and ordered binary decision diagrams (OBDD), respectively.

A branching program B defines an n-ary Boolean function from {0, 1}n2.3-5

to {0, 1} as follows. For an assignment a = (a1, . . . , an) ∈ {0, 1}n, we walk
through B, starting at the initial node, always following the (unique) edge
that evaluates to one under a, until we reach a final node. If the final node
is an accepting node, we define B(a) = 1, and B(a) = 0 otherwise.

Two branching programs B and B′ in n variables are equivalent, B ≡ B′2.3-6

for short, if they define the same Boolean function. By BPE we denote the
problem of deciding whether two given branching programs are equivalent.
That is,

BPE = { (B, B′) | B ≡ B′ }
It is not hard to see that branching programs can compute CNF Boolean
formulas. Therefore, the satisfiability problem for branching programs is
NP-complete; hence BPE is coNP-complete.

Blum, Chandra, and Wegman [BCW80] showed that the equivalence2.3-7

problem for read-once branching programs, 1-BPE, is easier because one
can transform these programs into equivalent multilinear polynomials over
the rational numbers, Q. To see this, note first that a branching program B
can be viewed as a compact way of denoting a DNF formula FB: each path
of B can be written as a monomial, the conjunction of the literals occurring

7
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along that path. Then, the function computed by B is simply the disjunction
of all monomials coming from accepting paths of B.

We convert FB into a polynomial pB over the rational numbers Q as2.3-8

follows. A variable xi is kept as xi. A negated variable xi is replaced by
1 − xi. A conjunction is replaced by multiplication, and a disjunction is
replaced by addition. For each satisfying assignment a ∈ {0, 1}n, exactly
one path of B evaluates to true under a. Therefore, at most one product
term in pB will be one on input a; hence, B and pB agree on {0, 1}n. That
is,

B(a) = pB(a) for all a ∈ {0, 1}n

It is easy to get an arithmetic expression for pB from B that has about the
same size as B. Note, however, that when written as a sum of monomials,
pB may consist of exponentially many terms in the size of B. Therefore, in
general, we cannot write down pB in this normal form in polynomial time
in |B|. However, with the expression at hand, we can evaluate pB at a
given point in Qn in polynomial time, and this suffices for our purposes. To
evaluate pB at a point a = (a1, . . . , an), we start by writing a 1 at the initial
node. Suppose now that a node has value v, and its edges are labeled by
variable xi. Then, values vai and v(1−ai) are sent along the xi- and xi-edges,
respectively. When all incoming edges of a node u have sent values, the value
of u is the sum of all these incoming values. Finally, the value of pB appears
at the accepting node.

Since B is read-once, pB is a multilinear polynomial. Next let B′ be an-2.3-9

other read-once branching program, and let pB′ be the corresponding poly-
nomial. If B and B′ are equivalent, then pB and pB′ agree on {0, 1}n, a
two-element set. By Corollary 1 (applied to p = pB − pB′), it follows that
pB and pB′ agree on Q. Choosing T in Corollary 2 as T = {1, . . . , 2n},
we detect an inequivalence with probability more than 1/2. It follows that
1-BPE ∈ coRP.

Fortune, Hopcroft, and Schmidt [FHS78] have shown that if one of two2.3-10

given read-once branching programs is even ordered, then the equivalence
can be decided in polynomial time. In particular, the equivalence problem
for ordered branching programs is solvable in polynomial time.

Two branching programs B and B′ are isomorphic, denoted by B ∼= B′, if2.3-11

there exists a permutation ϕ on {x1, . . . , xn} such that B becomes equivalent
to B′ when permuting the variables of B′ according to ϕ. That is, B ≡ B′◦ϕ.
In this case, we call ϕ an isomorphism between B and B′.

8
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The isomorphism problem for branching programs is:2.3-12

BPI = { (B, B′) | B ∼= B′ }

The isomorphism problem for read-once branching programs, 1-BPI, is de-
fined analogously. It follows directly from the definition that BPI ∈ Σp

2,
the second level of the polynomial hierarchy. Agrawal and Thierauf [AT96]
showed that BPNI is in BP · Σp

2. By a result of Schöning [Sch89], it follows
that BPI cannot be complete for Σp

2 unless the polynomial hierarchy collapses
to its third level, Σp

3.
For read-once branching programs, we have 1-BPI ∈ NP · coRP. An2.3-13

obvious question is whether 1-BPI is NP-hard. In this paper, we show that
the problem of deciding whether two read-once branching programs are not
isomorphic, 1-BPNI, is in BP · NP. Combined with the result of Boppana,
H̊astad, and Zachos [BHZ87] (see also Schöning [Sch89]), it follows that 1-BPI
cannot be NP-hard unless the polynomial hierarchy collapses to its second
level, Σp

2.
This result also covers the case of ordered branching programs. Note,2.3-14

however, that in that case, the isomorphism problem is in NP.

2.4 Arithmetic Circuits

An arithmetic circuit over a field F is a circuit where the inputs are field2.4-1

elements, and the (fan-in two) gates perform the field operations +, −, and
×. (We could also allow division, as long as a circuit guarantees not to divide
by zero on any input.) Circuit size and depth are defined as usual.

Ibarra and Moran [IM83] considered the equivalence problem for arith-2.4-2

metic circuits (called straight-line programs there). They gave probabilistic
polynomial-time algorithms for circuits over infinite fields. This was split into
two cases, depending on whether the field had characteristic of 0 or greater
than 0. If the field F had characteristic 0, it contained a subfield isomorphic
to Q, the rational numbers. Therefore, it is enough to consider F = Q. We
show how a zero test can be done in this case.

If a circuit C has n input variables x1, . . . , xn, then C computes a multi-2.4-3

variate polynomial pC over Q. If C has depth d, then pC has degree at most
2d. Therefore, to obtain a zero test for pC , we have to choose T in Corollary 2
as T = {1, . . . , 2n2d} to detect a nonzero point with probability more than
1/2 at a random point from T n.

9
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However, we do not have a polynomial-time procedure yet, because the2.4-4

function values of pC on T n could be as large as (2n2d)n2d ≤ 2N2N for N = nd.
Represented in binary, such numbers would be exponentially long. Instead,
we evaluate pC modulo smaller numbers, namely from M = {1, . . . , 22N}.
(For a zero test, we can assume that all coefficients are integers, so that the
function values of pC are integers too.) Notice that pC (mod m) might have
more zeros than pC , however, not too many:

Lemma 1 ([IM83]) For any y ≤ 2N2N and a randomly chosen m ∈ M , we
have y 6≡ 0 (mod m) with probability at least 1

3N
, for large enough N .

Proof of Lemma 1 Any y ≤ 2N2N has at most N2N prime divisors. By
the prime-number theorem, there are more than 22N

2N
primes in M for large

enough N . Therefore, M contains at least 22N

2N
− N2N primes that do not

divide y. Hence, for m randomly chosen from M , we have:

Pr[y 6≡ 0 (mod m)] ≥
22N

2N
− N2N

22N
=

1
2N

− N

2N
≥ 1

3N

Proof of Lemma 1 2

The probabilistic zero test now works as follows.2.4-5

Corollary 3 Let p(x1, . . . , xn) be a nonzero polynomial of degree 2d over
Q, T = {1, . . . , 2n2d}, and M = {1, . . . , 22N}, where N = nd. Choose
r1, . . . , r6N from T n and m1, . . . , m6N from M , independently at random.
Then, p(ri) 6≡ 0 (mod mi), for some i, with probability at least 1/2.

Proof of Corollary 3 By Corollary 2 and Lemma 1:

Pr[p(ri) 6≡ 0 (mod mi)] ≥ 1
2

1
3N

, for any pair ri, mi

Therefore,

Pr[p(ri) ≡ 0 (mod mi) for all i ] ≤
(
1 − 1

6N

)6N

≤ 1
2

Proof of Corollary 3 2

10
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We only sketch briefly the case of infinite fields with finite characteristic,2.4-6

and refer the reader to [IM83] for a more detailed treatment. Let F be a
field with characteristic q (which must, therefore, be a prime number). The
trick is then to switch from F to the ring of polynomials over GF(q). This is
certified by the the following lemma.

Lemma 2 ([IM83]) Let p(x1, . . . , xn) be a polynomial. p ≡ 0 over F if and
only if p ≡ 0 over GF(q)[x].

Since q is prime, GF(q) is a field; therefore, the ring GF(q)[x] is a principal2.4-7

ideal domain, that is, a ring with a one and no zero divisors such that every
ideal is principal. (In fact, GF(q)[x] is what is sometimes called a Euclidean
ring .) One can easily verify that this already suffices in the assumption of
Theorem 1 and its corollaries, instead of having a field. Hence, we can apply
the zero test for p over the polynomial ring GF(q)[x].

However, we can only deal with polynomials up to polynomial size in2.4-8

the input length. In the case of Q, we did computations modulo small
enough prime numbers. Now we do computations modulo polynomials of
small degree. There is an analog of Lemma 1 bounding the probability
that p(a1, . . . an) 6= 0, but p(a1, . . . an) = 0 (mod r) for a randomly chosen
polynomial r ∈ GF(q)[x] of small degree and ai ∈ GF(q)[x], for i = 1, . . . , n.

Putting things together, we get a zero test analogous to the one for poly-2.4-9

nomials over Q, only the domain has changed to a polynomial ring instead
of numbers.

Clearly, for any polynomial p in F[x1, . . . , xn] given as an arithmetic ex-2.4-10

pression, one can construct an arithmetic circuit computing p that has about
the same size as p. In particular, it follows from the discussion in the pre-
ceding section that one can transform a read-once branching program into
an equivalent arithmetic circuit of about the same size. Though arithmetic
circuits are the more general concept, we prove our main result for read-once
branching programs first, and then explain how to extend it to solve the
isomorphism problem for arithmetic circuits.

3 An Interactive Proof for 1-BPNI

We show that there is a two-round interactive proof for the nonisomorphism3-1

problem for read-once branching programs, 1-BPNI.

11
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We start by recalling the idea of the interactive proof for the graph non-3-2

isomorphism problem, GNI [GMR89] (see also [Sch88]). There, on input of
two graphs G0 and G1, the verifier randomly picks i ∈ {0, 1} and a permuta-
tion ϕ, and sends H = ϕ(Gi) to the prover. The prover is then asked to find
out what the value of i is. The verifier will accept only if the prover gives
the right answer.

When the input graphs are not isomorphic, then the prover can identify i3-3

easily. However, when the graphs are isomorphic, both could have been used
by the verifier to compute H, so that no prover can identify i. For this
reason, the answer of any prover is correct with probability at most 1/2.

First of all, note that we cannot directly adapt this protocol to branching3-4

programs. The reason is that the syntactic structure of two given isomorphic
branching programs might tell the prover which of two given branching pro-
grams was selected by the verifier, at least, if the verifier simply exchanges
variables according to some permutation.

A way out of this would be a normal form for read-once branching pro-3-5

grams that is easy to compute; however, such a normal form is not known.
At this point, in the case of general branching programs, Agrawal and Thier-
auf [AT96] used a result from learning theory by Bshouty et al. [BCG+96]:
there is a randomized algorithm that uses an NP-oracle and outputs branch-
ing programs equivalent to a given one. The important point is that although
the algorithm might output (syntactically) different branching programs de-
pending on its random choices, the output does not depend on the syntactic
structure of its input. However, in our case, the verifier does not have an NP-
oracle available, and there is no analog learning result for read-once branching
programs without an NP-oracle.

The idea for getting around this problem is as follows. On input of two3-6

given read-once branching programs B0 and B1 with n variables, the verifier
randomly chooses one of them and permutes it with a random permutation
to obtain a branching program B. Instead of trying to manipulate all of B,
the verifier takes the arithmetization pB of B and evaluates pB at a randomly
chosen point r ∈ T n, where T is some appropriate test domain. The prover
is then asked to tell which of B0, B1 was used to obtain the point (r, pB(r)).
If B0 and B1 are isomorphic, then the prover cannot detect this, and must
guess; it will fail with probability 1/2. On the other hand, if B0 and B1 are
not isomorphic, then the prover has a good chance of detecting the origin of
(r, pB(r)). This is because, by Corollary 2, different multilinear polynomials
can agree on T on at most 1/2 of the points for |T | ≥ 2n. That is, the
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origin of (r, pB(r)) is unique with high probability. With an additional
round of communication, the prover can always convince the verifier of the
nonisomorphism of B0 and B1. We give the details below.

Theorem 2 1-BPNI ∈ IP[4].

Proof of Theorem 2 We give a protocol for 1-BPNI. The inputs are two
read-once branching programs B0, B1, both in n variables. Let T = {1, . . . , 2n}.

V1: The verifier randomly picks i ∈ {0, 1}, a permutation ϕ, and r1, . . . , rk ∈
T n, where k = dn log ne + 2. Then it permutes the variables of Bi ac-
cording to ϕ, computes yl = pBi

◦ ϕ(rl) for l = 1, . . . , k, and sends the
set of pairs R = { (rl, yl) | l = 1, . . . , k } to the prover.

P1: The prover sends j ∈ {0, 1} and a permutation ϕ′ to the verifier.

V2: If i = j, then the verifier accepts. If i 6= j, the verifier checks whether
pBj

◦ ϕ′ matches the set R, that is, whether pBj
◦ ϕ′(rl) = yl for l =

1, . . . , k. If the test fails, the verifier rejects; otherwise, it sends ϕ to
the prover.

P2: The prover sends a point r′ ∈ T n to the verifier.

V3: Finally, the verifier accepts if and only if pBi
◦ ϕ(r′) 6= pBj

◦ ϕ′(r′).

We show that the above protocol works correctly.3-7

Case 1 B0 6∼= B1: There is a prover such that the verifier always accepts

The prover can cycle through all permutations and check whether pB0 or pB1

match with the set R sent by the verifier in step V1. Say that polynomial
pB0 ◦ ϕ′ matches. The prover then sends j = 0 and ϕ′ to the verifier in
step P1.

If no permutation of polynomial pB1 matches R as well, then i must have3-8

been 0, and therefore, the verifier will accept in the first round.
On the other hand, if some permutation of polynomial pB1 matches R,3-9

then the prover cannot tell which one was used by the verifier. If the prover
is lucky, i has been zero anyway, and the verifier accepts. On the other hand,
if i 6= j, then the verifier will send ϕ to the prover in step V2, because pBj

◦ϕ′

matches R. Since pBj
◦ ϕ′ 6= pBi

◦ ϕ, these polynomials can agree on at most
1/2 of the points of T n by Corollary 2. Therefore, the prover can find a point
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r′ ∈ T n such that pBj
◦ ϕ′(r′) 6= pBi

◦ ϕ(r′), and send it to the verifier in
step P2, which will accept in step V3. In summary, the verifier accepts with
probability one.

Case 2 B0
∼= B1: For any prover, the verifier accepts with probability at

most 3/4

By executing the protocol several times in parallel, the acceptance probability
can be made exponentially small.

The prover will always find permutations of pB0 and pB1 that match the3-10

set R sent by the verifier in step V1. Therefore, with respect to the test
i = j made by the verifier, the best the prover can do is guess j randomly.
This will make the verifier accept with probability 1/2 in step V2. However,
the prover can improve its chances by the condition checked in the second
round by the verifier, i.e., by fixing i and ϕ chosen by the verifier, say i = 0.
Then there might exist a permutation ϕ′ such that pB1 ◦ ϕ′ matches R, but
pB0 ◦ ϕ 6= pB1 ◦ ϕ′. Then the prover could choose a point r′ such that
pB0 ◦ϕ(r′) 6= pB1 ◦ϕ′(r′), and make the verifier accept in step V3 by sending
j = 1, ϕ′, and r′. We give an upper bound on the probability of this event.

By Corollary 2, for any ϕ′ such that pB0 ◦ ϕ 6= pB1 ◦ ϕ′, we have:3-11

Pr[pB0 ◦ ϕ(r) = pB1 ◦ ϕ′(r)] <
1
2

for a randomly chosen r ∈ T n. Because points r1, . . . , rk ∈ T n are chosen
independently and uniformly at random from T n, we have:

Pr[pB1 ◦ ϕ′ matches R] < 2−k

Therefore, considering all such ϕ′, we get that:

Pr[∃ϕ′ (pB0 ◦ ϕ 6= pB1 ◦ ϕ′ and pB1 ◦ ϕ′ matches R] < n! 2−k ≤ 1
4

by our choice of k. We conclude that the probability that any of the con-
ditions tested by the verifier is satisfied is bounded by (1/2) + (1/4) = 3/4.
That is, the verifier accepts with probability at most 3/4, irrespective of the
prover.

Proof of Theorem 2 2
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We can directly reduce to a one-round interactive proof by choosing T3-12

large, for example T = {1, . . . , 2nn!}. Then, in case B0 6∼= B1, the prover can
always find a point r′ (as above) without knowing ϕ, and hence can already
send it in the first round to the verifier, which can then make all its tests.
However, another difficulty arises: when T has exponential size, the values
of the polynomials might be up to double exponential, in which case the
polynomial time verifier can no longer deal with the numbers. We will show
in the next section how the verifier can still manage its task.

As mentioned in Section 2.1, the class of sets that can be decided by3-13

a constant-round interactive proof system coincides with the Arthur-Merlin
class AM which, in turn, is the same as BP · NP [Bab85, GS89].

Corollary 4 1-BPNI ∈ BP · NP.

Schöning [Sch88] gives a direct proof that the graph isomorphism prob-3-14

lem is in AM (i.e., without using the relationship between IP and AM) by
using the Sipser hashing technique [Sip83]. We remark that we can modify
Schöning’s proof based on our technique, and also directly obtain Corollary 4.

Note that both classes, BP · NP and NP · coRP, can very loosely be3-15

considered as some slight extensions of NP. In this sense, we have shown
that 1-BPI is in a slight extension of NP ∩ coNP.

Corollary 5 1-BPI ∈ NP · coRP ∩ BP · coNP.

Boppana, H̊astad, and Zachos [BHZ87] (see also Schöning [Sch89]) have3-16

shown that a coNP-complete set cannot be in BP ·NP unless the polynomial
hierarchy collapses to the second level, in fact, even to BP · NP. Hence, we
get the main result of this section.

Corollary 6 1-BPI is not NP-hard, unless PH = Σp
2.

Because ordered branching programs are a restricted form of read-once3-17

branching programs, Corollary 6 can be applied. The equivalence problem
for ordered branching programs is in P [FHS78]; therefore, the isomorphism
problem for ordered branching programs is in NP.

Corollary 7 The isomorphism problem for ordered branching programs is
not NP-complete unless PH = Σp

2.
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Because computational models such as branching programs work over3-18

inputs from {0, 1}, a set of size two, Corollary 1 restricts our techniques to
multilinear polynomials. However, if we start with polynomials of degree d
over Q for some constant d > 0, then we can apply the above protocol
for testing the nonisomorphism of two such polynomials. Just take the test
domain T of size 2dn for polynomials with n variables. For the representation
of the polynomials it is enough that we can evaluate them efficiently at any
point. Therefore, the nonisomorphism problem for polynomials over Q is in
BP · NP.

Corollary 8 The isomorphism problem for polynomials of degree d over Q
is not NP-hard unless PH = Σp

2.

Our interactive proof system for 1-BPNI was motivated by the one for3-19

GNI. However, it is more general now, in the sense that it can be used to solve
GNI as a special case. Specifically, one can assign a polynomial to a graph
such that nonisomorphic graphs are mapped to nonisomorphic polynomials:
e.g., let G = (V, E) be a graph, where V = {1, . . . , n}. We take one variable
xi for each node i ∈ V . Define

ei(x1, . . . , xn) = x2
i

∏
(i,j)∈E

xj, and

pG(x1, . . . , xn) =
n∑

i=1
ei(x1, . . . , xn)

For graphs G0, G1 we have that G0
∼= G1 ⇐⇒ pG0

∼= pG1 . Therefore, we3-20

again obtain the result about GI from Corollary 8.

4 Extension to Arithmetic Circuits

In this section, we extend the above protocol for branching programs to an4-1

interactive proof to decide the nonisomorphism of two arithmetic circuits
over a large enough field, F. We start with F = Q for an infinite field of
characteristic 0.

Let C0, C1 be two arithmetic circuits with n inputs that are of depth d.4-2

We take the protocol from the previous section and modify it according to
Corollary 3. Let T = {1, . . . , 2n2d} and M = {1, . . . , 22N}, where N = nd.
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V1: The verifier starts by randomly choosing i ∈ {0, 1} and a permutation ϕ
as before, and now 6Nk points r1, . . . , r6Nk ∈ T n, where k = dn log ne+
2, and for each point rl, a number ml ∈ M . Then the verifier computes
yl = pCi

◦ϕ(rl) mod ml, for l = 1, . . . , 6Nk, and sends the set of triples
R = { (rl, yl, ml) | l = 1, . . . , 6Nk } to the prover.

P1: The prover sends j ∈ {0, 1} and a permutation ϕ′ to the verifier.

V2: If i = j, then the verifier accepts. If i 6= j, the verifier checks whether
pCj

◦ ϕ′ matches the set R, that is, whether yl = pCi
◦ ϕ′(rl) mod ml,

for l = 1, . . . , 6Nk. If the test fails, the verifier rejects; otherwise, it
sends ϕ to the prover.

P2: The prover sends a point r′ ∈ T n and m′ ∈ M to the verifier.

V3: Finally, the verifier accepts if and only if pCi
◦ ϕ(r′) 6≡ pCj

◦ ϕ′(r′)
(mod m′).

Combining the argument in the previous section with Corollary 3, the4-3

verifier will accept two isomorphic arithmetic circuits with probability at
most 3/4. Note that the prover in step P2 must prove to the verifier that
two numbers differ; therefore, the computation modulo some number does
not work in favor of the prover in that case. Two nonisomorphic arithmetic
circuits are still accepted with probability one.

The case of infinite fields of characteristic greater than 0 is analogous.4-4

As briefly explained in Section 2.4, the test domain becomes the polynomial
ring GF(q)[x] when the field has characteristic q. Computations are done
modulo randomly chosen polynomials of small degree, and can therefore be
done in polynomial time.

4-5

Theorem 3 The nonisomorphism problem for arithmetic circuits over infi-
nite fields is in BP · NP.

If the arithmetic circuits are over a finite field, say GF(q), where q is4-6

some prime power, we run into the problem that there might not be enough
elements for our set T to make the above protocol work. Instead of GF(q),
we take the extension field GF(qt), where t is the smallest integer such that
qt ≥ 2n2d, so that t = dlogq 2n2de. Then we can set T = GF(qt). By
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Corollary 1, when q > 2d, we have that two polynomials over GF(q) are
equivalent if and only if they are equivalent over any extension field.

The verifier must be able to evaluate a polynomial at a given point in the4-7

extension field. For this, it needs an irreducible polynomial φ(x) ∈ GF(q)[x]
of degree t. The verifier can cycle through all the qt+1 ≤ 2n2dq2 < 2nq3

polynomials in GF(q)[x] of degree t, and check irreducibility in polynomial
time using the Berlekamp algorithm (see [Ber68], chapter 6), and the verifier
will find an irreducible polynomial φ(x) in polynomial time. Then GF(qt) is
isomorphic to GF(q)[x]/φ(x). Therefore, knowing φ(x), the verifier can do
all computation needed in polynomial time, and the protocol can proceed as
in the case of branching programs.

Theorem 4 The nonisomorphism problem for arithmetic circuits of depth d
over a finite field of size more than 2d is in BP · NP.

The lower bound on the field size is crucial: for small fields, the equiva-4-8

lence problem for arithmetic circuits is coNP-complete [IM83].

5 Perfect Zero-Knowledge Interactive Proofs

Goldreich, Micali, and Wigderson [GMW91] show that there are perfect zero-5-1

knowledge interactive proofs for the graph isomorphism problem, GI, and its
complement, GNI. Adapting their ideas, we show the existence of a perfect
zero-knowledge interactive proof for the isomorphism of branching programs
or arithmetic circuits. Fortnow [For89] and Aiello and H̊astad [AH91] have
shown that any set that has a perfect zero-knowledge interactive proof is
in AM ∩ coAM. Thus it follows again from the result in this section that
1-BPI ∈ coAM.

Theorem 5 There is a perfect zero-knowledge interactive proof system for
1-BPI.

Proof of Theorem 5 The IP protocol described below accepts 1-BPI andProof of Theorem 5-1

has the perfect zero-knowledge property. The inputs are two read-once
branching programs B0 and B1, both over n variables. Let T = {1, . . . , 2n}.
The following steps are repeated m times, each time using independent ran-
dom bits.

V1: The verifier randomly picks points r1, . . . , rk ∈ T n, where k = dn log ne+
2, and sends them to the prover.
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P1: The prover randomly chooses a permutation ϕ and sends yl = pB0◦ϕ(rl),
for l = 1, . . . , k, to the verifier.

V2: The verifier randomly picks j ∈ {0, 1} and sends it to the prover.

P2: The prover sends a permutation π to the verifier such that pBj
◦π(rl) =

yl, for l = 1, . . . , k.

V3: Finally, the verifier accepts if and only if this latter condition regarding π
in fact holds.

By arguments similar to those in Section 3, the above protocol constitutesProof of Theorem 5-2

an interactive proof system for 1-BPI: if B0
∼= B1 and the prover behaves as

described in the protocol, then the verifier will always accept. If B0 6∼= B1,
then the verifier will accept with probability at most 3/4 in each round, no
matter what the prover does, and hence, with probability at most (3/4)m

after m rounds.
For the zero-knowledge property, it is easy to see that the specific verifierProof of Theorem 5-3

in the protocol gets no extra information. The communication between P and
V can be produced with equal distribution by the following algorithm MV :
randomly pick j ∈ {0, 1}, r1, . . . , rk ∈ T n, and a permutation ϕ and output
rl and pBj

◦ ϕ(rl), for l = 1, . . . , k, and furthermore, j and ϕ.
By arguments similar to those in [GMW91], one can show that P in factProof of Theorem 5-4

conveys no knowledge to any verifier, even verifiers that deviate from the
above protocol. We give a very short description so that a reader familiar
with [GMW91] can easily fill in the details.

Let V ∗ be an interactive machine. We cannot simply define MV ∗ theProof of Theorem 5-5

same way as for the specific verifier V above, because it has chosen j uni-
formly at random in step V2, and therefore MV could do the same thing.
However, in general, V ∗ can make its choice of j dependent on the points
((r1, y1), . . . , (rk, yk)) that it gets from the prover after the first round. On
the other hand, by only knowing j in advance, MV could produce an isomor-
phism ϕ as above.

The way MV ∗ works is as follows. The MV ∗ algorithm starts by simulatingProof of Theorem 5-6

V ∗ to produce the points r1, . . . , rk ∈ T n. Then MV ∗ randomly picks j ∈
{0, 1}, and a permutation ϕ. This is similar to MV above, except that j is now
considered only as a candidate for the value that will actually be produced
by V ∗. Next, MV ∗ simulates V ∗ when V ∗ gets the points (r1, y1), . . . , (rk, yk)
from the prover, thereby obtaining the value jV ∗ that V ∗ will send to the
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prover after the first round. Then, in case that j = jV ∗ , MV ∗ is “lucky,”
and can make the same output as MV above, namely, rl and pBj

◦ ϕ(rl), for
l = 1, . . . , k, and j and ϕ. If j 6= jV ∗ , then ϕ is the wrong permutation, and
MV ∗ cannot make a legal output. Instead, MV ∗ repeats this whole process
until it gets lucky, i.e., until j = jV ∗ , and then makes an output.

The probability that MV ∗ is lucky is 1/2. Therefore we expect MV ∗ toProof of Theorem 5-7

repeat this process twice; hence, MV ∗ runs in expected polynomial time.
Finally, the output distribution of MV ∗ is identical to that of the conver-Proof of Theorem 5-8

sation of P and V ∗. Intuitively this is clear, because roughly speaking, MV ∗

simply waits until it can do the same trick as MV from above. Therefore, the
output of MV ∗ might be delayed, but has the same distribution. There are
some subtleties that one must take care of, but a formal argument can then
easily be adapted from [GMW91]. Note also that in fact MV ∗ must produce
the conversation of several rounds of the protocol.

Proof of Theorem 5 2

Clearly, Theorem 5 extends to the isomorphism problem for arithmetic5-2

circuits.
The interactive proof for 1-BPNI presented in Section 3 might not be5-3

zero knowledge, because in the first step the verifier can present points to
the prover that are obtained in a different way than by random guesses, and
the answers from the prover later on might give some extra information to
the verifier. For the graph-nonisomorphism problem GNI, this problem is
solved by letting the verifier “prove to the prover” that it has a permutation
in hand that was used to produce the graph sent to the prover [GMW91].
However, there are some problems in adapting this method to 1-BPNI that
arise from the way we describe polynomials in the interactive proofs, namely,
as a set of points. We leave it as an open problem to show that 1-BPNI has
a zero-knowledge interactive proof.
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Oracles and queries that are sufficient for exact learning. Journal
of Computer and System Sciences, 52:421–433, 1996.

[BCW80] M. Blum, A. Chandra, and M. Wegman. Equivalence of free
Boolean graphs can be decided probabilistically in polynomial
time. Information Processing Letters, 10:80–82, 1980.
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