
Chicago Journal of Theoretical
Computer Science

The MIT Press

Volume 1998, Article 2
16 March 1998

ISSN 1073–0486. MIT Press Journals, Five Cambridge Center, Cambridge,
MA 02142-1493 USA; (617)253-2889; journals-orders@mit.edu, journals-info@mit.edu.
Published one article at a time in LATEX source form on the Internet. Pag-
ination varies from copy to copy. For more information and other articles
see:

• http://mitpress.mit.edu/CJTCS/

• http://www.cs.uchicago.edu/publications/cjtcs/

• ftp://mitpress.mit.edu/pub/CJTCS

• ftp://cs.uchicago.edu/pub/publications/cjtcs

Kupferman and Vardi Verification of Systems (Info)

The Chicago Journal of Theoretical Computer Science is abstracted or in-
dexed in Research Alert,R©SciSearch, R©Current ContentsR©/Engineering Com-
puting & Technology, and CompuMath Citation Index. R©

c©1998 The Massachusetts Institute of Technology. Subscribers are licensed
to use journal articles in a variety of ways, limited only as required to insure
fair attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

The Chicago Journal of Theoretical Computer Science is a peer-reviewed
scholarly journal in theoretical computer science. The journal is committed
to providing a forum for significant results on theoretical aspects of all topics
in computer science.

Editor in chief: Janos Simon

Consulting editors: Joseph Halpern, Stuart A. Kurtz, Raimund Seidel

Editors: Martin Abadi Greg Frederickson John Mitchell
Pankaj Agarwal Andrew Goldberg Ketan Mulmuley
Eric Allender Georg Gottlob Gil Neiger
Tetsuo Asano Vassos Hadzilacos David Peleg
Laszló Babai Juris Hartmanis Andrew Pitts
Eric Bach Maurice Herlihy James Royer
Stephen Brookes Ted Herman Alan Selman
Jin-Yi Cai Stephen Homer Nir Shavit
Anne Condon Neil Immerman Eva Tardos
Cynthia Dwork Howard Karloff Sam Toueg
David Eppstein Philip Klein Moshe Vardi
Ronald Fagin Phokion Kolaitis Jennifer Welch
Lance Fortnow Stephen Mahaney Pierre Wolper
Steven Fortune Michael Merritt

Managing editor: Michael J. O’Donnell

Electronic mail: chicago-journal@cs.uchicago.edu

[ii]

Chicago Journal of Theoretical Computer Science 1998-2

Verification of Fair Transition Systems

Orna Kupferman Moshe Y. Vardi

16 March, 1998

Abstract

In program verification, we check that an implementation meetsAbstract-1

its specification. Both the specification and the implementation de-
scribe the possible behaviors of the program, although at different
levels of abstraction. We distinguish between two approaches to im-
plementation of specifications. The first approach is trace-based im-
plementation, where we require every computation of the implemen-
tation to correlate to some computation of the specification. The
second approach is tree-based implementation, where we require ev-
ery computation tree embodied in the implementation to correlate
to some computation tree embodied in the specification. The two
approaches to implementation are strongly related to the linear-time
versus branching-time dichotomy in temporal logic.

In this work, we examine the trace-based and the tree-based ap-Abstract-2

proaches from a complexity-theoretic point of view. We consider and
compare the complexity of verification of fair transition systems, mod-
eling both the implementation and the specification in the two ap-
proaches. We consider unconditional, weak, and strong fairnesses.
For the trace-based approach, the corresponding problem is fair con-
tainment. For the tree-based approach, the corresponding problem
is fair simulation. We show that while both problems are PSPACE-
complete, their complexities in terms of the size of the implementation
do not coincide, and the trace-based approach is easier. As the im-
plementation is normally much bigger than the specification, we see
this as an advantage of the trace-based approach. Our results are at
variance with the known results for the case of transition systems with
no fairness, where no approach is evidently advantageous.

1

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §1

1 Introduction

In program verification, we check that an implementation meets its specifi-1-1

cation. Both the specification and the implementation describe the possible
behaviors of the program, but the implementation is more concrete than the
specification, or, equivalently, the specification is more abstract than the im-
plementation [AL91]. This basic notion of verification suggests a top-down
method for design development. Starting with a highly abstract specifica-
tion, we can construct a sequence of “behavior descriptions.” Each descrip-
tion refers to its predecessor as a specification, so it is less abstract than
its predecessor. The last description contains no abstractions, and consti-
tutes the implementation. Hence the name hierarchical refinement for this
methodology [LS84, LT87, Kur94].

We distinguish between two approaches to implementation of specifica-1-2

tions. The first approach is trace-based implementation, where we require
every computation of the implementation to correlate to some computation
of the specification. The second approach is tree-based implementation, where
we require every computation tree embodied in the implementation to cor-
relate to some computation tree embodied in the specification. The exact
notion of correct implementation then depends on how we interpret correla-
tion. We can, for example, interpret correlation as identity. Then, a correct
trace-based implementation is one in which every computation is also a com-
putation of the specification, and a correct tree-based implementation is one
in which every embodied computation tree is also embodied in the specifi-
cation. Numerous interpretations of correlation are suggested and studied
in the literature [Hen85, Mil89, AL91]. Here we consider a simple definition
of correlation, and interpret it as equivalence with respect to the variables
joint to the implementation and the specification, as the implementation is
typically defined over a wider set of variables (reflecting the fact that it is
more concrete than the specification).

The tree-based approach is stronger in the following sense. If I is a cor-1-3

rect tree-based implementation of the specification S, then I is also a correct
trace-based implementation of S. As shown by Milner [Mil80], the opposite
situation is not true. The two approaches to implementation are strongly
related to the linear-time versus branching-time dichotomy in temporal logic
[Pnu85]. The temporal-logic analogy to the strength of the tree-based ap-
proach is the expressiveness superiority of ∀CTL?, the universal fragment of
CTL?, over LTL [CD88]. Indeed, while a correct trace-based implementation

2

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §1

is guaranteed to satisfy all the LTL formulas satisfied in the specification,
a correct tree-based implementation is guaranteed to satisfy all the ∀CTL?

formulas satisfied in the specification [GL94].
In this work, we examine the traced-based and tree-based approaches1-4

from a complexity-theoretic point of view. More precisely, we consider and
compare the complexity of the problem of determining whether I is a correct
trace-based implementation of S, and the problem of determining whether I
is a correct tree-based implementation of S. The different levels of abstrac-
tion in the implementation and the specification are reflected in their sizes.
The implementation is typically much larger than the specification, and it is
the implementation’s size that is the computational bottleneck. Therefore, of
particular interest to us is the implementation complexity of these problems;
i.e., their complexity in terms of I, assuming S is fixed.1

We model specifications and implementations by transition systems1-5

[Kel76]. The systems are defined over the sets API and APS of atomic propo-
sitions used in the implementation and specification, respectively. Thus, the
alphabets of the systems are 2API and 2APS . Recall that usually the imple-
mentation has more variables than the specification; hence, API ⊇ APS . We
therefore interpret correlation as equivalence with respect to APS . In other
words, associating behaviors of the implementation with those of the spec-
ification, we first project the behaviors onto APS . Within this framework,
correct trace-based implementation corresponds to containment, and correct
tree-based implementation corresponds to simulation [Mil71].

We start by reviewing and examining transition systems with no fair-1-6

ness conditions. It is well known that simulation can be checked in polyno-
mial time [Mil80, BGS92, AV95, HHK95], whereas the containment problem
is in PSPACE [SVW87]. We show that the latter problem is PSPACE-
hard; thus the tree-based approach is easier than the trace-based approach.
Yet, once we turn to consider the implementation complexity of simulation
and containment, the trace-based approach is easier than the tree-based ap-
proach. Indeed, we show that the implementation complexity of simulation
is PTIME-complete, which is most likely harder than the NLOGSPACE-
complete bound for the implementation complexity of containment. For

1The distinction between the relative sizes of the implementation and the specification
is less significant in the context of hierarchical refinement. There, each internal behavior
description is both an implementation (of some step i in the chain of successive refinements)
and a specification (of step i + 1 in the chain). Thus, the distinction is crucial only in the
last refinement step, which handles the final, and hence largest, implementation.

3

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §1

these reasons, when we consider transition systems with no fairness, there
is no clear advantageous approach. This is reminiscent of the computa-
tional relations of branching-time model checking and linear-time model
checking: while model checking is easier for the branching paradigm, the
implementation complexity of model checking in the two paradigms coincide
[LP85, CES86, VW86, BVW94].

Often, we want our implementations and specifications to describe be-1-7

haviors that satisfy both liveness and safety properties. Then, transition
systems with no fairness condition are too weak, and we need the framework
of fair transition systems . We consider unconditional, weak, and strong
fairness (also known as impartiality, justice, and compassion, respectively)
[LPS81, Eme90, MP92]. Within this framework, correct trace-based imple-
mentation corresponds to fair containment, and correct tree-based imple-
mentation corresponds to fair simulation [BBLS92, ASB+94, GL94]. Hence,
it is the complexity of these problems that should be examined when we
compare the trace-based and the tree-based approaches.

We present a uniform method and a simple algorithm for solving the1-8

fair-containment problem for all three types of fairness conditions. Unlike
[CDK93], we consider the case where both the specification and the imple-
mentation are nondeterministic, as is appropriate in a hierarchical refinement
framework. We prove that the problem is PSPACE-complete for all three
types. For the case where the implementation uses the unconditional or
weak fairness conditions, our nondeterministic algorithm requires space log-
arithmic in the size of the implementation (regardless of the type of fairness
condition used in the specification). For the case where the implementa-
tion uses the strong fairness condition, we suggest an alternative algorithm
that runs in time polynomial in the size of the implementation. We show
that these algorithms are optimal; the implementation complexity of fair
containment is NLOGSPACE-complete for implementations that use the un-
conditional or weak fairness conditions [VW94] and is PTIME-complete for
implementations that use the strong fairness condition. To prove the latter,
we show that the nonemptiness problem for fair transition systems with a
strong fairness condition is PTIME-hard.

We also present a uniform method and a simple algorithm for solving1-9

the fair-simulation problem for the three types of fairness conditions. Our
algorithm uses the fair-containment algorithm as a subroutine. We prove
that the problem is PSPACE-complete for all three types. Like Milner’s al-
gorithm for checking simulation [Mil90], our algorithm can be implemented

4

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §2.1

as a calculation of a fixed-point expression. The running time of our algo-
rithm is polynomial in the size of the implementation. We show that this is
optimal; thus, the implementation complexity of fair simulation is PTIME-
complete for all types of fairness conditions. In fact, in proving the latter,
we prove that the implementation complexity of simulation (without fairness
conditions) is PTIME-hard as well.

Our results (summarized in Table 1) show that when we model the speci-1-10

fication and the implementation by fair transition systems, or we consider the
implementation complexity of verification, the computational advantage of
the tree-based approach disappears. Furthermore, when we consider the im-
plementation complexity, checking implementations that use unconditional
or weak fairness conditions is easier in the trace-based approach.

2 Preliminaries

2.1 Fair Transition Systems

A fair transition system (transition system, for short) S = 〈Σ, W, R, W0, L, α〉2.1-1

consists of an alphabet Σ, a finite set W of states, a total transition relation
R ⊆ W × W (i.e., for every w ∈ W there exists w′ ∈ W such that R(w, w′)),
a set W0 of initial states, a labeling function L : W → Σ, and a fairness
condition α. We will define three types of fairness conditions shortly. A
computation of S is a sequence π = w0, w1, w2, . . . of states such that for
every i ≥ 0, we have R(wi, wi+1). For an alphabet Σ, we use Σ∗ and Σω to
denote the sets of all finite and infinite words over Σ, respectively. For two
words ρ1 ∈ Σ∗ and ρ2 ∈ Σ∗ ∪ Σω, we use ρ1 · ρ2 to denote the concatenation
of ρ1 and ρ2. Each computation π = w0, w1, w2, . . . induces the word L(π) =
L(w0) · L(w1) · L(w2) . . . ∈ Σω.

To determine whether a computation is fair, we refer to the set Inf (π) of2.1-2

states that π visits infinitely often. Formally,

Inf (π) = {w ∈ W : for infinitely many i ≥ 0, we have wi = w}
The way we refer to Inf (π) depends upon the fairness condition of S. Several
types of fairness conditions are studied in the literature. Here we consider
three:

• Unconditional fairness (or impartiality), where α ⊆ W , and π is fair if
and only if Inf (π) ∩ α 6= ∅.

5

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §2.1

• Weak fairness (or justice), where α ⊆ 2W × 2W , and π is fair if and
only if for every pair 〈B, G〉 ∈ α, we have that Inf (π) ∩ (W \ B) = ∅
implies Inf (π) ∩ G 6= ∅.

• Strong fairness (or fairness), where α ⊆ 2W × 2W , and π is fair if and
only if for every pair 〈B, G〉 ∈ α, we have that Inf (π) ∩ B 6= ∅ implies
Inf (r) ∩ G 6= ∅.

In addition, we consider nonfair transition systems; i.e., transition sys-2.1-3

tems in which all the computations are fair.
It is easy to see that fair transition systems are essentially notational2.1-4

variants of automata on infinite words [Tho90]. In particular, the uncondi-
tional and the strong fairness conditions correspond to the Büchi and Streett
acceptance conditions. This correspondence motivates our noncanonical def-
inition of fairness, where the unconditional fairness condition consists of a
single constraint, whereas the weak and strong fairness conditions consist of
a conjunction of constraints. In the sequel, we use results from the theory of
Büchi and Streett automata in the context of fair transition systems.

Defining the unconditional fairness condition as a conjunction of con-2.1-5

straints (that is, having α ⊆ 2W) corresponds to the generalized Büchi condi-
tion from automata theory. Note that such generalized unconditional fairness
conditions are very similar to weak fairness conditions; in fact, they can be
viewed as a special case of weak fairness conditions, with B = W in all pairs.
Moreover, as we state formally in Lemma 1, weak fairness conditions can be
easily translated to generalized unconditional fairness conditions. Indeed, a
pair 〈B, G〉 in a weak fairness condition is equivalent to a set (W \ B) ∪ G
in a generalized unconditional fairness condition.

For a state w, a w-computation is a computation w0, w1, w2, . . . with2.1-6

w0 = w. We use T (Sw) to denote the set of all traces σ0 · σ1 . . . ∈ Σω for
which there exists a fair w-computation w0, w1, . . . in S with L(wi) = σi for
all i ≥ 0. The trace set T (S) of S is then defined as

⋃
w∈W0 T (Sw). Thus, each

transition system defines a subset of Σω. We say that a transition system
S is empty if and only if T (S) = ∅; i.e., S has no fair computation. We
sometimes say that S accepts a trace ρ, meaning that ρ ∈ T (S). Note that
for a nonfair transition system S, the set T (S) contains all traces ρ ∈ Σω for
which there exists a computation π with L(π) = ρ.

The size of a transition system and its fairness condition determine the2.1-7

complexity of solving questions about it. We define classes of transition

6

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §2.2.1

systems according to these two characteristics. We use U , W , and S to dis-
tinguish between the unconditional, weak, and strong fairness conditions,
respectively. We measure the size of a transition system by the number of
its states (the number of edges is at most quadratic in the number of states)
and, in the case of weak and strong fairness, also by the number of pairs
in its fairness condition. For example, the set of unconditionally fair tran-
sition systems with n states is denoted U(n). We also use a line over the
transition system to denote the complementary transition system (one that
accepts the complementary trace set). For example, the set of transition
systems that complements strongly fair transition systems with n states and
m pairs is denoted by S(n, m). By [Saf88, Saf92], every fair transition sys-
tem indeed has a complementary transition system. We use → to denote a
possible translation (that preserves the trace sets of the systems) between
various types of transition systems. For example, W(n, m) → U(nm) means
that each weakly fair transition system S with n states and m pairs can
be translated to an unconditionally fair transition system S ′ with nm states
such that T (S) = T (S ′).

2.2 Trace-Based and Tree-Based Implementations

In this section, we formalize what it means for an implementation S to cor-2.2-1

rectly implement a specification S ′, in both the trace-based and the tree-
based approaches. Recall that S and S ′ are given as fair transition systems
over the alphabets 2AP and 2AP ′ , respectively, with AP ⊇ AP ′. For techni-
cal convenience, we assume that AP = AP ′; thus, the implementation and
the specification are defined over the same alphabet. By taking, for each
σ ∈ 2AP , the letter σ ∩ AP ′ instead of the letter σ, all of our algorithms and
results are also valid for the case AP ⊃ AP ′.

Recall that nonfair transition systems are of special interest. The prob-2.2-2

lems that formalize correct trace-based and tree-based implementations in
this framework are containment and simulation. Once we add fairness
to the systems, the corresponding problems are fair containment and fair
simulation. Below we define the four problems. All problems are de-
fined with respect to two transition systems: S = 〈Σ, W, R, W0, L, α〉, and
S ′ = 〈Σ, W ′, R′, W ′

0, L
′, α′〉.

7

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §2.2.3

2.2.1 Containment and Fair Containment

The fair-containment problem of S and S ′ is to determine whether T (S) ⊆2.2.1-1

T (S ′); that is, whether every trace accepted by S is also accepted by S ′.
When S and S ′ are nonfair, we call the problem containment.

While containment and fair containment refer only to the set of computa-2.2.1-2

tions of S and S ′, simulation and fair simulation also refer to the branching
structure of the transition systems.

2.2.2 Simulation

Let w and w′ be states in W and W ′, respectively. A relation H ⊆ W × W ′2.2.2-1

is a simulation relation from 〈S, w〉 to 〈S ′, w′〉 if and only if the following
conditions hold [Mil71]:

1. H(w, w′).

2. For all t and t′ with H(t, t′), we have L(t) = L(t′).

3. For all t and t′ with H(t, t′) and for all s ∈ W such that R(t, s), there
exists s′ ∈ W ′ such that R′(t′, s′) and H(s, s′).

A simulation relation H is a simulation from S to S ′ if and only if for2.2.2-2

every w ∈ W0 there exists w′ ∈ W ′
0 such that H(w, w′). If there exists a

simulation from S to S ′, we say that S simulates S ′, and we write S ≤ S ′.
Intuitively, this means that the transition system S ′ has more behaviors than
the transition system S. In fact, every ∀CTL? formula that is satisfied in S ′

is satisfied also in S [BCG88]. Given S and S ′, the simulation problem is to
determine whether S ≤ S ′.

We also mention here the bisimulation problem [Mil71]. Two transition2.2.2-3

systems are bisimilar if and only if they have exactly the same behavior.
Formally, a relation H ⊆ W × W ′ from 〈S, w〉 to 〈S ′, w′〉 is a bisimulation if,
in addition to conditions 1–3 above, the following condition also holds:

4. For all t and t′ with H(t, t′) and for all s′ ∈ W ′ such that R′(t′, s′),
there exists s ∈ W such that R(t, s) and H(s, s′).

2.2.3 Fair Simulation

Let H ⊆ W × W ′ be a relation over the states of S and S ′. It is convenient2.2.3-1

to extend H to also relate infinite computations of S and S ′. For two compu-
tations π = w0, w1, . . . in S, and π′ = w′

0, w
′
1, . . . in S ′, we say that H(π, π′)

8

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §2.3

holds if and only if H(wi, w
′
i) holds for all i ≥ 0. For a pair 〈w, w′〉 ∈ W ×W ′,

we say that 〈w, w′〉 is good in H if and only if for every fair w-computation
π in S, there exists a fair w′-computation π′ in S ′, such that H(π, π′).

Let w and w′ be states in W and W ′, respectively. A relation H ⊆ W×W ′2.2.3-2

is a fair-simulation relation from 〈S, w〉 to 〈S ′, w′〉 if and only if the following
conditions hold [GL94]:

1. H(w, w′).

2. For all t and t′ with H(t, t′), we have L(t) = L(t′).

3. For all t and t′ with H(t, t′), the pair 〈t, t′〉 is good in H.

A fair-simulation relation H is a fair simulation from S to S ′ if and only2.2.3-3

if for every w ∈ W0 there exists w′ ∈ W ′
0 such that H(w, w′). If there exists

a fair simulation from S to S ′, we say that S fair simulates S ′, and we write
S ≤ S ′. Intuitively, this means that the transition system S ′ has more fair
behaviors than the transition system S. In fact, every fair-∀CTL? formula
(that is, every ∀CTL? formula with path quantification ranging only over fair
computations [EL87]) that is satisfied in S ′ is also satisfied in S [GL94]. The
fair-simulation problem is, given S and S ′, to determine whether S ≤ S ′.
Note that when they relate nonfair transition systems, fair simulation and
simulation coincide.

We also mention here the fair-bisimulation problem [GL94]. Two tran-2.2.3-4

sition systems are bisimilar if and only if they have exactly the same fair
behavior. Formally, a relation H ⊆ W × W ′ from 〈S, w〉 to 〈S ′, w′〉 is a fair
bisimulation if conditions 1–3 hold with the following symmetric definition
of when a pair is good in H. In fair bisimulation, a pair 〈w, w′〉 ∈ W ×W ′ is
good in H if and only if for every fair w-computation π in S, there exists a fair
w′-computation π′ in S ′ such that H(π, π′), and for every fair w′-computation
π′ in S ′, there exists a fair w-computation π in S such that H(π, π′).

It is easy to see that simulation implies containment, and that fair simu-2.2.3-5

lation implies fair containment; that is, if S ≤ S ′, then T (S) ⊆ T (S ′). The
opposite, however, is not true. Consider the two transition systems S and S ′

presented in Figure 1. Note that while the system S has two initial states,
one labeled by a and one labeled by b, the system S ′ has three initial states,
two labeled by a and one labeled by b. The trace sets of both transition
systems are (a + b)ω. As such, T (S) ⊆ T (S ′), but still, S does not simulate
S ′. Indeed, no initial state of S ′ can be paired, by any H, to the initial state
labeled a of S.

9

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.1

a

S′ :S :

ba

aab

Figure 1: T (S) ⊆ T (S ′) but S 6≤ S ′

2.3 Complexity Measures

In the rest of this paper, we examine the traced-based and the tree-based2.3-1

approaches from a complexity-theoretic point of view. We consider and com-
pare the complexity of the four problems. The different levels of abstraction
in the implementation and the specification are reflected in their sizes. The
implementation is typically much larger than the specification, and it is the
implementation’s size that is the computational bottleneck. Therefore, of
particular interest to us is the implementation complexity of these problems;
i.e., the complexity of checking whether T (S) ⊆ T (S ′) and S ≤ S ′, in terms
of the size of S, assuming S ′ is fixed.

We refer to three complexity classes: PSPACE, PTIME, and2.3-2

NLOGSPACE, briefly described as follows (for a full definition, see [GJ79]).
We say that a problem is in PSPACE (PTIME) if there exists a determin-
istic algorithm for solving the problem such that the working space (time,
respectively) required for executing the algorithm is polynomial in the size of
its input. The problem is in NLOGSPACE if there exists a nondeterministic
algorithm for solving the problem such that the working space required for
the algorithm is logarithmic in the size of its input. A program P is complete
for a complexity class C if and only if P is in C and is also C-hard.

Some of the results we study, mainly those that we consider nonfair tran-2.3-3

sition systems, are known; therefore we only review them.

3 Verification of Nonfair Transition Systems

In this section, we study the complexity of the containment and simulation3-1

problems. We show that while the containment problem is harder, its imple-
mentation complexity is lower than that of the simulation problem.

10

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.1

3.1 The Containment Problem

Theorem 1 The containment problem is PSPACE-complete.

Proof of Theorem 1 The upper bound follows from known PSPACEProof of Theorem 1-1

bound to the fair-containment problem for unconditionally fair transition
systems ([SVW87], see also Theorem 5).

We can regard an unconditionally fair system S = 〈Σ, W, R, W0, L, α〉,Proof of Theorem 1-2

with α ⊆ W , as a finite-acceptance transition system. The traces of a finite-
acceptance transition system are finite words over the alphabet Σ. A finite
computation π = w0, . . . , wk is “fair” in S (that is, L(π) is accepted) if and
only if wk ∈ α. We call the states in α final states. A finite-acceptance
transition system S is universal if and only if T (S) = Σ∗. In [MS72], Mayer
and Stockmayer prove a PSPACE lower bound for the problem of determining
whether a finite-acceptance transition system S is universal (the framework
in [MS72] is of regular expressions, yet regular expressions can be linearly
translated to finite-acceptance transition systems).

We reduce the universality problem for finite-acceptance transition sys-Proof of Theorem 1-3

tems to the containment problem. Consider a finite-acceptance transition
system S = 〈Σ, W, R, W0, L, α〉. Let

S ′ = 〈Σ ∪ {#}, W ∪ {w#}, R ∪ R#, W0, L
′, W ∪ {w#}〉

be a nonfair transition system, where:

• For every w ∈ (α ∪ {w#}), we have R#(w, w#). Thus S ′ has the
transitions of S augmented with transitions from all the final states to
the state w#, which has a self loop.

• For every state w ∈ W , we have L′(w) = L(w). In addition, L′(w#) =
{#}.

We prove that Σ∗ ⊆ T (S) if and only if Σω∪(Σ∗ ·{#}ω) ⊆ T (S ′). AssumeProof of Theorem 1-4

first that Σω ∪ (Σ∗ · {#}ω) ⊆ T (S ′), and assume, by way of contradiction,
that there exists ρ ∈ Σ∗ such that ρ 6∈ T (S). Let π = w0, w1, . . . be an
accepting computation of S ′ on ρ · #ω. By the definition of L′, we have
that π ∈ W ∗ · wω

#. Let k be such that wk 6= w# and wk+1 = w#. As
R#(wk, wk+1), it must be that wk ∈ α. In addition, for all 0 ≤ i < k − 1, we
have R(wi, wi+1). Hence w0, . . . , wk is an accepting computation of S on ρ,
and we reach a contradiction.

11

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.2

Assume now that Σ∗ ⊆ T (S). Consider a trace ρ ∈ Σ∗. Let w0, w1, . . . , wkProof of Theorem 1-5

be an accepting computation of S on ρ. Clearly, w0, w1, . . . , wk, w
ω
is an

accepting computation of S ′ on ρ · {#}ω. Hence, Σ∗ · {#}ω ⊆ T (S ′). Next,
consider a trace ρ = σ0, σ1, . . . ∈ Σω. We define a tree that embodies all the
possible runs of S on finite prefixes of ρ. The tree has a root labeled ε. The
nodes of level 1 (that is, nodes that have a path of length 1 from the root)
are states w0 in W0 for which L(w0) = σ0. For l ≥ 0, a node w of level i
has as successors nodes w′ for which R(w, w′) and L(w′) = σl+1. Because
Σ∗ ⊆ T (S), the tree embodies accepting runs for all the (infinitely many)
finite prefixes of ρ, and is therefore infinite. Hence, by König’s lemma, we
can pick a sequence π = ε, w0, w1, . . . such that w0 ∈ W0, and for all j ≥ 0, we
have that L(wj) = σj and R(wj, wj+1). As such, π is an accepting run of S ′ on
ρ. As we can easily construct a nonfair transition system for Σω ∪(Σ∗ ·{#}ω),
we are done.

Proof of Theorem 1 2

Theorem 2 The implementation complexity of the containment problem is
NLOGSPACE-complete.

Proof of Theorem 2 In Theorem 6, we prove an NLOGSPACE up-
per bound for the implementation complexity of the more general fair-
containment problem for unconditionally fair transition systems. The lower
bound follows easily by a reduction from the nonreachability problem in a
directed graph, proved to be NLOGSPACE-complete in [Jon75].2 Given a
directed graph G with two designated nodes s and t, we can view G as a
nonfair transition system SG over Σ = {σ, s, t} in which all states are initial
states, all states except s and t are labeled σ, and the states s and t are
labeled with s and t, respectively. It is easy to see that the node t is not
reachable from s if and only if T (G) ⊆ {σ, t}∗ · {σ, s}ω ∪ {σ, t}ω. Since we
can specify the expression in the right with a fixed nonfair transition system,
we are done.

Proof of Theorem 2 2

2The proof in [Jon75] is for the reachability problem. Yet, for every problem P , we
have that P is NLOGSPACE-complete if and only if P is co-NLOGSPACE-complete (see
[Imm88, Sze88] for NLOGSPACE = co-NLOGSPACE; the argument for the completeness
is easy).

12

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.2

3.2 The Simulation Problem

Theorem 3 The simulation problem is PTIME-complete.

Proof of Theorem 3 The upper bound is given in [Mil80]. The lower
bound follows from the reduction in [BGS92] (the reduction there proves
PTIME-hardness for bisimulation, but it is valid also for simulation). An
additional proof of the lower bound is given in Theorem 4.

Proof of Theorem 3 2

Theorem 4 The implementation complexity of the simulation problem is
PTIME-complete.

Proof of Theorem 4 Membership in PTIME follows from Theorem 3.Proof of Theorem 4-1

We prove hardness in PTIME by reducing the NAND circuit value prob-Proof of Theorem 4-2

lem (NANDCV), proved to be PTIME-complete in [Gol77, GHR95], to the
problem of determining whether a transition system S simulates a fixed tran-
sition system S ′, both with no fairness. In the NANDCV problem, we are
given a Boolean circuit β constructed solely of NAND gates of fanout 2, and
a vector 〈x1, . . . , xn〉 of Boolean input values. The problem is to determine
whether the output of β on 〈x1, . . . , xn〉 is 1. Formally, we denote a Boolean
circuit of NAND gates by a tuple β = 〈G, Gin, gout, Tl, Tr〉, where G is the
set of internal gates, Gin is the set of input gates (identified as g1, . . . , gn),
gout ∈ G ∪ Gin is the output gate, Tl : G → G ∪ Gin maps each internal gate
to its left input, and Tr : G → G ∪ Gin maps each internal gate to its right
input. Note that since there are no circular dependencies in β, the graph
induced by Tl and Tr is acyclic.

The idea of the reduction is as follows. We define a fixed transition systemProof of Theorem 4-3

S ′ that embodies all the NAND circuits β and input vectors ~x for which the
value of β on ~x is 1. Then, given a circuit β and an input vector ~x, we
translate them to a transition system S such that S ≤ S ′ if and only if the
value of β on ~x is 1.

The transition system S ′ (see Figure 2) has 12 states. Eight states corre-Proof of Theorem 4-4

spond to internal gates. Each of these states is an entry in the truth table of
the operator NAND, attributed with a direction, either ↙ or ↘. Thus, the
“internal states” of S ′ are 〈001 ↙〉, 〈011 ↙〉, 〈101 ↙〉, 〈110 ↙〉, 〈001 ↘〉,
〈011 ↘〉, 〈101 ↘〉, and 〈110 ↘〉. Four more states correspond to the input
gates of the circuit. Each of these states is a Boolean value, attributed with a

13

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.2

101↙

001↙110↙

001↘

011↘ 101↘

110↘

011↙

1↙

0↘1↘

0↙

Figure 2: A fixed transition system that embodies all NAND circuits

direction; thus the “input states” are 〈0 ↙〉, 〈1 ↙〉, 〈0 ↘〉, and 〈1 ↘〉. The
intuition is that an internal state 〈l, r, val, d〉 corresponds to a NAND gate
that has the value l in its left input, has the value r in its right input, and
whose output val can be only a d-input of other gates. Similarly, an input
state 〈val, d〉 corresponds to an input gate with output val that can only be
a d input of other gates.

Accordingly, the transitions from an internal state 〈l, r, val, d〉 corre-Proof of Theorem 4-5

spond to the possible ways of having l and r as right and left inputs, re-
spectively. Thus, we have transitions from this state to all (internal or
input) states with either val = l and d =↙ or val = r and d =↘.
For example, the internal state 〈101 ↙〉 has transitions to the states
〈001 ↙〉, 〈011 ↙〉, 〈101 ↙〉, 〈110 ↘〉, 〈1 ↙〉, and 〈0 ↘〉. It has transitions
from all states 〈l, r, val, d〉 with l = 0. In addition, the input states have self
loops.

We label an internal state by either ↙ or ↘, according to its directionalProof of Theorem 4-6

element. For example, the node 〈101 ↙〉 is labeled {↙}. We label an input
state by both its value and direction. For example, the node 〈1 ↘〉 is labeled
{1, ↘}. We define the initial states of S ′ to be those with val = 1, and we
impose no fairness condition. Clearly, the size of S ′ is fixed.

14

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §3.2

Given a circuit β = 〈G, Gin, gout, Tl, Tr〉 and an input vector ~x, theProof of Theorem 4-7

transition system S is simply β, with attributions of directions, and la-
beling of input gates according to ~x. More precisely, we duplicate all
gates and inputs of β so that the output of each gate is either always a
left input of other gates, in which case we label it with ↙, or always a
right input of other gates, in which case we label it with ↘. In addi-
tion, we add self loops to the input gates and label them with their val-
ues. As the set of initial states, we take both attributions of gout. Formally,
S = 〈{↙,↘} ∪ {0, 1} × {↙,↘}, (G ∪ Gin) × {↙,↘}, T, {gout} × {↙,↘}, L〉, where:

• T (〈g, d〉, 〈g′, d′〉) if and only if one of the following holds:

1. g ∈ G, d′ = l, and Tl(g) = g′,

2. g ∈ G, d′ = r, and Tr(g) = g′, or

3. g ∈ Gin, g = g′, and d = d′.

• For g ∈ G, we have L(〈g, d〉) = d. For gi ∈ Gin, we have L(〈gi, d〉) =
〈xi, d〉.

We define the depth of a gate as the length of the longest path from it to anProof of Theorem 4-8

input gate. Note that the only cycles in S are the self loops in the input gates,
and the path cannot use them. Thus, for g ∈ Gin, we have depth(g) = 0,
and for g ∈ G, we have depth(g) = 1 + max{depth(Tl(g)), depth(Tr(g))}.

We first prove that for a simulation relation H from S to S ′ and for everyProof of Theorem 4-9

pair 〈〈g, d〉, 〈val, d′〉〉 or 〈〈g, d〉, 〈l, r, val, d′〉〉 in H, the output of the gate g
on the vector ~x is val. The proof proceeds by induction on depth(g). If
depth(g) = 0, then g ∈ Gin. Let g = gi. By the definition of L′, the state
〈gi, d〉 is labeled with xi and can therefore be related by H only to states
〈val, d′〉 for which val = xi. Assume that the claim holds for all gates of
depth at most i. Let g be such that depth(g) = i + 1. Then, g ∈ G, and
〈g, d〉 is mapped to some internal state t = 〈l, r, v, d′〉. By the definition of
simulation, for every successor 〈g′, d′〉 of 〈g, d〉 there exists a successor t′ of t
such that H(g′, t′). We know that 〈g, d〉 has two successors, 〈Tl(g), ↙〉 and
〈Tr(g), ↘〉. By the definition of S ′, all the successors of t that are labeled
with ↙ have value l. Therefore, by the induction hypothesis, the output
of Tl(g) is l. Similarly, the output of Tr(g) is r. Thus, the output of g is
NAND(l, r). By the definition of S ′, we also have v = NAND(l, r), and we
are done.

15

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1

We now prove that the output of β on ~x is 1 if and only if S simulatesProof of Theorem 4-10

S ′. Assume first that S simulates S ′. Let H be the simulation relation from
S to S ′. When we take as the initial set of S ′ the states with val = 1, both
states 〈gout, ↙〉 and 〈gout, ↘〉 of S are related by H to states with val = 1.
Hence, by the above claim, the output of β on ~x is 1.

Assume that the output of β on ~x is 1. Consider a relation H from theProof of Theorem 4-10

states of S to the states of S ′ in which H(〈g, d〉, 〈l, r, val, d′〉) for an internal
gate g if and only if l is the value of the left input to g, r is the value of the
right input to g, val is the output of g on ~x, and d = d′; and H(〈g, d〉, 〈val, d′〉)
for an input gate g if and only if val is the output of g on ~x and d = d′. We
show that H is a simulation relation from S to S ′. Consider a state w1

in S with H(w1, w
′
1). We have to show that for every successor w2 of w1

there exists a successor w′
2 of w′

1 such that H(w2, w
′
2). Consider first the case

where w1 = 〈g, d〉 for g ∈ Gin. By the definition of S, the state w1 has a
single successor w2 with w2 = w1. Let w′

1 be such that H(w1, w
′
1). By the

definition of H, we have w′
1 = 〈val, d〉, where val is the output of g on ~x.

By the definition of S ′, the state w′
1 has a single successor w′

2 with w′
2 = w′

1;
hence H(w2, w

′
2). Consider now the case where w1 = 〈g, d〉 for g ∈ G. Let w′

1
be such that H(w1, w

′
1). By the definition of H, we have w′

1 = 〈l1, r1, val1, d〉,
where l1 is the value of the left input to g, r1 is the value of the right input to
g, and val1 is the output of g on ~x. By the definition of S, the state w1 has
as successors the two states 〈Tl(g), ↙〉 and 〈Tr(g), ↘〉. Consider the state
w2 = 〈Tl(g), ↙〉. Let w′

2 = 〈l2, r2, val2, ↙〉 be a successor of w′
1 for which l2

is the value of the left input to Tl(g), r2 is the value of the right input to
Tl(g), and val is the output of Tl(g) on ~x. By the definition of S ′, such a
successor w′

2 exists. Also, by the definition of H, we have H(w2, w
′
2). The

proof for the state 〈Tr(g), ↘〉 is similar.

Proof of Theorem 4 2

4 Verification of Fair Transition Systems

In this section, we study the complexity of the fair-containment and the fair-4-1

simulation problems. We show that both problems are PSPACE-complete,
and that the implementation complexity of both problems is significantly
lower.

16

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1

4.1 The Fair-Containment Problem

We have seen that the containment problem is PSPACE-complete, and that4.1-1

its implementation complexity is NLOGSPACE-complete. In this section,
we check what happens to the complexity when we augment the transition
systems with fairness conditions. We start with some auxiliary results.

Lemma 1 W(n, m) → U(nm).

Proof of Lemma 1 Consider a weakly fair transition system S =
〈Σ, W, R, W0, L, α〉, with fairness condition α = {〈B1, G1〉, . . . , 〈Bm, Gm〉}.
For every W ′ ⊆ W and pair 〈Bi, Gi〉, we have that W ′ ∩ (W \ Bi) = ∅
implies that W ′ ∩ Gi 6= ∅, if and only if W ′ ∩ ((W \ Bi) ∪ Gi) 6= ∅. Hence,
a computation π is fair in S if and only if it is fair in all the unconditionally
fair transition systems Si = 〈Σ, W, R, L, W0, (W \ Bi) ∪ Gi〉. The result then
follows from the known bound on the size of the product of unconditionally
fair transition systems [Cho74].

Proof of Lemma 1 2

Lemma 2 Given a transition system S ∈ U(n) with a state space W and
a set B ⊆ W , we can construct a transition system S ′ ∈ U(2n) such that a
trace ρ is accepted by S ′ if and only if there exists a fair computation π in S
such that Inf(π) ∩ B = ∅ and L(π) = ρ.

Proof of Lemma 2 The idea, as suggested in [Kur87], is that the transitionProof of Lemma 2-1

system S ′ guesses a position in each of its computations from which no state
of B can be visited. For that, it maintains two copies of S. The first copy
allows visits in states in B. The second copy does not allow visits in states
in B. Each computation starts in the first copy, and should eventually move
to the second copy. Formally, for S = 〈Σ, W, R, L, W0, α〉, we define S ′ =
〈Σ, W × {1, 2}, R′, L′, W0 × {1}, α × {2}〉, where:

• For every w and w′ in W and i and i′ in {1, 2}, we have that
R′(〈w, i〉, 〈w′, i′〉) if and only if R(w, w′) and either:

– w′ 6∈ B and i ≤ i′, or

– w′ ∈ B and i = i′ = 1.

• For every w ∈ W and i ∈ {1, 2}, we have L′(〈w, i〉) = L(w).
17

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1

We prove the correctness of our construction. Consider a trace ρ ∈ Σω,Proof of Lemma 2-2

and assume there exists a fair computation π = w0, w1, . . . in S such that
Inf (π)∩B = ∅ and L(π) = ρ. Let wi be such that for all j > i, we have wj 6∈
B. The computation π′ = 〈w0, 1〉, 〈w1, 1〉, . . . , 〈wi, 1〉, 〈wi+1, 2〉, 〈wi+2, 2〉, . . .
is then fair in S ′, and ρ is accepted by S ′. Assume now that ρ is accepted
by S ′; thus, there exists a computation π′ = 〈w0, i0〉, 〈w1, i1〉, . . . in S ′ such
that L(π′) = ρ and Inf (π′) ∩ (α × {2}) 6= ∅. As no transitions from states
in W × {2} to states in W × {1} are possible, the computation π′ eventually
gets trapped in states in W × {2}. Therefore, as no transitions to states in
B×{2} are possible, the computation π′ visits states in B only finitely often.
Finally, as R′(〈w, i〉, 〈w′, i′〉) only if R(w, w′), the computation π = w0, w1, . . .
exists and is fair in S, and we are done. Note that S ′ is not necessarily total.
For that, we restrict S ′ to states that have at least one R′-successor. Clearly,
this does not affect the traces of S ′.

Proof of Lemma 2 2

Lemma 3 S(n, m) → U(n2O(m)).

Proof of Lemma 3 Consider a strongly fair transition system S =Proof of Lemma 3-1

〈Σ, W, R, L, W0, α〉 with fairness condition α = {〈B1, G1〉, . . . , 〈Bm, Gm〉}.
With every I ⊆ {1, . . . , m}, we associate an unconditionally fair transition
system SI that accepts the traces L(π) of S for which Inf (π) ∩ Bi 6= ∅ and
Inf (π) ∩ Gi 6= ∅ for all i ∈ I, and Inf (π) ∩ Bi = ∅ for all i 6∈ I. For that,
we first define a weakly fair transition system S ′

I = 〈Σ, W, R, W0, L, αI〉 that
accepts the traces L(π) of S for which Inf (π) ∩ Bi 6= ∅ and Inf (π) ∩ Gi 6= ∅
for all i ∈ I. This is done by defining αI =

⋃
i∈I{〈W, Bi〉, 〈W, Gi〉}. If

S ∈ S(n, m), then S ′
I ∈ W(n, 2m) and hence, by Lemma 1, we can translate

it to S ′′
I ∈ U(2nm). Let B =

⋃
i6∈I Bi. Clearly, for every computation π of

S ′′
I , we have that Inf (π) ∩ Bi = ∅ for all i 6∈ I if and only if Inf (π) ∩ B = ∅.

Hence, according to Lemma 2, we can construct the transition system SI

with 4nm states.
We prove that T (S) =

⋃
I⊆{1,2,...,m} T (SI). A computation π is fair in SProof of Lemma 3-2

if for every pair 〈Bi, Gi〉, either Inf (π) ∩ Bi = ∅, or both Inf (π) ∩ Bi 6= ∅
and Inf (π) ∩ Gi 6= ∅. Let f(π) ⊆ {1, . . . , m} be such that Inf (π) ∩ Bi 6= ∅
if and only if i ∈ f(π). It is easy to see that π is fair in S if and only if π
is fair in Sf(π). The lemma now follows from the fact that union is easy for

18

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1

transition systems (e.g., by defining the initial set as union of the initial sets
of the underlying systems).

Proof of Lemma 3 2

Theorem 5 The fair-containment problem T (S) ⊆ T (S ′) for S ∈⋃{U , W , S} and S ′ ∈ ⋃{U , W , S} is PSPACE-complete.

Proof of Theorem 5 As there are three possible types for the transitionProof of Theorem 5-1

system S and three possible types for the transition system S ′, we have nine
containment problems to solve to prove a PSPACE upper bound. We solve
them all using the same method:

1. Translate the transition system S to an unconditionally fair transition
system SU .

2. Construct an unconditionally fair transition system S ′
U that comple-

ments the transition system S ′.

3. Check T (SU) ∩ T (S ′
U) for emptiness.

This is how we perform step 1 for the three possible types of S:Proof of Theorem 5-2

1. U(n) → U(n).

2. W(n, m) → U(nm) [Lemma 1].

3. S(n, m) → U(n2O(m)) [Lemma 3].

This is how we perform step 2 for the three possible types of S ′:Proof of Theorem 5-3

1. U(n) → U(2O(n log n)) [Saf88].

2. W(n, m) → U(nm) → U(2O(nm log(nm))) [Saf88].

3. S(n, m) → S(2O(nm log(nm)), nm) → U(2O(nm log(nm))) [Saf92].

For all three types of S, going to SU involves an at-most exponentialProof of Theorem 5-4

blowup. Similarly, for all three types of S ′, going to S ′
U involves an at-most

exponential blowup. Thus, the size of the product of SU and S ′
U is exponential

in the sizes of S and S ′ [Cho74]. By [VW94], the nonemptiness problem
for unconditionally fair transition systems is in NLOGSPACE. Hence, as

19

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1.1

NLOGSPACE = co-NLOGSPACE, checking the product of SU and S ′
U for

emptiness can be done in space polynomial in their sizes.
Hardness in PSPACE follows from the PSPACE lower bound for traceProof of Theorem 5-5

containment (Theorem 1). Indeed, we can easily define a fairness condition
for which all the computations are fair (α = W for unconditional fairness
and α = ∅ for weak and strong fairness).

Proof of Theorem 5 2

4.1.1 Implementation Complexity

Recall that our main concern is the complexity in terms of the (much larger)4.1.1-1

implementation. We now turn to consider the implementation complexity of
fair containment.

Theorem 6 The implementation complexity of checking T (S) ⊆ T (S ′) for
S ∈ ⋃{U , W} and S ′ ∈ ⋃{U , W , S} is NLOGSPACE-complete.

Proof of Theorem 6 In the case where S ∈ ⋃{U , W}, the translation of S
to SU involves only a polynomial blowup. Thus, in this case, fixing the size
of S ′, the nondeterministic algorithm described in the proof of Theorem 5,
requires space logarithmic in the size of S. Hardness in NLOGSPACE follows
from the NLOGSPACE lower bound for the implementation complexity of
containment (Theorem 2).

Proof of Theorem 6 2

So, for the case where the implementation does not use the strong fairness4.1.1-2

condition, our fair-containment algorithm requires space that is only poly-
logarithmic in the size of the implementation. Clearly, this is not the case
when the implementation does use the strong fairness condition. Then, our
algorithm requires space that is polynomial in the size of the implementation,
and time that is exponential in the size of the implementation. We suggest
an alternative algorithm that requires time that is only polynomial in the
size of the implementation. The price is larger complexity in terms of the
size of the specification. We first need the following lemma.

Lemma 4 For S1 ∈ S(n1, m) and S2 ∈ U(n2), there exists S ∈ S(n1n2, m +
1) such that T (S) = T (S1) ∩ T (S2).

20

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1.1

Proof of Lemma 4 Given a strongly fair transition system S1 =
〈Σ, W1, R1, W

0
1 , L1, α〉 and an unconditionally fair transition system S2 =

〈Σ, W2, R2, W
0
2 , L2, β〉, consider the strongly fair transition system S =

〈Σ, W, R, W0, L, γ〉, where:

• W = {〈w1, w2〉: w1 ∈ W1, w2 ∈ W2, and L1(w1) = L2(w2)},

• R(〈w1, w2〉, 〈w′
1, w

′
2〉) if and only if R1(w1, w

′
1) and R2(w2, w

′
2),

• W0 = (W 0
1 × W 0

2) ∩ W ,

• for every 〈w1, w2〉 ∈ W , we have L(〈w1, w2〉) = L1(w1), and

• γ ⊆ 2W × 2W is such that 〈G, B〉 ∈ γ if and only if either there exists
〈G′, B′〉 ∈ α for which G = (G′ × W2) ∩ W and B = (B′ × W2) ∩ W , or
G = W and B = (W1 × β) ∩ W .

It is easy to see that S accepts an input trace if and only if both S1 and S2

accept it, and that its size is as required.

Proof of Lemma 4 2

Theorem 7 The implementation complexity of checking T (S) ⊆ T (S ′) for
S ∈ S and S ′ ∈ ⋃{U , W , S} is in PTIME.

Proof of Theorem 7 Given S and S ′, we construct, as in the proof of The-
orem 5, the unconditionally fair transition system S ′

U . Unlike the algorithm
there, we do not translate the transition system S to an unconditionally fair
system. Rather, we check the nonemptiness of T (S)∩T (S ′

U). The nonempti-
ness problem for strongly fair transition systems can be solved in polynomial
time [EL85]. Hence, by Lemma 4, we can check the nonemptiness of the
intersection in time polynomial in the size of S.

Proof of Theorem 7 2

Note that the algorithm presented in the proof of Theorem 7 uses time4.1.1-3

and space exponential in the size of the specification, in contrast to the
algorithm in the proof of Theorem 5 that uses space polynomial in the size
of the specification. Nevertheless, as S ′ is usually much smaller than S, the
algorithm in the proof of Theorem 7 may work better in practice. Can we do
better and get the NLOGSPACE complexity we have for implementations

21

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.1.1

that use the unconditional or weak fairness conditions? As we now show, the
answer to this question is most likely negative. To see this, we first need the
following theorem.

Theorem 8 The nonemptiness problem for strongly fair transition systems
is PTIME-hard.

Proof of Theorem 8 We do a reduction from propositional anti-Horn sat-Proof of Theorem 8-1

isfiability (PAHS). Propositional anti-Horn clauses are obtained from propo-
sitional Horn clauses by replacing each proposition p with ¬p. Thus, a propo-
sitional anti-Horn clause is either of the form p → q1 ∨ . . . ∨ qn (an empty
disjunction is equivalent to false) or of the form q1∨ . . .∨qn. As propositional
Horn satisfiability is PTIME-complete [Pla84], then clearly, so is PAHS.

Given an instance I of PAHS, we construct the transition system:Proof of Theorem 8-2

SI = 〈{a}, W, W × W, W, L, α〉

where:

• W = Q×{s}, where Q is the set of all the propositions in I, and s 6∈ Q,

• L maps all states to a, and

• α is the strongly fair condition defined as follows:

– for a clause p → q1 ∨ . . . ∨ qn in I, we have 〈{p}, {q1, . . . , qn}〉 in
α, and

– for a clause q1 ∨ . . . ∨ qn in I, we have 〈W, {q1, . . . , qn}〉 in α.

Each computation of SI induces an assignment to the propositions in I. AProof of Theorem 8-3

proposition is assigned true if and only if the computation visits it infinitely
often. In addition, for each assignment to the propositions in I, there exists
a computation of SI that induces it (the state s guarantees that the above
also holds for the assignment in which all propositions are assigned false).
The definition of α thus guarantees that I is satisfiable if and only if SI is
nonempty.

Proof of Theorem 8 2

22

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.1

We note that the nonemptiness problem for strongly fair transition sys-4.1.1-4

tems is already PTIME-hard for systems with pairs of a constant size. In
3-PAHS, all the clauses are of the form p → q1 ∨ q2, except possibly one
clause, which has the form p. It is easy to see that by introducing polyno-
mially many new propositions, every instance I of PAHS can be reduced to
an instance I ′ of 3-PAHS. Given such I, we can construct a strongly fair
transition system in which every pair has at most three states in its two sets.
The construction is the same as the one suggested in the proof, only that
we handle the clause p by |W | − 1 pairs of the form 〈{q}, {p}〉, one for each
q ∈ W \ {p}.

Therefore, unlike unconditionally or weakly fair transition systems, for4.1.1-5

which the nonemptiness problem is NLOGSPACE-complete, testing strongly
fair transition systems for nonemptiness is PTIME-complete. Theorems 7
and 8 imply the following theorem.

Theorem 9 The implementation complexity of checking T (S) ⊆ T (S ′) for
S ∈ S and S ′ ∈ ⋃{U , W , S} is PTIME-complete.

4.2 The Fair-Simulation Problem

4.2.1 The Upper Bound

Theorem 10 The fair-simulation problem S ≤ S ′ for S ∈ ⋃{U , W , S} and
S ′ ∈ ⋃{U , W , S} is in PSPACE.

Proof of Theorem 10 Given S = 〈Σ, W, R, W0, L, α〉 and S ′ =Proof of Theorem 10-1

〈Σ, W ′, R′, W ′
0, L

′, α′〉, we show how to check in polynomial space that a can-
didate relation H is a simulation from S to S ′. The claim then follows, since
we can enumerate all candidate relations using polynomial space. First, we
check (easily) that for every w ∈ W0 there exists w′ ∈ W ′

0 such that H(w, w′).
We then check (also easily) that for all 〈w, w′〉 ∈ H, we have L(w) = L(w′).
It is left to check that for all 〈w, w′〉 ∈ H, the pair 〈w, w′〉 is good in H.
To do this, we define, for every 〈w, w′〉 ∈ H, two transition systems. The
alphabet of both systems is W . The first transition system, Aw, accepts all
the fair w-computations in S. The second transition system, Uw′ , accepts
all the sequences π in W ω for which there exists a fair w′-computation π′ in
S ′ such that H(π, π′). Clearly, the pair 〈w, w′〉 is good in H if and only if
T (Aw) ⊆ T (Uw′).

23

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.2

We define Aw and Uw′ as follows. The transition system Aw does nothingProof of Theorem 10-2

but trace the w-computations of S, accepting those that satisfy S’s accep-
tance condition. Formally, Aw = 〈W, W, R, {w}, L′′, α〉, where for all u ∈ W ,
we have L′′(u) = u.

The transition system Uw′ has members of H as its set of states. Thus,Proof of Theorem 10-3

each state has two elements. The second element of each state in Uw′ is
a state in W ′, and according to R′, it induces the transitions. The first
element in each state of Uw′ is a state in W , and it induces the labeling. This
combination guarantees that a computation π′′ ∈ Hω, whose W ′ elements
form the computation π′ ∈ (W ′)ω and whose states are labeled with π ∈ W ω,
satisfies H(π, π′). Formally, Uw′ = 〈W, H, R′′, W ′′

0 , L′′′, α′′〉, where:

• R′′ is adjusted to the new state space; i.e., R′′(〈t, t′〉, 〈q, q′〉) if and only
if R′(t′, q′),

• W ′′
0 = (W × {w′}) ∩ H,

• for every 〈t, t′〉 ∈ H, we have L′′′(〈t, t′〉) = t, and

• α′′ is also adjusted to the new state space; i.e., each set B ⊆ W ′ in α′

is replaced by the set (W × B) ∩ H in α′′.

Note that R′′ is not necessarily total. For that, we restrict Uw′ to states that
have at least one R′′ successor. Clearly, this does not affect the traces of Uw′ .

According to Theorem 5, checking that T (Aw) ⊆ T (Uw′) can be done inProof of Theorem 10-4

space polynomial in the sizes of Aw and Uw′ , thus polynomial in the sizes of
S and S ′.

Proof of Theorem 10 2

We note that our algorithm can be easily adjusted to check S and S ′ forProof of Theorem 10-5

fair bisimulation.

4.2.2 The Lower Bound

For a transition system S = 〈Σ, W, R, W0, L, α〉, we say that S is universal4.2.2-1

if and only if T (S) = Σω. The universality problem is to determine whether
a given transition system is universal. As we have already mentioned in the
proof of Theorem 1, Mayer and Stockmayer prove a PSPACE lower bound
for the problem of determining whether a finite-acceptance transition system

24

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.2

S is universal [MS72]. Our PSPACE lower bound for the fair-simulation
problem follows the lines of their proofs, and we first give its details, which
are easily adjusted to infinite traces.

Theorem 11 The universality problem, L(S) = Σω for S ∈ ⋃{U , W , S}, is
PSPACE-hard.

Proof of Theorem 11 We do a reduction from polynomial-space TuringProof of Theorem 11-1

machines. Given a Turing machine T of space complexity s(n), we construct
a transition system ST of size linear in T , and s(n) such that ST is universal
if and only if T does not accept the empty tape. We assume, without loss
of generality, that once T reaches a final state, it loops there forever. The
system ST accepts a trace w if and only if w is not an encoding of a legal
computation of T over the empty tape, or if w is an encoding of a legal yet
rejecting computation of T over the empty tape. Thus, ST rejects a trace
w if and only if it encodes a legal and accepting computation of T over the
empty tape. Hence ST is universal if and only if T does not accept the empty
tape.

We now give the details of the construction of ST . Let T =Proof of Theorem 11-2

〈Γ, Q,→, q0, F 〉, where Γ is the alphabet, Q is the set of states, →⊆
Q×Γ×Q×Γ×{L, R} is the transition relation (we use (q, a) → (q′, b, ∆) to
indicate that when T is in state q and it reads the input a in the current tape
cell, it moves to state q′, writes b in the current tape cell, and its reading
head moves one cell to the left/right, according to ∆), q0 is the initial state,
and F ⊆ Q is the set of accepting states. We encode a configuration of T by
a string #γ1γ2 . . . (q, γi) . . . γs(n). That is, a configuration starts with #, and
all its other letters are in Γ, except for one letter in Q × Γ. The meaning
of such a configuration is that the jth cell in T , for 1 ≤ j ≤ s(n), is labeled
γj, the reading head points at cell i, and T is in state q. For example, the
initial configuration of T is #(q0, b)b . . . b (with s(n) − 1 occurrences of bs)
where b stands for an empty cell. We can then encode a computation of T
by a sequence of configurations.

Let Σ = {#} ∪ Γ ∪ (Q × Γ) and let #σ1 . . . σs(n)#σ′
1 . . . σ′

s(n) be twoProof of Theorem 11-3

successive configurations of T . We also set σ0, σ′
0, and σs(n)+1 to #. For each

triple 〈σi−1, σi, σi+1〉 with 1 ≤ i ≤ s(n), we know by the transition relation of
T what σ′

i should be. In addition, the letter # should repeat exactly every
s(n)+1 letters. Let next(〈σi−1, σi, σi+1〉) denote our expectation for σ′

i. That
is:

25

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.2

• Next(〈γi−1, γi, γi+1〉) = next(〈#, γi, γi+1〉) = next(〈γi−1, γi, #〉) = γi.

• Next(〈(q, γi−1), γi, γi+1〉) = next(〈(q, γi−1), γi, #〉) =

{
γi if (q, γi−1) → (q′, γ′

i−1, L)
(q′, γi) if (q, γi−1) → (q′, γ′

i−1, R)

• Next(〈γi−1, (q, γi), γi+1〉) = next(〈#, (q, γi), γi+1〉) =
next(〈γi−1, (q, γi), #〉) = γ′

i where (q, γi) → (q′, γ′
i, ∆).3

• Next(〈γi−1, γi, (q, γi+1)〉) = next(〈#, γi, (q, γi+1)〉) =

{
γi if (q, γi+1) → (q′, γ′

i+1, R)
(q′, γi) if (q, γi+1) → (q′, γ′

i, L)

• Next(〈σs(n), #, σ′
1〉) = #.

Consistency with next gives us a necessary condition for a trace to encode a
legal computation. In addition, the computation should start with the initial
configuration.

To check consistency with next, ST can use its nondeterminism andProof of Theorem 11-4

guess when there is a violation of next. Thus, ST guesses 〈σi−1, σi, σi+1〉 ∈
Σ3, guesses a position in the trace, checks whether the three letters to
be read starting this position are σi−1, σi, and σi+1, and checks whether
next(〈σi−1, σi, σi+1〉) is not the letter to come s(n) + 1 letters later. Once ST

sees such a violation, it goes to an accepting sink. To check that the first
configuration is not the initial configuration, ST simply compares the first
s(n) + 1 letters with #(q0, b)b . . . b. Finally, checking whether a legal com-
putation is rejecting is also easy; the final configuration has to be rejecting
(one with q 6∈ F).

Proof of Theorem 11 2

We would like to do a similar reduction to prove that the fair-simulation4.2.2-2

problem is PSPACE-hard. For every alphabet Σ, let SΣ be the transition
system 〈Σ, Σ, Σ × Σ, Σ, LΣ, α〉, where LΣ(σ) = σ and α is such that all the

3We assume that the reading head of T does not “fall” from the right or the left
boundaries of the tape. Thus, the case where (i = 1) and (q, γi) → (q′, γ′

i, L) and the dual
case where (i = 2n) and (q, γi) → (q′, γ′

i, R) are not possible.

26

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.2

computations of SΣ are fair. That is, SΣ is a universal transition system in
which each state is associated with a letter σ ∈ Σ and T (Sσ

Σ) = σ · Σω. For
example, S{a,b} is the transition system S in Figure 1. It is easy to see that a
transition system S over Σ is universal if and only if T (SΣ) ⊆ T (S). It is not
true, however, that S is universal if and only if SΣ ≤ S. For example, the
transition system S ′ in Figure 1 is universal, yet S{a,b} 6≤ S ′. Our reduction
overcomes this difficulty by defining ST in such a way that if ST is universal,
then for each of its states w, we have T (Sw

T) = L(w) · Σω. For such ST , we
do have that ST is universal if and only if SΣ ≤ ST . Indeed, a relation that
maps a state σ of SΣ to all the states of ST that are labeled with σ is a fair
simulation.

Theorem 12 The fair-simulation problem S ≤ S ′ for S ∈ ⋃{U , W , S} and
S ′ ∈ ⋃{U , W , S} is PSPACE-hard.

Proof of Theorem 12 We prove hardness for the case where S ′ is aProof of Theorem 12-1

strongly fair transition system with three pairs. The other cases then fol-
low from the linear translation of S ′ to any S ′ ∈ ⋃{U , W , S}. As in the
previous proof, we do a reduction from polynomial space Turing machines.
Given the Turing machine T , let T ′ be as follows. Whenever T reaches an
accepting configuration, T ′ “cleans” the tape and starts from the beginning
(i.e., empty tape and initial state at the left end of the tape). Thus, T ac-
cepts the empty tape if and only if T ′ has an infinite computation, in which
case it visits the initial configuration infinitely often.

We now define a strongly fair transition system ST as the union of twoProof of Theorem 12-2

strongly fair transition systems, S1
T and S2

T , with the following behaviors.
Reading a trace ρ, the fair transition system S1

T checks for a violation of the
transition relation of T ′ in ρ (by guessing a violation of next). If S1

T sees a
violation, it goes to an accepting sink. Therefore, the acceptance condition
of S1

T is a single pair 〈W1, G〉, where W1 is the set of states in S1
T and G is a

clique of |Σ| states, each labeled with a different letter, which S1
T enters once

it sees a violation of next . Reading a trace ρ, the fair transition system S2
T

checks for the occurrence of the initial configuration in ρ. Because the initial
configuration starts with # and has no other # in it, it is easy to check its
occurrence. If S2

T sees the initial configuration, it goes to a rejecting sink.
The acceptance condition of S2

T is therefore a single pair 〈B, ∅〉, where B is a
clique of |Σ| states, each labeled with a different letter, which S2

T enters once
it sees an occurrence of the initial configuration. Assuming the state spaces

27

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.2

of S1
T and S2

T are disjoint, the fair transition system ST simply has one copy
of S1

T , and one copy of S2
T ; its initial set is the union of the initial sets of S1

T

and S2
T ; and its fairness condition has the two pairs 〈W1, G〉 and 〈B, ∅〉.

It follows that the fair transition system ST accepts a trace ρ if ρ violatesProof of Theorem 12-3

next or never visits the initial configuration. Thus, ST does not accept a trace
ρ if and only if ρ does not violate next and it visits the initial configuration
of T . Therefore, ST is universal if and only if T does not accept the empty
tape. Indeed, in both cases there exists no accepting computation of T on
the empty tape.

We want, however, more than a universality test. We want to define STProof of Theorem 12-4

in such a way that if it is indeed universal, then for each of its states w,
we have T (Sw

T) = L(w) · Σω. Let ST = 〈Σ, W, R, W0, L, α〉. We assume
that R ∩ (W × W0) = ∅. Thus, no computation of ST visits states from
W0 more than once (this can be easily achieved by duplicating states in
W0 that are visited more than once). We define the transition system S ′

T

by adding to ST the transitions from all states to all of the initial states,
with the requirement that these transitions can be used only finitely often.
Accordingly, S ′

T = 〈Σ, W, R ∪ (W × W0), W0, L, α ∪ 〈W0, ∅〉〉. We claim the
following:

Claim 1 S ′
T is universal if and only if for each σ ∈ Σ we have w0 ∈ W0 with

L(w0) = σ, and for each w ∈ W , we have T (Sw
T) = L(w) · Σω.

Claim 2 ST is universal if and only if S ′
T is universal.

Claim 1 is immediate, and we prove here Claim 2. Clearly, every com-Proof of Theorem 12-5

putation π of ST is a computation in S ′
T . Since no computation in ST visits

W0 more than once, adding the pair 〈W0, ∅〉 to the acceptance condition
α, we still have that if π is fair in ST , then it is also fair in S ′

T . Hence
T (ST) ⊆ T (S ′

T); thus, if ST is universal, so is S ′
T . Assume now that ST is

not universal. Consider a trace ρ not accepted by ST . Recall that ρ does
not violate next , and it visits the initial configuration of T . In other words,
ρ is of the form yx where y is a prefix not violating next and x is an infinite
computation of T ′ (the initial configuration of T is the first configuration in
x). An infinite computation of T ′ visits the initial configuration infinitely
often. Therefore, all the suffixes of ρ are of that special form! Hence, if ρ
is not accepted by ST , all its suffixes are also not accepted by ST . We show
that this implies that ρ is not accepted by S ′

T too. Assume, by way of contra-
diction, that ρ is accepted by S ′

T . Let π = w0, w1, . . . by a fair computation
28

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §4.2.3

in S ′
T , with L(π) = ρ. By the acceptance condition of S ′

T , there exists i ≥ 0
such that wi ∈ W0, and for all j > i, we have Wj 6∈ W0. Hence, for all j ≥ i,
we have R(wj, wj+1). Therefore, the computation πi = wi, wi+1, . . . is a fair
computation in ST , and the trace L(πi) is accepted by ST , contradicting the
fact it is a suffix of a trace not accepted by ST .

As discussed above, Claims 1 and 2 now imply that SΣ ≤ S ′
T if and onlyProof of Theorem 12-6

if ST is universal; thus SΣ ≤ S ′
T if and only if T does not accept the empty

tape. Because the fairness condition of SΣ can be specified in terms of either
unconditional, weak, or strong fairness, we are done.

Proof of Theorem 12 2

Theorems 10 and 12 together imply the following.4.2.2-3

Theorem 13 The fair-simulation problem S ≤ S ′ for S ∈ ⋃{U , W , S} and
S ′ ∈ ⋃{U , W , S} is PSPACE-complete.

4.2.3 Implementation Complexity

As our discussions thus far show, fair simulation and fair containment have4.2.3-1

the same complexity. In Theorem 14, we show that when we consider the
implementation complexity of fair simulation, the picture is different. Here,
checking implementations that use the unconditional or weak fairness condi-
tions is not easier than checking implementations that use the strong fairness
condition; hence fair simulation is most likely harder than fair containment,
and the trace-based approach is more efficient.

Theorem 14 The implementation complexity of checking S ≤ S ′ for S ∈⋃{U , W , S} and S ′ ∈ ⋃{U , W , S} is PTIME-complete.

Proof of Theorem 14 We start with the upper bound. Consider the algo-Proof of Theorem 14-1

rithm presented in the proof of Theorem 10. It checks whether a candidate
relation H is a simulation. Once we fix S ′, then, by Theorems 6 and 9, the
complexity of checking each pair in the candidate relation is NLOGSPACE
for S ∈ ⋃{U , W}, and is PTIME for S ∈ S. Once we fix S ′, the number
of pairs in each candidate relation is linear in the size of S. Thus, fixing
S ′, the problem of checking a candidate relation H is in PTIME. Instead of
guessing a relation H and checking it, we do a fixed-point computation as
follows [Mil90]. Let

H0 = {〈w, w′〉 : w ∈ W, w′ ∈ W ′, and L(w) = L(w′)}
29

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §5

Thus, H0 is the maximal relation that satisfies condition 1 of fair simulation.
Consider the monotonic function f : 2W×W ′ → 2W×W ′ , where

f(H) = H ∩ {〈w, w′〉 : 〈w, w′〉 is good in H}

Thus, f(H) contains all the pairs in H that are good with respect to the
relation H. Let H? be the greatest fixed point of f when restricted to pairs
in H0. That is, H? = νz.H0 ∩ f(z).

We now prove that S ≤ S ′ if and only if for every w ∈ W0, we haveProof of Theorem 14-2

({w}×W ′
0) ∩ H? 6= ∅. First, as H? is a fair-simulation relation, the direction

from right to left is immediate from the definition of fair simulation. Assume
that S ≤ S ′. Then, there exists a fair-simulation relation H ′ such that for
every w ∈ W0, we have ({w} × W ′

0) ∩ H ′ 6= ∅. Let Hi = f i(H0). We show
that for every i ≥ 0 we have H ′ ⊆ Hi. Thus, in particular, H ′ ⊆ H?, and
we are done. The proof proceeds by induction on i. First, since H ′ satisfies
condition 2 of fair-simulation relations, then clearly H ′ ⊆ H0. Assume that
H ′ ⊆ Hi, and assume by way of contradiction that H ′ 6⊆ Hi+1. Then there
exists 〈w, w′〉 ∈ H ′ \ Hi+1. Since H ′ ⊆ Hi, it follows that the pair 〈w, w′〉 is
not good in Hi, which implies, again by the containment of H ′ in Hi, that
it is also not good in H ′. Then, however, H ′ does not satisfy condition 3 of
fair simulation, and we reach a contradiction.

We now consider the complexity of calculating H?. Since W × W ′ isProof of Theorem 14-3

finite, we can calculate H iteratively, starting with H0 until we reach a fixed
point. Because f is monotonic, we must iterate it at most polynomially
many times. Hence, out of the 2|W×W ′| candidate relations for simulation,
we actually check at most |W × W ′| relations. Recall that if S ′ is fixed, the
problem of checking a candidate relation is in PTIME. Also, if S ′ is fixed,
we have only linearly many candidate relations to check. The problem is
therefore in PTIME.

Hardness in PTIME follows from the lower bound in Theorem 4.Proof of Theorem 14-4

Proof of Theorem 14 2

5 Discussion

We have examined the trace-based and the tree-based approaches to imple-5-1

mentation from a complexity-theoretic point of view. Our results show that
when we model the specification and the implementation by fair transition

30

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems §5

systems, the complexity of checking the correctness of a trace-based imple-
mentation coincides with that of checking the correctness of a tree-based
implementation. Furthermore, when we consider the implementation com-
plexity, then checking implementations that use the unconditional or weak
fairness condition is easier in the trace-based approach. Overall, it seems
that the trace-based approach is advantageous.

It is interesting to compare our results with the known complexities of5-2

LTL and ∀CTL? model checking. Trace-based implementations are part of
the linear-time paradigm, and correspond to LTL model checking. Tree-based
implementations are part of the branching-time paradigm, and correspond
to ∀CTL? model checking. All four problems are PSPACE-complete [SC85,
EL85]. The model-checking algorithm of ∀CTL? uses as a subroutine the
model-checking algorithm of LTL [EL85]. In a similar manner, our fair-
simulation algorithm uses as a subroutine the fair-containment algorithm.
Clearly, the implementation dichotomy and the temporal-logic dichotomy
have a lot in common. When we turn to consider the program complexity of
model checking, which is the analog to our implementation complexity, this
is no longer true. The program complexity of model checking for both LTL
and ∀CTL? is NLOGSPACE-complete [VW86, BVW94]. In contrast, we see
here that implementation is easier in the trace-based approach.

Our results are summarized in Table 1. All the complexities in the table5-3

denote tight bounds.

Implementation Implementation
Complexity Complexity

Fair of Fair Fair of Fair
Containment Containment Simulation Simulation

S and S′ with PSPACE NLOGSPACE PTIME PTIME
No Fairness [Theorem 1] [Theorem 2] [Theorem 3] [Theorem 4]
S ∈ ⋃{U ,W} and PSPACE NLOGSPACE PSPACE PTIME
S′ ∈ ⋃{U ,W,S} [Theorem 5] [Theorem 6] [Theorem 13] [Theorem 14]
S ∈ S and PSPACE PTIME PSPACE PTIME
S′ ∈ ⋃{U ,W,S} [Theorem 5] [Theorem 9] [Theorem 13] [Theorem 14]

Table 1: Is S a correct implementation of S ′?

31

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

Acknowledgment of support: Part of this work was done in Bell Labo-
ratories during the DIMACS Special Year on Logic and Algorithms.

Orna Kupferman’s work was supported in part by the Office of Naval Re-
search Young Investigator Award N00014-95-1-0520, by the National Science
Foundation CAREER Award CCR-9501708, by the National Science Foun-
dation grant CCR-9504469, by the Air Force Office of Scientific Research con-
tract F49620-93-1-0056, by the Army Research Office MURI grant DAAH-
04-96-1-0341, by the Advanced Research Projects Agency grant NAG2-892,
and by the Semiconductor Research Corporation contract 95-DC-324.036.

Moshe Y. Vardi’s work was supported in part by the National Science
Foundation grants CCR-9628400 and CCR-9700061, and by a grant from
the Intel Corporation.

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991.

[ASB+94] A. Aziz, V. Singhal, F. Balarin, R. Brayton, and A. L.
Sangiovanni-Vincentelli. Equivalences for fair Kripke structures.
In Proceedings of the 21st International Colloquium on Automata,
Languages and Programming, Jerusalem, Israel, July 1994.

[AV95] H. R. Andersen and B. Vergauwen. Efficient checking of be-
havioural relations and modal assertions using fixed-point inver-
sion. In Computer Aided Verification, Proceedings of the 7th In-
ternational Conference, volume 939 of Lecture Notes in Computer
Science, pages 142–154, Berlin, July 1995. Springer-Verlag.

[BBLS92] S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Prop-
erty preserving simulations. In Proceedings of the 4th Conference
on Computer Aided Verification, volume 663 of Lecture Notes in
Computer Science, pages 260–273, Berlin, June 1992. Springer-
Verlag.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing fi-
nite Kripke structures in propositional temporal logic. Theoretical
Computer Science, 59:115–131, 1988.

32

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

[BGS92] J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is
P-complete. Formal Aspects of Computing, 4(6):638–648, 1992.

[BVW94] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. In D. L. Dill, editor,
Computer Aided Verification, Proceedings of the 6th International
Conference, volume 818 of Lecture Notes in Computer Science,
pages 142–155, Berlin, June 1994. Springer-Verlag.

[CD88] E. M. Clarke and I. A. Draghicescu. Expressibility results for
linear-time and branching-time logics. In Proceedings of the Work-
shop on Linear Time, Branching Time, and Partial Order in Log-
ics and Models for Concurrency, volume 354 of Lecture Notes in
Computer Science, pages 428–437, Berlin, 1988. Springer-Verlag.

[CDK93] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A unified
approach for showing language containment and equivalence be-
tween various types of ω-automata. Information Processing Let-
ters, 46:301–308, 1993.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages and
Systems, 8(2):244–263, January 1986.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified ap-
proach. Journal of Computer and System Sciences, 8:117–141,
1974.

[EL85] E. A. Emerson and C.-L. Lei. Temporal model checking under
generalized fairness constraints. In Proceedings of the 18th Hawaii
International Conference on System Sciences, North Hollywood,
CA, 1985. Western Periodicals Company.

[EL87] E. A. Emerson and C.-L. Lei. Modalities for model checking:
Branching time logic strikes back. Science of Computer Program-
ming, 8:275–306, 1987.

[Eme90] E. A. Emerson. Temporal and modal logic. Handbook of Theoret-
ical Computer Science, pages 997–1072, 1990.

33

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

[GHR95] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits of Parallel
Computation. Oxford University Press, 1995.

[GJ79] M. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. Freeman and Co.,
San Francisco, 1979.

[GL94] O. Grumberg and D. E. Long. Model checking and modular veri-
fication. ACM Transactions on Programming Languages and Sys-
tems, 16(3):843–871, 1994.

[Gol77] L. M. Goldschlager. The monotone and planar circuit value prob-
lems are log space complete for P. SIGACT News, 9(2):25–29,
1977.

[Hen85] M. Hennessy. Algebraic Theory of Processes. Cambridge, MA,
1985. MIT Press.

[HHK95] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing
simulations on finite and infinite graphs. In Proceedings of the 36th
Symposium on Foundations of Computer Science, pages 453–462,
Los Alamitos, CA, 1995. IEEE Computer Society Press.

[Imm88] N. Immerman. Nondeterministic space is closed under comple-
ment. SIAM Journal on Computing, 17:935–938, 1988.

[Jon75] N. D. Jones. Space-bounded reducibility among combinatorial
problems. Journal of Computer and System Sciences, 11:68–75,
1975.

[Kel76] R. M. Keller. Formal verification of parallel programs. Commu-
nications of the ACM, 19:371–384, 1976.

[Kur87] R. P. Kurshan. Complementing deterministic Büchi automata
in polynomial time. Journal of Computer and System Science,
35:59–71, 1987.

[Kur94] R. P. Kurshan. Computer Aided Verification of Coordinating Pro-
cesses. Princeton, NJ, 1994. Princeton University Press.

34

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state con-
current programs satisfy their linear specification. In Proceedings
of the 12th ACM Symposium on Principles of Programming Lan-
guages, pages 97–107, New York, January 1985. ACM.

[LPS81] D. Lehman, A. Pnueli, and J. Stavi. Impartiality, justice, and
fairness—the ethics of concurrent termination. In Proceedings of
the 8th Colloquium on Automata, Programming, and Languages
(ICALP), volume 115 of Lecture Notes in Computer Science, pages
264–277, Berlin, July 1981. Springer-Verlag.

[LS84] S. S. Lam and A. U. Shankar. Protocol verification via projection.
IEEE Transactions on Software Engineering, 10:325–342, 1984.

[LT87] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of the 6th ACM Symposium
on Principles of Distributed Computing, pages 137–151, New York,
1987. ACM.

[Mil71] R. Milner. An algebraic definition of simulation between programs.
In Proceedings of the 2nd International Joint Conference on Artifi-
cial Intelligence, pages 481–489, London, September 1971. British
Computer Society.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Berlin, 1980. Springer-Verlag.

[Mil89] R. Milner. Communication and Concurrency. Englewood Cliffs,
NJ, 1989. Prentice-Hall.

[Mil90] R. Milner. Operational and algebraic semantics of concurrent pro-
cesses. Handbook of Theoretical Computer Science, pages 1201–
1242, 1990.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Con-
current Systems: Specification. Berlin, January 1992. Springer-
Verlag.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential time. In

35

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

Proceedings of the 13th IEEE Symposium on Switching and Au-
tomata Theory, pages 125–129, New York, 1972. IEEE Computer
Group.

[Pla84] D. A. Plaisted. Complete problems in the first-order predicate
calculus. Journal of Computer and System Sciences, 29(1):8–35,
1984.

[Pnu85] A. Pnueli. Linear and branching structures in the semantics and
logics of reactive systems. In Proceedings of the 12th International
Colloquium on Automata, Languages and Programming, Lecture
Notes in Computer Science, pages 15–32, Berlin, 1985. Springer-
Verlag.

[Saf88] S. Safra. On the complexity of ω-automata. In Proceedings of
the 29th IEEE Symposium on Foundations of Computer Science,
pages 319–327, Los Alamitos, CA, October 1988. IEEE Computer
Society Press.

[Saf92] S. Safra. Exponential determinization for ω-automata with strong-
fairness acceptance condition. In Proceedings of the 24th ACM
Symposium on Theory of Computing, New York, May 1992. ACM.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional
linear temporal logic. Journal of the ACM, 32:733–749, 1985.

[SVW87] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation
problem for Büchi automata with applications to temporal logic.
Theoretical Computer Science, 49:217–237, 1987.

[Sze88] R. Szelepcsinyi. The method of forced enumeration for nondeter-
ministic automata. Acta Informatica, 26:279–284, 1988.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoret-
ical Computer Science, pages 165–191, 1990.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. In Proceedings of the First
Symposium on Logic in Computer Science, pages 322–331, Los
Alamitos, CA, June 1986. IEEE Computer Society Press.

36

Chicago Journal of Theoretical Computer Science 1998-2

Kupferman and Vardi Verification of Systems

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite compu-
tations. Information and Computation, 115(1):1–37, November
1994.

37

Chicago Journal of Theoretical Computer Science 1998-2

