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Randomized Reductions and Isomorphisms

Jie Wang

24 February, 1999

Abstract

Randomizing reductions have provided new techniques for tack-
ling average-case complexity problems. For example, although some
NP-complete problems with uniform distributions on instances cannot
be complete under deterministic one-one reductions [WB95], they are
complete under randomized reductions [VL88]. We study randomized
reductions in this paper on reductions that are one-one and honest
mappings over certain input domains. These are reasonable assump-
tions since all the randomized reductions in the literature that are
used in proving average-case completeness results possess this prop-
erty. We consider whether randomized reductions can be inverted
efficiently. This gives rise to the issue of randomized isomorphisms.
By generalizing the notion of isomorphisms under deterministic reduc-
tions, we define what it means for two distributional problems to be
isomorphic under randomized reductions. We then show a random-
ized version of the Cantor-Bernstein-Myhill theorem, which provides
a sufficient condition for two distributional problems to be isomorphic
under randomized reductions. Based on that condition we show that
all the known average-case NP-complete problems (including those
that are complete under deterministic reductions) are indeed isomor-
phic to each other under randomized reductions.

1 Introduction

Average-case complexity has attracted increasing attention recently. A ma-1-1

jor objective of this study is to identify (standard, worst-case) NP-complete
problems that are difficult, on average, from those that are easy, on average.

1
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Various notions of reductions for distributional problems are useful tools for
studying average-case complexity. A distributional problem is a pair consist-
ing of a problem A and a probability distribution µ on instances of A. If A is
an NP problem, then we call (A, µ) a distributional NP problem. Determin-
istic reductions are simpler and easier to use; they have been used to prove
that some NP-complete problems under plausible distributions are average-
case complete. However, deterministic reductions have certain limitations.
For example, under the assumption that EXP 6= NEXP, distributional NP
problems with flat distributions cannot be complete under deterministic re-
ductions [Gur91]; and (without any assumption) distributional NP problems
with flat distributions cannot be complete under deterministic one-one reduc-
tions [WB95]. Randomized reductions were introduced to overcome these
limitations [VL88]. Some NP problems with flat distributions have been
shown to be complete under randomized reductions [VL88, Gur91, BG95].
Randomized reductions have also been used to obtain several other inter-
esting results. For example, using randomized reductions, Impagliazzo and
Levin [IL90] showed that any NP search problem under any polynomial-time
samplable distribution is reducible to some NP search problem under a uni-
form distribution. This result is also true for NP decision problems under
randomized truth-table reductions [BDCGL92, Wan97]. Also, using random-
ized reductions, Belanger and Wang [BW97] showed that no NP problems
over ranking of distributions are harder than over uniform distributions.

Gurevich [Gur91] and Blass and Gurevich [BG93, BG95] have conducted1-2

intensive studies on randomized reductions. Through their work, we have
gained deeper understandings on randomized reductions. We carry on this
study a step further by considering reductions that are one-one and honest
mappings over certain input domains. (A mapping f is honest if for any
input x, the length of its image f(x) cannot be too short; namely, there is a
polynomial p such that for any input x, p(|f(x)|) ≥ |x|.) These are reason-
able assumptions since all the randomized reductions in the literature that
are used in proving average-case completeness results possess this property.
Moreover, we consider whether these reductions can be “inverted” efficiently.
This gives rise naturally to the issue of randomized isomorphisms of average-
case NP-complete problems.

Berman and Hartmanis [BH77] were the first to study isomorphisms of1-3

complete sets for resource-bounded worst-case complexity classes. They de-
fined a notion of isomorphism under deterministic polynomial-time reduc-
tions. They showed that all the known NP-complete sets are polynomially

2
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isomorphic, and they conjectured that it should also be true for all NP-
complete sets. This conjecture implies that P is different from NP. Although
this conjecture has not been solved, it has stimulated a host of papers in struc-
tural complexity theory. Wang and Belanger [WB95] observed that some
standard NP-complete problems, while isomorphic on the worst case, are not
isomorphic on the average case under commonly used distributions. On the
other hand, all the average-case NP-complete problems may still be isomor-
phic. To extend the isomorphism theory of Berman and Hartmanis from
worst case to average case, Wang and Belanger [WB95] defined a notion of
isomorphisms for distributional problems under deterministic reductions —
a natural generalization of Berman and Hartmanis’ notion of isomorphisms.
They showed that all the known average-case NP-complete problems that
are complete under deterministic reductions are indeed isomorphic.

We consider whether the notion of isomorphisms can be further extended1-4

to include randomized reductions, and we devote this paper to answering this
question. We provide an affirmative answer: By generalizing the notion of
isomorphisms under deterministic reductions, we define in a natural way what
it means for two distributional problems to be isomorphic under randomized
reductions. We then show a randomized version of the Cantor-Bernstein-
Myhill theorem, which provides a sufficient condition for two distributional
problems to be isomorphic under randomized reductions. Based on that
condition we show that all the known average-case NP-complete problems
(including those that are complete under deterministic reductions) are indeed
isomorphic to each other under randomized reductions.

2 Average Time and Instance Distributions

We provide in this section basic definitions and results of average-case com-2-1

plexity. For a recent survey of average-case complexity, its motivations, traps
and escapes, the reader is referred to [Gur91, Wan97].

Let Σ = {0, 1}. We assume that all languages are subsets of Σ∗. Let µ2-2

denote a probability distribution (distribution, in short) over Σ∗; i.e., µ is a
real-valued function from Σ∗ to [0,1] such that

∑
x µ(x) = 1. The probability

distributions we consider are on instances of computational problems. If a
binary string does not encode an instance of the underlying problem, then
that string has zero probability. The distribution function of µ, denoted by
µ∗, is defined by µ∗(x) =

∑
y≤x µ(y), where ≤ is the standard lexicographical

3
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order on Σ∗. For a function f , we use f ε(x) to denote (f(x))ε for ε > 0
and we use f−1 to denote the inverse of f . We use IN to denote the natural
numbers. We will consider decision problems in this paper; we will omit the
word “decision” when there is no confusion.

Levin [Lev86] suggested to use multi-median time to measure average2-3

computation time, and he gave the following definition.

Definition 1 ([Lev86]) A function f : Σ+ → IN is polynomial on µ-average
if there is an ε > 0 such that

∑
x f ε(x)|x|−1µ(x) <∞.

This notion of average time is robust and machine independent.2-4

Let AP denote the class of all distributional problems (A, µ) such that A2-5

can be solved by a deterministic algorithm whose running time is polynomial
on µ-average. AP is an average-case analogue of P.

In what follows, we will use “p-time” to denote “polynomial-time,” and2-6

“ap-time” to denote “average-polynomial-time.”
Let µ and ν be two distributions; then µ is dominated by ν, denoted by2-7

µ �p ν, if there is a polynomial p such that for all x, µ(x) ≤ p(|x|)ν(x).
A real-valued function r : Σ∗ → [0, 1] is p-time computable if there exists2-8

a deterministic algorithm A such that for every string x and every positive
integer k, A outputs a finite binary fraction y such that |r(x)− y| ≤ 2−k and
the running time of A is polynomially bounded in |x| and k [Ko83]. Clearly,
if µ∗ is p-time computable, then so is µ; but Blass showed that the converse
is not true unless P = NP (see [Gur91]). With this fact in mind, we assume
throughout that when we say that µ is p-time computable, both µ and µ∗

are p-time computable.
Levin (see [Joh84]) hypothesized that any natural distribution µ is either2-9

p-time computable or is dominated by a distribution that is. Strong evidence
that supports this hypothesis is the fact that all the commonly used discrete
distributions do satisfy this hypothesis. It is often natural to consider uni-
form distributions. We say that a distribution µ is uniform if µ is p-time
computable and, for all x, µ(x) = ρ(|x|)2−|x|, where

∑
n ρ(n) = 1 and there

exists a polynomial p such that for all but finitely many n, ρ(n) ≥ 1/p(n).
Levin [Lev86] used n−2 for ρ(n) for notational convenience (normalized by
dividing by

∑
n n−2 = π2/6), and |x|−22−|x| is often referred to as the de-

fault uniform distribution. If an instance X consists of several parameters
(x1, x2, . . . , xk), then by uniform distribution of X we mean that each param-
eter xi is selected independently and uniformly with respect to the default
uniform distribution on xi.

4
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Let DistNP denote the class of distributional problems (A, µ) such that2-10

A ∈ NP and µ is either p-time computable or is dominated by a distribution
that is. By Levin’s hypothesis, DistNP includes all natural distributional NP
problems. DistNP is a distributional analogue of NP.

3 Deterministic and Randomized Reduc-
tions

Several NP-complete problems under uniform distributions have been shown3-1

to be in AP (e.g., see [Joh84, GS87]). To find out whether there are com-
plete problems for DistNP, Levin [Lev86] defined and used the notion of
polynomial-time many–one reducibility. Gurevich [Gur91] conducted a thor-
ough investigation on this notion.

3.1 Deterministic Reductions

Let f be a function from Σ∗ to Σ∗. Write f(ν)(y) to denote
∑

f(x)=y ν(x).3-1.1

Then f induces a distribution f(ν) on Σ∗ for the outputs of f . We say that
µ is dominated by ν with respect to f , denoted by µ �p

f ν, if there exists a
distribution µ1 such that µ is dominated by µ1 and, for all y ∈ range(f),
ν(y) = f(µ1)(y).

Definition 2 ([Lev86, Gur91]) Let (A, µA) and (B, µB) be two distribu-
tional problems. Then (A, µA) is p-time many–one reducible to (B, µB),
denoted by (A, µA) ≤p

m (B, µB), if there exists a p-time computable reduction
f such that A is many–one reducible to B via f and µA �p

f µB.

Polynomial-time many–one reductions have the desired properties3.1-2

[Gur91]: If (A, µA) ≤p
m (B, µB) and (B, µB) ∈ AP, then (A, µA) ∈ AP;

polynomial-time many–one reductions are transitive.
The requirements of p-time many–one reductions can be weakened in two3.1-3

ways without losing the two desired properties [Lev86, Gur91].
First, we may require only that the reduction be computable in time3.1-4

polynomial on µA-average.
Second, we may use the following weaker domination condition. Dis-3.1-5

tribution µ is weakly dominated by µ1, denoted by µ �ap µ1, if for all x,
µ(x) ≤ h(x)µ1(x), where h is polynomial on µ-average. Distribution µ is

5
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weakly dominated by ν with respect to f , written as µ �ap
f ν, if there exists a

distribution µ1 such that µ is weakly dominated by µ1 and ν(y) = f(µ1)(y)
for all y ∈ range(f). Reductions defined under these two weaker requirements
are called ap-time many–one reductions .

A distributional problem is many–one complete for DistNP (or sim-3.1-6

ply average-case NP-complete) if it is in DistNP and every other problem
in DistNP is ≤p

m-reducible to it. Several distributional NP problems un-
der uniform distributions have been shown to be many–one complete for
DistNP [Lev86, Gur91, WB95, Wan95].

3.2 Randomized Reductions

The notion of many-one reductions has certain limitations. In particular, it is3.2-1

not suitable for studying completeness of problems when “flat” distributions
are presented. A distribution µ is flat [Gur91] if there exists an ε > 0 such
that for all x, µ(x) ≤ 2−|x|ε . Uniform distributions for graph problems often
turn out to be flat [Gur91, WB95]. Gurevich [Gur87, Gur91] showed that,
unless nondeterministic exponential time collapses to deterministic exponen-
tial time, no distributional problems with flat distributions can be complete
under ap-time many–one reductions. Wang and Belanger [WB95] further
showed that, without any assumption, a distributional problem with a flat
distribution cannot be complete under ap-time, one-one, and p-honest reduc-
tions.

We explain why deterministic reductions would fail: When instances of3.2-2

the target problem are under a flat distribution, each instance of approxi-
mately the same length will have approximately the same weight, and this
weight is too small to dominate the input distribution. So no matter how an
instance of the target problem is selected by an honest deterministic reduc-
tion, the domination property will always be violated.

Venkatesan and Levin [VL88] showed that by using randomized reduc-3.2-3

tions, one can overcome the difficulties caused by flat distributions. A ran-
domized reduction is a standard randomized (probabilistic) algorithm that
transforms one string to another. In [VL88], the purpose of using a random-
ized reduction is to generate instances of the target problem with sufficiently
large probability. The idea is to supply a random source Sx for a reduc-
tion f from (A, µA) to (B, µB) on each instance x of A, such that different
random strings s ∈ Sx will produce different instances f(x, s), and for all
s ∈ Sx, x ∈ A if and only if f(x, s) ∈ B. Thus, although for each individual

6
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instance f(x, s) of B, µB(f(x, s)) may be too small to dominate µA(x), the
summation

∑
s µB(f(x, s)) may be large enough to meet the domination re-

quirement for distributions. To make this point clearer, let us consider the
following special case. Let S = { (x, s) : s ∈ Sx } and for all s ∈ Sx, |s| ≥ |x|.
Assume that the reduction f is one-one on S and, for all x,

∑
s∈Sx

2−|s| = 1.
For a particular s ∈ Sx, µB(f(x, s)) may be too small to dominate µA(x),
but

∑
s∈Sx

µB(f(x, s)) = µB(f(x, s))2|s| may well be large enough to domi-
nate µA(x). Thus, if µA(x)2−|s| is dominated by µB(f(x, s)), then we have
µA(x) =

∑
s∈Sx

µA(x)2−|s|, which is dominated by
∑

s∈Sx
µB(f(x, s)), a prop-

erty we desire.
Following [VL88, BG93, BG95], we formulate the notion of randomized3.2-4

reductions as follows. For simplicity, we assume that only unbiased random
coins are used in randomizations. Let A be a randomized algorithm and x
be an input. We are only interested in sequences s of random bits such that
A(x) halts using s. Such a random sequence must be finite.

We allow a randomized algorithm (for solving a problem) to produce3.2-5

incorrect outputs on some sequences of random bits. For example, suppose
that a randomized algorithm A computes a reduction from A to B, and
suppose that A on input x, with s being the random sequence, produces an
output string y. Then the output y is incorrect if x ∈ A but y 6∈ B. If
A halts on input x with random sequence s and produces a correct output,
then (x, s) is called a good input of A.

From now on, we will be interested only in good inputs. Let A be a3.2-6

randomized algorithm and µ an input distribution ofA. A good-input domain
of A (with respect to µ) is the set of all pairs (x, s) such that µ(x) > 0, A on
input x halts and produces a correct output, and s is the random sequence
it generates during the computation. Clearly, A is deterministic on (x, s)
and we may view (x, s) as the input of A. If A computes a function f , then
we can view f as a deterministic function on (x, s). If A is deterministic on
x, then (x, e) is in the good-input domain of A, where e denotes the empty
string.

Let Γ be a good-input domain of A. Let Γ(x) = { s : (x, s) ∈ Γ }. We can3.2-7

see that no string in Γ(x) is a prefix of a different string in Γ(x); otherwise,
the longer string cannot be in Γ(x) as the algorithm stops before it can be
generated. We say that Γ(x) is non-rare [BG93] if the rarity function of Γ,
defined by UΓ(x) = 1/

∑
s∈Γ(x) 2−|s| if µ(x) > 0 and UΓ(x) = 1 otherwise, is

7
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polynomial on µ-average.1 A good-input domain Γ is called non-rare if for
all x, Γ(x) is non-rare.

For all (x, s) ∈ Γ, let3.2-8

µΓ(x, s) = µ(x)2−|s|UΓ(x).

Here the factor UΓ(x) is used for normalization (see Definition 2.8 in [BG95]
on page 955).

Definition 3 ([BG93, BG95]) Let A be a randomized algorithm with in-
put distribution µ. Then A runs in time polynomial on µ-average if there is
a good-input domain Γ of A and an ε > 0 such that Γ is non-rare, and

∑
(x,s)∈Γ

tε(x, s)|x|−1µΓ(x, s) <∞,

where t(x, s) is the running time of A on input x with random sequence s.

For simplicity, when there is no confusion about the input distribution µ,3.2-9

we call a randomized algorithm that runs in time polynomial on µ-average a
randomized ap-time algorithm.

The probability that a randomized ap-time algorithm A on input x pro-3.2-10

duces a correct output is 1/UΓ(x), a value that could be small. Blass and
Gurevich [BG93, BG95] showed that the algorithm can be iterated to obtain
a correct solution with probability 1 in ap-time, provided that the correct
output can be verified in ap-time. For the purpose of iteration, we would
like to require that the good-input domain of the algorithm be decidable in
ap-time with respect to µΓ. In [BG95], such a good-input domain is called
certifiable.

Let (A, µ) be a distributional problem. Let DA be the set of all (posi-3.2-11

tive and negative) instances of A. When (A, µ) is solvable by a randomized
algorithm, we may view a good-input domain of the algorithm as a “ran-
domized” input domain of (A, µ). Sometimes we would like to refer to a
good-input domain without specifying a randomized algorithm, and we will
call it a randomized input domain of (A, µ).

Let RAP be the class of distributional problems (A, µ) for which there is3.2-12

a randomized ap-time algorithm A with a good-input domain Γ such that
1If for all x, UΓ(x) = 1, then the randomized algorithm produces a correct output

with probability 1. For our purpose, we only need to require that the value of UΓ(x) be
“reasonable” in the sense that UΓ is polynomial on µ-average.

8
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Γ is non-rare, certifiable, and for all (x, s) ∈ Γ, x ∈ A if and only if A(x, s)
accepts. RAP is an average-case analogue of ZPP. 2

Definition 4 ([BG95]) Let (A, µA) and (B, µB) be distributional prob-Definition 4-1

lems. Then (A, µA) is ap-time randomly reducible to (B, µB), denoted by
(A, µA) ≤ap

r (B, µB), if there is a reduction f such that the following condi-
tions are satisfied.

1. The reduction f is computable by a randomized algorithm in time poly-
nomial on µA-average with a good-input domain ΓA.

2. ΓA is non-rare and certifiable.

3. For all (x, s) ∈ ΓA, x ∈ A if and only if f(x, s) ∈ B.

4. µΓA
�ap

f µB.

If the reduction f can be computed by a randomized p-time algorithm,Definition 4-2

then f is called a randomized p-time reduction.

Clearly, deterministic reductions are a special case of randomized reduc-3.2-13

tions with good inputs (x, e), where e is the empty string.
The following lemma is straightforward.3.2-14

Lemma 1 If f : ΓA → B is one-one over ΓA, then µΓA
�ap

f µB if and only
if µΓA

�ap µB◦f .

We will often use the phrase “via (f, ΓA)” to emphasize the randomized3.2-15

reduction f and its non-rare good-input domain ΓA.

Lemma 2 (([BG95])) (1) If (A, µA) ≤ap
r (B, µB) and (B, µB) is in RAP,

then so is (A, µA). (2) Randomized ap-time reductions are transitive.

2Clearly, for every set A ∈ ZPP and every distribution µ, (A, µ) ∈ RAP. We might as
well use AZPP to denote RAP. We may also define ABPP as analogous to BPP, and use
ABPP as a notion of easiness.

9
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4 Randomized Isomorphisms

Berman and Hartmanis defined two problems A and B to be p-isomorphic if4-1

there exists a p-time computable and invertible bijection φ : DA → DB such
that A ≤p

m B via φ and B ≤p
m A via φ−1. For distributional problems (A, µA)

and (B, µB), Wang and Belanger [WB95] defined that (A, µA) and (B, µB)
are p-isomorphic if there exists a p-time computable and invertible bijection
φ : DA → DB such that (A, µA) ≤p

m (B, µB) via φ and (B, µB) ≤p
m (A, µA)

via φ−1. Polynomial isomorphisms on distributional problems are transitive.
Let µ and ν be two distributions. Write µ ≈p ν if µ is dominated by ν4-2

and ν is dominated by µ. Wang and Belanger [WB95] showed the following
p-time equivalent of the Cantor-Bernstein-Myhill theorem for distributional
problems.

Theorem 1 ([WB95]) Let (A, µA) ≤p
m (B, µB) via f , and (B, µB) ≤p

m

(A, µA) via g, then (A, µA) is p-isomorphic to (B, µB) if both f and g are
one-one, length-increasing, p-time computable, and p-time invertible, and
µA ≈p µB◦f (here µB◦f(x) = µB(f(x))) and µB ≈p µA◦g.

Note that if f is one-one, then µ �p
f ν if and only if µ � ν ◦f [Gur91].4-3

Using Theorem 1, Wang and Belanger [WB95] showed that all the known
distributional NP problems that are complete under p-time many–one reduc-
tions are p-isomorphic.

Let π1 and π2 be functions defined on tuples of strings such that π1 returns4-4

the first element and π2 returns the second element.
Next, we consider how to generalize the notion of isomorphisms to the4-5

setting of randomized reductions. Let (A, µA) and (B, µB) be two distribu-
tional problems. Recall that the notion of isomorphisms under deterministic
reductions is defined to be a bijection between input domains of the under-
lying problems. Following this framework, we consider bijections Ψ between
a randomized input domain of (A, µA) and a randomized input domain of
(B, µB). Note that a randomized reduction takes a random string as input
and does not output one. This leads us to consider π1◦Ψ and π1◦Ψ−1 as pos-
sible reductions; namely, we would like to transform (encode) each instance
of A to a unique instance of B via π1◦Ψ, and transform each instance of B
back to a unique instance of A via π1◦Ψ−1. This gives rise naturally to the
following definition of isomorphism under randomized reductions.

Definition 5 (A, µA) is randomly isomorphic to (B, µB), denoted by
(A, µA) ≡r (B, µB), if the following conditions hold.

10
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1. There exist randomized input domains ΓA of (A, µA) and ΓB of (B, µB),
and a bijection Ψ between ΓA and ΓB such that Ψ is ap-time computable
on ΓA and Ψ−1 is ap-time computable on ΓB.

4-6

2. Let f = π1◦Ψ and g = π1◦Ψ−1. Then (A, µA) ≤ap
r (B, µB) via (f, ΓA),

and (B, µB) ≤ap
r (A, µA) via (g, ΓB).

Clearly, randomized isomorphisms are transitive.4-7

Next, we show a randomized ap-time equivalent of the Cantor-Bernstein-4-8

Myhill theorem for distributional problems as a natural generalization of the
p-time equivalent of the Cantor-Bernstein-Myhill theorem.

A (partial) function f : Σ∗×Σ∗ → Σ∗ (or f : Σ∗×Σ∗ → Σ∗×Σ∗) is said4-9

to be length-increasing if |f(x, y)| > |x|+ |y| whenever f(x, y) is defined.
Let (A, µA) and (B, µB) be two distributional problems. Assume that4-10

(A, µA) ≤ap
r (B, µB) via (f, ΓA) and (B, µB) ≤ap

r (A, µA) via (g, ΓB). In
view of Theorem 1, we would first require that f and g be one-one, length-
increasing, and invertible. We then would like µA and µB to have certain
relations under f and g. If f and g are deterministic many-one reductions,
we have required, as stated in Theorem 1, that µA ≈p µB◦f and µB ≈p µA◦g.
What is needed there is actually the following two requirements: µB◦f �p µA

and µA◦g �p µB; the other parts, namely, µA �p µB◦f and µB �p µA◦g, are
guaranteed by the one-one reductions. In the setting of randomization, these
two requirements may be written as follows: (1) for all (x, s) ∈ ΓB and for all
s′ ∈ ΓA(g(x, s)): µΓA

(g(x, s), s′) �ap µB(x); (2) for all (x, s) ∈ ΓA and for all
s′ ∈ ΓB(f(x, s)): µΓB

(f(x, s), s′) �ap µA(x). We can obtain, as definitions,
equivalents of these two statements without using s and s′. Since these two
statements are symmetric, we present the equivalent of the first statement
below. (The equivalent of the second statement can be obtained similarly.)

Assume that (A, µA) ≤ap
r (B, µB) via (f, ΓA). For all x ∈ DA, let lA(x) =4-11

min { |s| : s ∈ ΓA(x) }. Then µΓA
on g is weakly dominated by µB if for all

x ∈ range(g), µA(x)2−lA(x) �ap µB(π1(g−1(x))).
To prove Theorem 2, we would also like to acquire the following property.4-12

Definition 6 Let Γ be a randomized input domain of (A, µA). Then Γ is
selectable if there is a p-time computable function ξ : DA → Σ∗ such that for
every x ∈ DA, (x, ξ(x)) ∈ Γ. The function ξ is called a selection function of
Γ.

11
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Theorem 2 Suppose (A, µA) ≤ap
r (B, µB) via (f, ΓA) and (B, µB) ≤ap

r

(A, µA) via (g, ΓB). Then (A, µA) ≡r (B, µB) if the following conditions
hold.

1. Both ΓA and ΓB are certifiable and selectable.

2. Both f : ΓA → B and g : ΓB → A are one-one, length-increasing, and
ap-time invertible.

3. The distribution µΓA
on g is weakly dominated by µB, and µΓB

on f is
weakly dominated by µA.

Proof of Theorem 2 By assumption of the reductions, for all (x, s) ∈ ΓA,Proof of Theorem 2-1

f(x, s) is defined; and, for all (x, s) ∈ ΓB, g(x, s) is defined. Without loss
of generality, assume that, for (x, s) 6∈ ΓA, f(x, s) is not defined, and for
(x, s) 6∈ ΓB, g(x, s) is not defined. Hence, f is a deterministic function on
input domain ΓA, and g is a deterministic function on input domain ΓB.

By assumption, both ΓA and ΓB are selectable. Let ξA and ξB be theProof of Theorem 2-2

p-time computable selection functions of ΓA and ΓB, respectively.
Define functions F : ΓA → ΓB and G : ΓB → ΓA as follows.Proof of Theorem 2-3

∀(x, s) ∈ ΓA : F (x, s) = (f(x, s), ξB(f(x, s))) (1)
∀(x, s) ∈ ΓB : G(x, s) = (g(x, s), ξA(g(x, s))) (2)

Since both f and g are one-one and length-increasing, both F and G areProof of Theorem 2-4

one-one and ap-time computable.
We haveProof of Theorem 2-5

F−1(x, ξB(x)) = (π1(f−1(x)), π2(f−1(x)))
G−1(x, ξA(x)) = (π1(g−1(x)), π2(g−1(x))).

It is easy to see that both F−1 and G−1 are ap-time computable. TheyProof of Theorem 2-6

are also length-decreasing; namely, |F−1(x, s)| < |x| + |s| and |G−1(x, s)| <
|x| + |s|. Hence, the sets R1, R2, S1, and S2 defined below are all ap-time
decidable.

R1 =
{

(G◦F )k(x, s) : k ≥ 0, (x, s) 6∈ G(ΓB), and (x, s) ∈ ΓA if k = 0
}

,

R2 =
{

G◦(F ◦G)k(x, s) : k ≥ 0, and (x, s) 6∈ F (ΓA)
}

,

S1 =
{

(F ◦G)k(x, s) : k ≥ 0, (x, s) 6∈ F (ΓA), and (x, s) ∈ ΓB if k = 0
}

,

S2 =
{

F ◦(G◦F )k(x, s) : k ≥ 0, and (x, s) 6∈ G(ΓB)
}

.

12
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Following the proof given in [BH77], we can show that ΓA = R1 ∪R2,Proof of Theorem 2-7

R1 ∩R2 = ∅, and ΓB = S1 ∪S2, S1 ∩S2 = ∅. Also, for every (x, s) ∈ ΓA,
(x, s) ∈ R1 if and only if F (x, s) ∈ S2, and (x, s) ∈ R2 if and only if F (x, s) ∈
S1. Similarly, for every (x, s) ∈ ΓB, (x, s) ∈ S1 if and only if G(x, s) ∈ R2,
and (x, s) ∈ S2 if and only if G(x, s) ∈ R1.

Let, for all (x, s) ∈ ΓA,Proof of Theorem 2-8

Ψ(x, s) =
{

F (x, s), if (x, s) ∈ R1,
G−1(x, s), if (x, s) ∈ R2.

Then the inverse of Ψ is given by, for all (x, s) ∈ ΓB,

Ψ−1(x, s) =
{

G(x, s), if (x, s) ∈ S1,
F−1(x, s), if (x, s) ∈ S2.

The function Ψ is the desired bijection between ΓA and ΓB.
Next, we show that (A, µA) ≤ap

r (B, µB) via (π1◦Ψ, ΓA). (We can similarlyProof of Theorem 2-9

show that (B, µB) ≤ap
r (A, µA) via (π1◦Ψ−1, ΓB).)

Let (x, s) ∈ ΓA.Proof of Theorem 2-10

Case 1: (x, s) ∈ R1. Then π1◦Ψ(x, s) = f(x, s). Since by assumption,Proof of Theorem 2-11

(A, µA) ≤ap
r (B, µB) via (f, ΓA), we have x ∈ A if and only if f(x, s) ∈ B

and µΓA
�ap

f µB. Since f is one-one over ΓA, it follows from Lemma 1 that
µΓA
�ap µB◦f . By the definition of F , we have π1◦Ψ(x, s) = f(x, s). Thus,

we have x ∈ A if and only if π1◦Ψ(x, s) ∈ B, and µΓA
�ap µB◦(π1◦Ψ). Since

π1◦Ψ is one-one, we have that µΓA
is weakly dominated by µB with respect

to π1◦Ψ.
Case 2: (x, s) ∈ R2. Then g−1(x) is defined and it follows from EquationProof of Theorem 2-12

(2) that π1◦Ψ(x, s) = π1◦G−1(x, s) = π1(g−1(x)). Since g−1(x) is defined,
(π1◦g−1(x), π2◦g−1(x)) ∈ ΓB. So we have π1◦g−1(x) ∈ B if and only if g(π1◦
g−1(x), π2◦g−1(x)) ∈ A. Since g(π1◦g−1(x), π2◦g−1(x)) = x, this implies that
x ∈ A if and only if π1◦Ψ(x, s) ∈ B. By Condition 3 in the statement of the
theorem, µA(x)2−lA �ap µB(π1(g−1(x))), where lA = min { |s| : s ∈ ΓA(x) }.
Since |s| ≥ lA, we have µΓA

(x, s) = µA(x)2−|s| ≤ µA(x)2−lA , which implies
that µΓA

is weakly dominated by µB◦(π1◦Ψ). Again, since π1◦Ψ is one-one,
we have that µΓA

is weakly dominated by µB with respect to π1◦Ψ. This
completes the proof.

Proof of Theorem 2 2

13
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Built on rich structures of complete sets, Berman and Hartmanis [BH77]4-13

obtained a sufficient condition under which reductions are guaranteed to
be p-time invertible. In particular, let A be a set for which two p-time
computable functions SA(·, ·) and DA(·) exist with the following properties:
(1) (∀x, y)[SA(x, y) ∈ A if and only if x ∈ A], and (2) (∀x, y)[DA(SA(x, y)) =
y]. Then if f is any p-time reduction of some set C to A, the map f ′(x) =
SA(f(x), x) is one-one and invertible in p-time and reduces C to A. An
easy proof shows that all the known, standard NP-complete sets do satisfy
these two properties [BH77]. It follows from the p-time equivalent of the
Cantor-Bernstein-Myhill theorem for (worst-case) decision problems that all
the known standard NP-complete problems are p-isomorphic.

For distributional problems, however, the reductions need to be easily4-14

invertible and preserve the probability distributions. Unfortunately, no func-
tions such as SA and DA above are known that preserve the probabilities in
a useful way. For w ∈ A, we would need the probability of DA(w) to depend
on the probability function associated to the arbitrary set C, and hence to
an undetermined probability function. So to use Theorem 2, we will investi-
gate individual reduction used in each completeness proof. Fortunately, this
task can often be accomplished by using the existing completeness proofs,
with some minor modifications if necessary. Using Theorem 2, we can show
that all the known average-case NP-complete problems are indeed randomly
isomorphic.

5 Isomorphism Proofs

Levin [Lev86] (see also [Gur91]) showed that any p-time computable distri-5-1

bution on string x is dominated by a uniform distribution on strings whose
length is polynomially related to |x|. Based on that, Wang and Belanger
proved the following Distribution Controlling Lemma [WB95].

Lemma 3 (Distribution Controlling Lemma) Let µ be a p-time com-
putable distribution. If there exists a polynomial p such that for all x, µ(x) >
2−p(|x|), then there is a total, one-one, p-time computable and p-time invert-
ible function α : Σ∗ → Σ∗ such that for all x, 4 · 2−|α(x)| ≤ µ(x) < 20 · 2−|α(x)|.

We first use distributional halting problems as an example of obtaining5-2

an isomorphism proof.

14
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5.1 Distributional Halting

Let M1, M2, . . . be a fixed enumeration of nondeterministic Turing machines5.1-1

in which the index i is a binary integer that codes up the symbols, states,
and transition table of the i-th Turing machine Mi.

Distributional Halting (Version 1)5.1-2

Instance. Binary strings i, x, and a unary notation 1n representing positive
integer n, where i is a positive integer in binary form.

Question. Does Mi accept x within n steps?5.1-3

Distribution. Uniform; namely, the distribution on instance (i, x, 1n) is5.1-4

proportional to 2−(l+m)l−2m−2n−2, where l = |i| and m = |x|.

Distributional Halting (Version 2)5.1-5

Instance. Binary strings i, x, and t, where i is a positive integer.
Question. Does Mi accept x within |t| steps?5.1-6

Distribution. Uniform; namely, the distribution on instance (i, x, t) is5.1-7

proportional to 2−(l+m+n)l−2m−2n−2, where l = |i|, m = |x|, and n = |t|.

Let (K, µK) and (K ′, µK′) denote the halting problem version 1 and ver-5.1-8

sion 2, respectively. (K, µK) is is complete for DistNP under p-time many–
one reductions [Gur91, BDCGL92, WB95]. (K ′, µK′) (note that µK′ is flat) is
complete for DistNP under randomized p-time reductions [Gur91, Wan97].

Theorem 3 (K, µK) ≡r (K ′, µK′).

Proof of Theorem 3 Let ΓK = { (y, s) : y = (i, x, 1n) and |s| = n }. ThenProof of Theorem 3-1

ΓK is certifiable, non-rare (the rarity function UΓ(x) = 1), and selectable.
For a given string y = (i, x, 1n), let h be a function that pads the program i
such that h is p-time computable, p-time invertible, |h(i)| > |i|+ O(1), and
Mh(i) = Mi. Let h(i) = j; then |h−1(j)| = |j| −O(1). For all (y, s) ∈ ΓK , let
f(y, s) = (h(π1(y)), π2(y), s). Then f is one-one, length-increasing, p-time
computable, and p-time invertible. Hence, for all (y, s) ∈ ΓK , we have y ∈ K
if and only if (π1(y), π2(y), s) ∈ K ′ if and only if (h(π1(y)), π2(y), s) ∈ K ′.
This implies that y ∈ K if and only if f(y, s) ∈ K ′. By definition, µΓK

(y, s) =
µK(y)2−|s|, which is proportional to µK′(f(y, s)). Hence, µΓK

(y, s) is domi-
nated by µK′(f(y, s)). Thus, (K, µK) ≤ap

r (K ′, µK′) via (f, ΓK).
Next, we show that (K ′, µK′) is polynomially reducible to (K, µK) viaProof of Theorem 3-2

a length-increasing, one-one, deterministic reduction. We can see that
15
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(K ′, µK′) ≤p
m (K, µK) by a reduction that maps (i, x, s) to (h(i), x, 1|s|). But

this reduction is not one-one and so cannot be used. We will construct a
different reduction using a standard technique as shown in [WB95]. Note
that µK′ satisfies the hypothesis of the Distribution Controlling Lemma. So
there is a total, one-one, p-time computable, and p-time invertible function
α such that for all y ∈ DK′ , 4 · 2−|α(y)| < µK′(y) < 20 · 2−|α(y)|. Let M be
a nondeterministic Turing machine M that accepts K ′ in polynomial time.
Define a Turing machine M ′ as follows: On binary input w, if α−1(w) is
defined, then M ′ simulates M on α−1(w) and rejects otherwise. So for all
y ∈ DK′ , M accepts y if and only if M ′ accepts α(y). It is easy to see that
M ′ on input α(y) is bounded in polynomial time, and we call it p(|y|).

Let i be a program such that M ′ = Mi. Let g(y) = (i, α(y), 1p(|y|)). ThenProof of Theorem 3-3

g is one-one, length-increasing, p-time computable, and p-time invertible.
By construction, y ∈ K ′ if and only if g(y) ∈ K. Moreover, µK ◦g(y) ≈p

2−|α(y)| ≈p µK′(y). Thus, we have (K ′, µK′) ≤p
m (K, µK) via g.

Conditions 1 and 2 of Theorem 2 regarding ΓK′ are obviously satisfied.Proof of Theorem 3-4

To complete this direction, we need only show that Condition 3 of Theo-
rem 2 holds. For this purpose, we view function g as a function defined
on ΓK′ = { (y, e) : y ∈ DK′ } by g(y, e) = g(y). Let z ∈ range(g). Then
z = g(y) for some y ∈ DK′ . Hence, we have µK(z) ≈p µK′ ◦(g−1(z)). Let
lK = min { |s| : s ∈ ΓK(z) }. Then µK(z)2−lK < µK(z). This implies that
µK(z)2−lK is dominated by µK′(π1(g−1(z))). The first statement of Condi-
tion 3 of Theorem 2 is therefore satisfied. We now show that the second
statement of Condition 3 is also satisfied. Let y = (i, x, s) ∈ range(f).
Then f−1(y) = (y′, s), where y′ = (h−1(i), x, 1|s|). Hence, π1(f−1(y)) =
(h−1(i), x, 1|s|). Since |h−1(i)| = |i| −O(1), this implies that µΓK′ (y) is dom-
inated by µK(π1(f−1(y))).

We have therefore verified that all the conditions of Theorem 2 are satis-Proof of Theorem 3-5

fied, and so (K, µK) ≡r (K ′, µK′).

Proof of Theorem 3 2

5.2 Distributional Tiling and Graph Spot Coloring

A tile is a square with a symbol on each corner. Tiles may not be rotated or5.2-1

turned over. We assume that there are infinitely many copies of each type
of tile. By a tiling of an n × n square we mean an arrangement of n2 tiles
to cover the entire square so that the symbols on the touching corners of
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adjacent tiles are the same.
Distributional Tiling5.2-2

Instance. A finite set of tiles T , a unary notation 1n for a positive integer n,
and a sequence S = s1s2 . . . sk (k ≤ n) of tiles that match each other; that
is, the symbols on the touching corners of si and si+1 are the same.

Question. Can S be extended to tile an n× n square using tiles from T?5.2-3

Distribution. Uniform; namely, the distribution is proportional to5.2-4

Pr[T ]n−2Pr[S], where Pr[T ] is the probability of choosing T ,3 and Pr[S] is
the probability of choosing S. S is chosen by first choosing k at random
with probability 1/n, then choosing the first tile s1 at random from T , and
choosing the si (i > 1) sequentially and uniformly at random from those tiles
in T that match si−1.

Levin [Lev86] showed that the distributional tiling problem is average-case5.2-5

NP-complete under a deterministic reduction. Gurevich [Gur91] provided a
detailed proof for tiles with marked edges, where each edge of a tile is marked
with a symbol; in the tiling of a square, symbols on the touching edge of
adjacent tiles are the same. Belanger and Wang [BW93, WB95] presented
a simpler proof. Distributional tiling with marked corners and with marked
edges are polynomially isomorphic.

We are interested in the following variant of distributional tiling on tiles5.2-6

with marked corners. First, the set of tiles T is fixed; so T is no longer a
component of an instance. Second, in the S component of an instance, the
two corners at the same side of a tile have the same binary digit. The first
tile in S has a special symbol on its lower-left corner. It is easy to see that
there exists T , denote it by T , such that this variant of distributional tiling
is p-isomorphic to the standard distributional tiling. (For example, we can
construct T based on a fixed Turing machine that accepts K.) Denote by
(T , µT ) this average-case NP-complete variant.

Venkatesan and Levin [VL88] studied the following edge-coloring problem5.2-7

for directed graphs (digraphs, in short), where nodes are labeled and may
have self-loops. For convenience, we assume that self-loops with single direc-
tion and self-loops with double directions are distinct. (This assumption can
be used to simplify proofs.) Let G be such a digraph. An edge of G may be
colored or left blank (i.e., uncolored), with a constant number of colors. A
spot in a colored digraph is a 3-node subgraph with induced colored edges

3One can use one’s favorite distribution to select T or simply select it uniformly at
random among binary strings, since T is coded in binary.
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(including self-loops if there are any) and the nodes unlabeled. It is easy to
see that there are only a constant number of different spots. The coloration
C(G) of G consists of the set of all spots induced from the colored graph G
and the number of blank edges.

Write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.5.2-8

Distributional Graph Spot Coloring5.2-9

Instance. A digraph G of n nodes, a set C of spots, and a unary notation 1k

for a positive integer k, where k <
(

n
2

)
.

Question. Can G be colored such that C(G) = (C ′, k) and C ′ ⊆ C? (If5.2-10

so, we then say that G is colorable.)
Distribution. Uniform: First choose a positive integer n with probability5.2-11

Θ(n−2), then randomly and independently choose a directed graph of n nodes
with uniform probability 4−(n

2)3−n ∼ 2−n2 , a set of spots with probability
Θ(1), the number of blank edges k with probability Θ(n−2). Hence, the
probability distribution is proportional to n−42−n2 , which is flat.

Let (E, µE) denote the distributional graph spot-coloring problem.5.2-12

Venkatesan and Levin [VL88] (a slightly different proof was given in [Ven91])
showed that (E, µE) is average-case NP-complete under a randomized reduc-
tion.4

Theorem 4 (T , µT ) ≡r (E, µE).

Proof of Theorem 4 For a large part, we follow a proof given in [VL88],Proof of Theorem 4-1

showing that distributional graph spot-coloring is average-case NP-complete.
To arrive quickly to the point showing why a randomized isomorphism exists,
we will omit proofs to certain lemmas; all of the missing proofs can be found
in [VL88, Ven91].

A tournament is an acyclic (except for self-loops) complete digraph. AnyProof of Theorem 4-2

tournament contains a Hamiltonian path; there is a deterministic p-time
algorithm that starts from the node with smallest label and finds a Hamil-
tonian path uniquely (see, e.g., [Liu68]). Let k = |T |. Let t1, t2, . . . , tk
be a Hamiltonian path of a tournament T found in this way. Define
the code for a node u to be the binary string of length 2|T | of the form

4What would be the minimum number of colors that can make the distributional graph
spot coloring problem complete for DistNP? That is an interesting question. It was claimed
that 20 colors [VL88], or even much fewer colors [Ven91], are sufficient.
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c(t1, u)c(u, t1) . . . c(tk, u)c(u, tk), where c(u, v) = 1 if u → v and 0 otherwise
[BES80]. So T determines the code for u uniquely.

We now construct a randomized reduction f from (T , µT ) to (E, µE). LetProof of Theorem 4-3

X = (1n, S) (|S| < n) be an instance of (T , µT ).
The reduction f first partitions {1, . . . , 2n2+k−1} at random into disjointProof of Theorem 4-4

sets T, L, U , with |T | = k = d2 log ne+1, |L| = n2, and then randomly adds
edges to generate a random graph of 2n2+k−1 nodes. Let r(n) be the number
of random bits required in this random process. (In [VL88], it indicates that
r(n) = 5n4 is sufficient.) Since there are 2(2n2+k−1)2 many graphs and we need
extra random bits to generate a partition, r(n) > (2n2 + k − 1)2. Clearly, a
partition and a graph can be uniquely constructed in time polynomial of n
when r(n) random bits are given.

Among the random graphs so generated, we are particularly interested inProof of Theorem 4-5

the ones that satisfy the following conditions.

1. T is a tournament.

2. T is the set of all nodes with double-direction self-loops and L is the
set of all nodes with single-direction self-loops. (Self-loops are used to
enforce the graph structure and the color pattern.)

3. Every node in L∪U is connected to every node in T .

4. All unlooped nodes (i.e., nodes in U) have distinct codes with respect
to T .

5. Let v1, v2, . . . , v|U | be the nodes in U in the decreasing order of codes
with respect to T . If the symbol of the right side of the i-th tile of S is
0, then vi → vi+1 is the only edge between vi and vi+1; if the symbol is
1, then vi ← vi+1 is the only edge. If i ≥ |S|, then there are no edges
between vi and vi+1.

Note that the last condition above gives an encoding of S in the graph.Proof of Theorem 4-6

Also, in [VL88], it was required that T be the unique k-node tournament.
In our construction, all nodes in T are with double-direction self-loops, and
no other nodes have such self-loops. This makes T unique. Let G denote
the resultant graph; we call it a tiling graph. Venkatesan and Levin [VL88]
showed that there are sufficiently many tiling graphs.

Lemma 4 ([VL88]) The probability that G is a tiling graph is at least
Ω(n−d) for some constant d > 1.
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Let ΓT (X) = { s : |s| = r(n) and s produces a tiling graph G from X }.Proof of Theorem 4-7

Then ΓT = { (X, s) : s ∈ ΓT (X) } is a good-input domain of f . It follows
from Lemma 4 that UΓT (X) = Ω(n−d) and so ΓT is non-rare. Also, given
a random sequence s, it is easy (in p-time) to check whether the graph
generated by s is a tiling graph.

Based on the structures of G, Venkatesan and Levin [VL88] (see alsoProof of Theorem 4-8

[Ven91]) constructed a color specification (C, b) in time polynomial of n,
where C is a finite set of spots and b = O(

√
n) such that the following

lemma holds true.

Lemma 5 ([VL88]) For every random string s ∈ ΓT (X), X is a positive
instance of distributional tiling T if and only if the graph G produced by
f(X, s) is colorable under the color specification (C, b). Moreover, the tiling
can be constructed in polynomial time from a coloring.

The desired reduction f(X, s), for (X, s) ∈ ΓT , is the digraph G as de-Proof of Theorem 4-9

scribed above, plus the color specification (C, b).
It is easy to see that f is one-one, length-increasing, and p-time com-Proof of Theorem 4-10

putable on input (X, s) ∈ ΓT . To see that µΓT (X, s) is dominated
by µE(f(X, s)), we note that µE(f(X, s)) is proportional to (2n2 + k −
1)−42−(2n2+k−1)2 , and µΓT (X, s) = Pr[X]2−|s| ≤ 2−|s| = 2−r(n), where Pr[X] is
the probability distribution of X. Since −r(n) < −(2n2 + k− 1)2, µΓT (X, s)
is dominated by µE(f(X, s)).

We now show that f is p-time invertible. Given a tiling graph G, we canProof of Theorem 4-11

easily identify T , L, and U by checking whether a node has a double-direction
self-loop, a single-direction self-loop, or no self-loop. Our task is therefore
to find S that is embedded in G. From T , we can obtain distinct codes for
nodes in U and so S can be identified. The partition T , L, and U , and the
edges of G reveal the random string s that generates the graph. Clearly, this
algorithm can be carried out in time polynomial of n. This algorithm also
shows that ΓT is selectable.

Next, we consider the other direction. Since µE satisfies the hypothesisProof of Theorem 4-12

of the Distribution Controlling Lemma, it has been shown in [WB95] that
(E, µE) ≤p

m (T , µT ) via a deterministic reduction g that is one-one, p-time
computable, and p-time invertible. Moreover, µE ≈p µT ◦g. So for every X ∈
range(g), where X = (1n, S) ∈ DT , and for every s ∈ ΓT (X), µΓT (X, s) <
µT (X), which is dominated by µE(g−1(X)). This shows that the first part
of Condition 3 of Theorem 2 is satisfied.
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We verify that the second part of Condition 3 of Theorem 2 is also satis-Proof of Theorem 4-13

fied. First, we may view g as a function defined on ΓE = { (Y, e) : Y ∈ DE }
by g(Y, e) = g(Y ). Let Y ∈ range(f), then Y = (G, (C, b)) = f((1n, S), s) for
a unique ((1n, S), s) ∈ ΓT , where |S| < n, and |G| = 2n2 + k − 1, where |G|
denotes the number of nodes in G. Hence, µΓE

(Y, e) = µE(Y ) ≈p |G|−42−|G|2 .
Since µT (1n, S) is proportional to n−2c−|S| for some constant c (c ≤ |T |) and
|S| < n, we have that µΓE

(Y, e) is dominated by µT (1n, S) = µT (π1(f−1(Y ))).
From Theorem 2, this completes the proof.Proof of Theorem 4-14

Proof of Theorem 4 2

5.3 Distributional Matrix Transformation

A square matrix X is called unimodular if all entries in X are integers and5.3-1

its determinant det(X) = 1. Let SL2(ZZ) denote the set of 2× 2 unimodular
matrices. Define the size of a unimodular matrix X, denoted by |X|, to be
the length of the binary representation of the maximal absolute value of its
entries.

The distributional matrix transformation problem deals with linear trans-5.3-2

formations on 2×2 unimodular matrices. A linear transformation of SL2(ZZ)
is a function T : SL2(ZZ)→ SL2(ZZ) such that T (

∑
Xi) =

∑
T (Xi) whenever

all the Xi and
∑

Xi are unimodular matrices. (Note that in general, SL2(ZZ)
is not closed under addition.) A linear transformation of SL2(ZZ) can be rep-
resented by a 4 × 4 integer matrix, and it is decidable in polynomial time
whether a given 4 × 4 integer matrix represents a linear transformation of
SL2(ZZ) [Gur91, BG95].

Let T be a linear transformation and let M(T ) be its 4×4 integer matrix5.3-3

representation. Define the size of T to be the length of the largest absolute
value (in the binary notation) of entries in M(T ). Gurevich [Gur91] (see
also [BG95]) showed that the uniform distribution of T among all linear
transformations of size l is Θ(l−12−2l).

Distributional Matrix Transformation5.3-4

Instance. A unimodular matrix X, a finite set S of linear transformations of
unimodular matrices, and a unary notation 1n for a positive integer n.

Question. Does a linear transformation T exist, where T = T1◦T2◦. . .◦Tk,5.3-5

k ≤ n, Ti ∈ S, such that T (X) is the identity matrix?
Distribution. The three components are chosen randomly and indepen-5.3-6

dently. The integer component n is chosen with respect to the default uniform
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distribution 1/n2. The unimodular component X is chosen with probability
|X|−22−2|X|. Linear transformations are chosen with respect to the uniform
distribution on transformations of the same size. Finally, the probability of
S is proportional to the product of the probabilities of the members in S.

Let (T, µT ) denote the distributional matrix transformation problem.5.3-7

Blass and Gurevich [BG95] showed that (T, µT ) is average-case NP-complete
under a randomized reduction. Based on that we can show the following
result, and we leave the proof to the reader.

Theorem 5 (K, µK) ≡r (T, µT ).

We can also show that the distributional matrix representability problem5.3-8

with flat distribution [VR92] is randomly isomorphic to (K, µK). The reader
is referred to [VR92] for a definition of the problem, and we again leave the
isomorphism proof to the reader.
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