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Abstract

We present a game-based architecture for developing complex in-
teractive components in computational logic. Interactive components
are developed either as players making moves according to the rules
of a game or as umpires that enforce the rules, thereby controlling the
behaviours of players. Centralised organisations based on umpires and
decentralised organisations based on autonomous players can then be
combined to produce interactive systems of a very complex nature.
The potential of the resulting methodology is exemplified by show-
ing how to formulate interaction protocols for software agents in the
context of connected community systems.

1 Introduction

In [SS96] we introduced the notion of games as a metaphor for developing
interactive systems, and in [Sta96] we presented a logic-based framework—
motivated by our work in [SS97]—demonstrating how to apply games to build
practical applications such as knowledge-based front-ends [Sta94]. Interac-
tive systems of this type require centralised control, and as a result in [Sta96]
a game is played via an umpire. The umpire is a component that displays
the state of the game, provides means by which user players select moves,
enforces compliance of all the players with the rules, and thereby controls
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the interactions. The advantages of the resulting framework is that com-
plex interactive systems, such as multilingual front-ends [SS98], can be built
systematically from component subgames.

In this paper we revisit and extend the existing formulation of the games
metaphor to develop interactions of the type found in multiagent systems
[WJ95]. We are motivated by our work in connected community systems
[MPS99], where an agent is an autonomous software component that per-
forms tasks on behalf of a user in the electronic environment of a commu-
nity. In this context the issue becomes how to use games to formulate agent
autonomy, where an umpire is not necessary to control the interactions. To
address this issue, the contribution of this paper is to provide an alternative
organisation of a game, where control is distributed to players. The result-
ing formulation is an architecture for possible organisations of an interactive
system where control is either centralised to an umpire, or distributed to
individual players, or both. We exemplify the architecture by showing how
to formulate interactions resulting from agent interaction protocols [Fou97].
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Figure 1: Two interaction protocols

The agent interaction protocols shown in Figure 1 are used as examples
throughout the paper. The QUERY protocol illustrates how an agent queries
another agent for information, while the REQUEST protocol shows how an
agent asks another agent to perform an action on its behalf. We formulate
the rules of a protocol as the rules of a game, and the agents using a protocol
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to interact as the players playing a game. Shaded circles in Figure 1 represent
states where the initiator player can move, while white circles represent states
where the other player can move. The possible moves at different states are
represented by arrows, while terminating states are represented with double
circles.

The paper is structured as follows. We revisit the existing formulation of
games in Section 2, where we specify a game as a component with a local
state, a set of moves, and a set of rules determining how the state evolves
as a result of players making moves. In this new formulation we the show
in Section 3 how to play a game via an umpire, a separate component to
control the behaviour of players on the state of the game. In Section 4
we show how players may play a game autonomously, without an umpire,
but by sharing the rules and making moves in a game through the medium
of an environment. Compound games are presented in Section 5, showing
how to extend the framework to support complex interactions for umpired
and autonomous play. We conclude in Section 6, where we also discuss the
differences of this paper with our previous and related work.

2 Atomic games

To represent any game, we need to decide how to specify the state, the
moves, and the rules. The state contains the properties describing different
configurations of the game, including who plays in the game, and possibly
containing a history of the moves being made. The moves represent the
different types of actions available in the game. The rules describe which
moves are legal at different stages of the game, and how these moves affect
the state of the game. In this section we present a general specification of the
state, the moves, and the rules of a game. The specification is instantiated
by showing how to represent the QUERY protocol as a game.

2.1 The moves of a game

We represent a move as an Act selected by a Player as follows:

select(Player, Act).

Player and Act are terms whose representation depends on the specific
game at hand. For example, the moves for the QUERY protocol are defined
as follows:
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select(Player, query(Query));
select(Player, inform(Query, Answer));
select(Player, failure(Query));
select(Player, refuse(Query));
select(Player, notunderstood(Query)).

The first term describes a Player who asks a Query, the second a Player who
informs an Answer, the third a Player who fails to answer, the fourth a Player
who refuses to answer, and the fifth a Player that does not understand the
Query. We assume propositional queries; thus an answer is either yes or no.

2.2 The state of a game

We treat the state of a game as a separate component specified by rules of
the following form:

rule(State, Property, Conditions).

Such a rule states that a Property holds in the State of the game if the list of
all the Conditions also hold in that state. For example, we can describe an
instance of the state for a QUERY protocol as follows:

rule(qprotocol(qp1), player(p1), []) ),
rule(qprotocol(qp1), player(p2), []) ),
rule(qprotocol(qp1), about(tel(jim,5946330)), []) ),
rule(qprotocol(qp1), next(p2), []) ).
rule(qprotocol(qp1), last(p1), []) ).
rule(qprotocol(qp1), previous( select(p1, query(tel(jim,5946330), yes))), []) ).

The state of the QUERY protocol qprotocol is indexed by identifier qp1.
This holds an instance of the game where player p1 has already asked player
p2 to check whether the telephone number of jim is 5946330. The state also
holds what the protocol is all about (i.e., the query), who played last, and
who plays next, and keeps a record of the previous move made.

The properties describing the state of a game are interpreted as goals of
the solve/2 metainterpreter [Bro93], as defined below:

solve(State, []).
solve(State, [Goal | Goals]):- solveOne(State, Goal), solve(State, Goals).

System goals, negation, and rules are interpreted separately as follows:

4



solveOne(State, Goal):- system(Goal), !, Goal.
solveOne(State, not [Goal | Goals]):-!, not solve(State, [Goal | Goals]).
solveOne(State, not Goal):- not solveOne(State, Goal).
solveOne(State, Goal):- rule(State, Goal, Conditions), solve(State, Conditions).

Although solve/2 has been extended to handle state changes [BT91], in
this paper we use the program effects/2 to apply the effects of moves (or
actions) on the state of a game:

effects(State, []).
effects(State, [Action | Actions]):-

effectsOne(State, Action),
effects(State, Actions).

The effects of one Action on the State are specified as follows:

effectsOne(State, Action):-
effectsRule(State, Action, Conditions, Actions),
solve(State, Conditions),
effects(State, Actions).

Rules of the form

effectRule(State, Action, Conditions, Actions)

are interpreted as follows: The list of Actions are carried out if the Conditions
of the Action are solved on the State of the game. The additional clauses

effectsOne(State, add( Property )):- assert( rule(State, Property, []) ).
effectsOne(State, delete( Property )):- retract( rule(State, Property, []) ).

simulate assert/1 and retract/1 for a game state described by rule/3. As an
example of an effects rule, consider how to formulate the effects of a move
that is not a query (i.e., inform, failure, refuse, and notunderstood) on the
state of a QUERY protocol game:

effectsRule(qprotocol(Id), select(P, Act), [not Act = query( )],[
delete(previous(select(L, ))),
add(previous(select(P, Act))),
delete(next(P)),
add(next(L)),
delete(last(L)),
add(last(P))]).

The effects change what is the previous move made and whose turn it is next.
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2.3 The rules of a game

The following logic program describes the rules of a game:

game(State, Result):-
terminating(State, Result).

game(State, Result):-
not terminating(State, ),
valid(State, Move),
effects(State, [Move]),
game(State, Result).

The two clauses above are interpreted as follows: If a terminating state
is reached, the rules of the game return Result as output. Otherwise, in a
nonterminating state the effects of a valid Move are applied to produce a new
State. Interaction as a game continues in the new, implicitly updated state
until termination is reached. terminating/2 rules are specified as

terminating(State, Result):- solve(State, terminating(Result)).

For example, we specify how the QUERY protocol terminates with rules of
the form

rule(qprotocol(Id), terminating( answered(Pa, Pb, Query, Answer) ), [
next(Pb),
previous(select(Pa, inform(Query, Answer)))

]).

To represent the valid moves, we define a valid move in terms of available
and legal moves:

valid(State, Move):- available(State, Move), legal(State, Move).

Conceptually, available moves are those moves that can be physically
selected in a game, while legal moves are those available moves that are
allowed at different stages of the game. In programming terms, available/2
definitions act as generators, while legal/2 definitions act as filters.

Practical applications—see, for instance, [Sta96]—require that some legal
moves must be forced at specific stages of the game irrespective of what other
moves are possible, as if some legal moves overwrite the rest of the legal
moves. We express this layering of legal moves by defining them in terms of
necessary and possible moves:
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legal(State, Move):- necessary(State, Move).
legal(State, Move):- not necessary(State, ), possible(State, Move).

necessary/2 definitions always overwrite the legal moves described by possi-
ble/2 definitions. The moves of a specific game are then defined by specifying
the conditions under which moves are available, possible, or necessary and as
a result implicitly derive when moves are legal and valid. We define available,
necessary, and possible moves as

available(State, Move):- solve(State, available(Move)).
necessary(State, Move):- solve(State, necessary(Move)).
possible(State, Move):- solve(State, possible(Move)).

In the QUERY protocol it is available to any protocol player to ask a
query:

rule(qprotocol(Id), available( select(P, query(Query)) ), [player(P)]).

It is also necessary at the beginning that the player who plays next asks a
query:

rule(qprotocol(Id), necessary( select(P, query(Query)) ),[
next(P),
not last( )

]).

After a query is asked, possible moves are defined by a rule of the following
form:

rule(qprotocol(Id), possible( select(Next, Act) ),[
next(Next),
previous(select(Last, query(Q))),
member(Act, [inform(Q, A),failure(Q),refuse(Q),notunderstood(Q)])

]).

The full definition of the protocol is given in the appendix.

3 Umpired games

Given the rules and the initial state of a game, execution of game/2 describes
all possible results of that game. To play a game, however, requires a different
mode of execution whereby actual moves made by players effectively select
one result from all possible ones. This section shows how to play a game
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via an umpire. The umpire is a component that checks moves made by
players and presents their effects on a display, in this way controlling their
interactions. The resulting representation of the umpire is exemplified by
showing how to umpire the QUERY protocol, specified as a game in the
previous section.

3.1 The umpire

We use the logic program proposed in [Sta98] to define an umpire of a game:

umpire(U, S, R, game(S, R)):-
stop(U, S, R, terminating(S, R)).

umpire(U, S, R, game(S, R)):-
not terminating(S, ),
check(U, M, S, valid(S, M)),
display(U, S, M, effects(S, M)),
umpire(U, S, R, game(S, R)).

The umpire’s identifier U and the state of the game S are provided as input
when umpire/4 is started, while the result R is the output returned when the
program terminates. Moves made by players are extracted and checked for
validity by the umpire; only the effects of a valid move M are displayed.
The umpire finally obtains the result R and stops the game. Note also that
umpire/4 is easily portable. To port the implementation of an umpire to a
new platform, one may need to change only stop/4, check/4, and display/4,
especially those parts that depend on primitives of the old platform.

3.2 Checking move validity

A move is checked in a game by developing further the check/4 predicate.
This is defined either in forward mode, where all the valid moves are provided
to a player to select one, or in backward mode, where a player selects a move
and the umpire checks that it is valid using the rules. In both modes, we
assume that players are components holding selection strategies that are
interpreted by solve/2. Then, checking a move in forward mode, we write

check(U, select(P, Act), S, Valid):-
findall(Act, Valid, Acts),
solve(P, [select(S, Acts, Act)]).

8



When calling check/4, Act is a free variable, but the rest of the variables
in the head are instantiated. Note that calling findall/3 does not instantiate
Act, but calling the selection strategy of the player P through solve/2 does.
Note also that the variable Valid unifies at execution time (see definition of
umpire/4) with the head of the rules defining valid moves:

valid(S, select(P, Act)).

Backward mode is defined slightly differently:

check(U, select(P, Act), S, Valid):- solve(P, [select(S, Act)]), Valid.

Now, the move is first selected by the player, and then the umpire checks
that the move is valid.

3.3 Player strategies

To illustrate how to define player strategies, consider two players p1 and p2,
playing the QUERY protocol game via an umpire u1 that checks moves in
backward mode. Human players make moves via a display using solve/2 (the
simplest possible definition is given below):

solveOne(P,select(qprotocol(Id),Act)):- human(P),write(”Move ?”),read(Act).

System players are represented by logic programs. In this umpired vari-
ation of play we specify their behaviour with rules. Suppose that p1 is a
player represented as a logic program, and that p1 plays first. The selection
strategy of p1 in this case asks a query:

rule(p1, select(qprotocol(Id), query(Query)), [
not solve(qprotocol(Id), previous( )),
solve(qprotocol(Id), [about(Query)])

]).

Note that we now need to allow solve/2 to appear in the body of rules,
so that the system player can access the state of the game. This can be
accommodated by adding to the definition of solve/2 the following definition:

solve(A, solve(B, G)):- solve(B, G).

Now suppose that logic program p2 is also a player that has to answer the
query. Assuming propositional queries with a yes/no answer, the rule below
allows p2 to inform the answer yes:
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rule(p2, select(qprotocol(Id), inform(Q,yes)), [
intelligible(Q),
public(Q),
solve(qprotocol(Id), [previous(select(P, query(Q))]),
Q

]).

intelligible/1 and public/1 are defined locally for p2. If the query Q cannot be
solved in p2’s knowledge base, the player informs with a no. Similarly, the rest
of the strategy rejects queries asking private questions, while unintelligible
queries result in a query not being understood.

3.4 Completing the umpire

We can complete the definition of the umpire by showing how the umpire
displays the effects of a valid move, and how the umpire stops a game. A
valid move is displayed by the following program:

display(U, S, M, Effects):- Effects, solve(U, display(S, M)).

Interpretation of display rules ensures that the effects of a move are shown
on the display of the application. In the context of the QUERY game umpired
by the umpire component u1, for example, a display rule is defined as

rule(u1, display(qprotocol(Id), M), [write(M), nl]).

Similarly, stopping a game is now specified as

stop(U, S, R, Terminating):- Terminating, solve(U, stop(S, R)).

Again, in the context of the QUERY game, a rule that stops the game is
defined as

rule(u1, stop(qprotocol(Id), R), [
writelist([”Result for QUERY protocol:”, Id, ”is ”, R]),
nl

]).

To give the full picture of how an umpired game is started, we also need
to show how the initial state of a game is constructed, and how the umpire
program is activated. One way to construct the initial of a game is

new( qprotocol(Id, First, Second, Query) ):-
assert( rule(qprotocol(Id), player(First), []) ),
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assert( rule(qprotocol(Id), player(Second), []) ),
assert( rule(qprotocol(Id), next(First), []) ),
assert( rule(qprotocol(Id), about(Query), []) ).

For simplicity, we do not specify explicitly the member predicates of a
protocol state, but they are required in practice. We are now in a position
to start an umpired game. The conjunction

?- new(qprotocol(q1,p1,p2,tel(jim,5946330))), umpire(u1,qprotocol(q1),R,G).

allows player components p1 and p2 to play the query protocol game G via
the umpire component u1 and to return R as the result.

4 Autonomous play

An alternative way of using the rules of a game is to play the game with
autonomous players, where an umpire is absent. This view is motivated
by applications such as multiagent systems, for example, [MPS99], where
an agent is an autonomous software component that reacts according to a
changing and evolving environment. We develop an agent as an autonomous
player of a game, and we introduce the notion of an environment that holds
the state of the game and displays the moves made. We exemplify the idea
by showing how to communicate with the query protocol using autonomous
players, and, by analogy, showing how to use games to develop communica-
tion amongst autonomous agents.

4.1 The environment of a game

In developing autonomous play, the game is played through the medium of
an environment. In the extended game metaphor presented here, an en-
vironment is the implementation of a game state. As user players must
be supported, the environment is required to display the effects of moves.
A move causes the environment to evolve. Assuming a logic-programming
platform with a multithreaded capability of the type described in [CC93], we
represent the evolution of the environment with the following program:

evolve(E, S, R, game(S, R)):-
halt(E, S, R, terminating(S, R)).

evolve(E, S, R, game(S, R)):-
not terminating(S, ),
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consume(E, S, M, available(S, M)),
display(E, S, M, effects(S, M)),
evolve(E, S, R, game(S, R)).

The environment thread halts when the state of the game has terminated.
Otherwise, the environment consumes a move made by a player and displays
the effects of the move to the rest of the players, including the one that made
the move. Note that the environment consumes only physically available
moves; it does not need to know whether moves are valid or legal. Also, a
consumed move is not remembered once displayed; that is, the environment
is destructive in that it does not support full history explicitly. (It is the
responsibility of players to remember what they do in various stages of the
game.) To define a specific environment, we need to specify the lower-level
implementation rules as

halt(E, S, R, Terminating):- solve(E, [Terminating, halt(S, R)]).
consume(E, S, M, Available):- solve(E, [consume(S, M), Available]).
display(E, S, M, Effects):- solve(E, [Effects, display(S, M)]).

by defining halt/2, consume/2 and display/2. Examples for some of these
predicates are given in Section 4.3. First, however, we show how to represent
autonomous players.

4.2 Autonomous players

Assuming an evolving environment that displays moves, we represent au-
tonomous players in that environment as active threads represented by the
following program:

play(P, E, S, R, game(S, R)):-
exit(P, E, S, R, terminating(S, R)).

play(P, E, S, R, game(S, R)):-
not solve(P, [terminating(S, )]),
choose(P, E, S, M, valid(S, M)),
execute(P, E, S, M, effects(S, M)),
play(P, E, S, R, game(S, R)).

A player P concludes a game by exiting a terminating state S in an en-
vironment E. Otherwise, the player chooses a move M in the environment E,
executes it in E, and continues the play until the game ends. For any player
P we use solve/2 to interpret the terminating conditions and the validity of
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moves. The clauses below are based on the definition of solve/2, provided
earlier, and assume that the rules of a game are defined once and shared by
all players as

solveOne(P, terminating(S, R)):- solve(S, [terminating(R)]).
solveOne(P, valid(S, R)):- valid(S, M).
solveOne(P, effects(S, M)):- effects(S, M).

In general, players may hold different, and possibly conflicting, interpre-
tations of rules. Determining how to accommodate this type of player is,
however, beyond the scope of this work.

Based on the representation of an autonomous player as above, we rep-
resent the lower-level implementation predicates as

exit(P, E, S, R, Terminating):- solve(P, [Terminating, exit(E, S, R)]).
choose(P, E, S, M, Valid):- solve(P, [choose(E, S, M), Valid]).
execute(P, E, S, M, Effects):- solve(P, [Effects, execute(E, S, M)]).

In other words, to completely define a player, we need to define exit/3,
choose/3, and execute/3 in the local database of each player. We show next
how to instantiate these rules in the context of an environment where two
system players play the QUERY protocol.

4.3 Synchronisation

The issue of developing autonomous players interacting through an envi-
ronment is how players synchronise their moves with other players and the
environment. We sketch how synchronisation is achieved in this context by
illustrating how two agents may synchonise their moves when they play the
QUERY protocol. We capitalise on the fact that turn-taking is described in
the rules of the game. We assume that the environment buffers move be-
fore they are consumed. We also assume that the effects of these moves are
applied at the environment level by the display.

4.3.1 The environment definition

Players in autonomous play share two assertions in the database of the en-
vironment:

• moved/0 indicates that a player has made a move so that the environment
can consume it;
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• canmove/0 indicates that a consumed move has been displayed by the
environment, so that another player can make a move.

Initially moved/0 is not in the environment, but canmove/0 is. This
means that when starting a game, the environment is waiting for a move to
be made in order to consume it, and that a player can move. Assuming an
environment instance e1, we define how a move is consumed:

rule(e1, consume(S, M), [wait(moved), getbuffer(S, M)]).

First, the environment waits for a player to make a move; in other words,
the player adds moved in the state of the environment. wait/1 is like a
primitive that is either supported by the implementation platform or specified
as follows:

solve(C, wait(G)):- solve(C, G),!.
solve(C, wait(G)):- solve(C, wait(G)).

Once such a move is made, the environment gets the move from the buffer
of moves for the game being played. The predicate getbuffer/2 allows the
environment to access a move that has to be consumed; its implementation
is platform specific. Once a move is consumed (i.e., deleted from the buffer),
the environment displays that move using an effect rule:

effectsRule(e1, display(S, M),
[writelistnl([”In : ”, S, ”move made is : ”, M])],
[delete(moved),
add(canmove)

]).

This simple definition allows the environment to realise that a move is made
by a player in the next cycle, while a player whose turn is next can now move.

4.3.2 Synchronising players

Before a player actually selects a move, this player needs to synchronise with
the other players playing the game. This is expressed by the following rule:

rule(p1, choose(E, S, M), [synchronise(E,S), select(S, M)]).

For a player p1 playing the QUERY protocol, we define synchronisation as
an effects rule:

effectsRule(p1, synchronise(E,S),
[self(Me),
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solve(S, wait(next(Me))),
solve(E, wait(canmove))],
[effects(E, [delete(canmove)])

]).

To interpret a predicate like synchronise/2, we need to include the follow-
ing definitions for solve/2:

solve(S, G):- effects(S, G).
solve(P, self(P)).

The first definition allows goals that cannot be solved with rules to be solved
with effect rules; this is the case with synchronise/2. The second definition
allows a component to access itself. We also need to add

effects(C, effects(D, G)):- effects(D, G).

to allow the effects procedure of a component to apply the effects of a rule on
another component, for example, how a player may affect the environment.

We are now in a position to define how a move is executed using an effect
rule:

effectsRule(p1, execute(E,S,M),
[buffer(S, M)],
[effects(E, add(moved))

]).

First the player makes sure that the move is buffered, and then the player
changes the environment that it has moved.

4.3.3 Other synchronisation techniques

The assertions moved/0 and canmove/0 act as shared variables resembling
Dijkstra’s P and V variables to handle mutual exclusion and to allow player
and environment threads to synchronise. Another way to accomplish syn-
chronisation is to use communication and message passing. To achieve this
type of synchronisation, we introduce the synchronisation game, which sup-
ports the communication required for the players to synchronise their moves.
Playing two games simultaneously introduces the issue of compound games,
which we discuss next.
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5 Compound games

Compound games are complex games composed from simpler, possibly atom-
ic, subgames. An example of a compound game is a master’s game of chess,
where a chess master plays several chess games with different student players
simultaneously. Based on our previous work in applying compound games to
develop interactive systems [Sta96], in this section we show how to develop
compound games for interactive components in the context of umpired and
autonomous play.

5.1 Playing multiple protocols via a compound game

To illustrate how to specify the interactions of a compound game, we con-
sider a game that allows an interactive component to start multiple QUERY
protocols with other components at the same time. A participant is also
allowed to suspend a protocol in favour of playing another one, and resume
a protocol that has been suspended. We identify the state of such a game
with the term

multiple(Id).

For simplicity of presentation, this game has three moves:

• start(Id, P, Q) starts a new QUERY game identified by Id with player P
about query Q;
• suspend(Id) suspends a game identified by Id;
• resume(Id) resumes a game identified by Id.

For lack of space, we assume a definition of these moves exclusive to the
game, similar to the one provided in Section 2.3. In addition, as compound
games require submoves to hold moves made in subgames, we use the term

inside(SubS, Move)

to represent a submove. For instance, the term

inside(qprorocol(qp1), select(p1, inform(tel(jim,5946330), yes)))

represents a submove made in a QUERY subgame qp1, where player p1 has
selected an inform. To record subgames in the state of the compound game,
we use the predicates subgames/1 and suspended/1 as placeholders for current
and suspended subgames, respectively.
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5.2 Specification of coordination in compound games

The main issue in specifying a compound game is how to specify the coor-
dination of interactions between component subgames. We deal with this
issue by defining the conditions under which a subgame becomes active. We
then augment the definition of valid moves presented in Section 2.3 with the
following rule:

valid(S, inside(SubS, Move)):- active(S, SubS), valid(SubS, Move).

The valid moves of a compound game S include the valid moves exclusive
to the compound game and the valid moves in the active component sub-
games with state SubS. Different forms of coordination are possible and can
be given by suitable definitions of what an active subgame is. We distinguish
two classes of coordination: free interleaving and constrained interleaving.
In any interleaving mode, we represent the state of a compound game as
follows:

S interleave M.

The mode M can be either free or constr, distinguishing in this way between
free and constraint interleaving, respectively. In both cases interleave is a
Prolog operator. We can now represent free interleaving as

active(S interleave free, SubS):- running(S, SubS).

We now have to specify locally to each compound game the conditions
under which moves from subgames can be selected freely by players of the
running subgames. Similarly, constrained interleaving is defined as follows:

active(S interleave constr, SubS):- overtaking(S, SubS).
active(S interleave constr, SubS):- not overtaking(S, ), running(S, SubS).

This last definition of active/2 relies on domain-specific constraints defin-
ing overtaking subgames. These are subgames that, at specific stages of the
interaction, have higher priority than the rest of the running games. For both
types of interleaving, we define running and overtaking subgames locally to
each compound game as

running(S, SubS):- solve(S, running(SubS)).
overtaking(S, SubS):- solve(S, overtaking(SubS)).

To give an example, consider how we specify overtaking and running rules
for the multiple QUERY game. A subgame overtakes another game if it has
just been started, that is, when no previous move has been made in it:
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rule(multiple(Id),
overtaking(G), [
subgames(Gs),
member(G, Gs),
not solve(G, [previous( )])

]).

Otherwise, any running subgame can be chosen as

rule(multiple(Id), running(G), [subgames(Gs), member(G, Gs)]).

Both kinds of coordination can share the running game definition above.
Both kinds of coordination also use the same definition for effects of sub-
moves:

effects(S interleave , inside(SubS,M)):-
effects(SubS, [M]),
effects(S, inside(SubS,M)).

The effects of the submove are applied in the state of the subgame first.
If the subgame has terminated, we also need to remove the subgame from
the list of active subgames. For this reason, the effects of the submove are
applied in the state of the compound game (a submove is also a move in
the compound game). The definition of a compound game is completed by
specifying how the game has terminated; this definition is game specific and
is defined similarly to the ones given in Section 2.3.

5.3 Umpired compound games

In developing umpires for compound games, we introduce subumpires to
umpire subgames. We assume that the umpire of a compound game records
the names of subumpires as

subumpire(SubS, SubU)

meaning that each subgame SubS is umpired by the subumpire SubU. In this
way an umpire can dispatch compound moves to the right (sub-) umpire.
This organisation also allows that all subgames are managed by the same
umpire. How subgames are umpired is specified when a compound is started.

One main issue in umpiring a compound game concerns the way we check
moves with subumpires of subgames, which for any interleaving mode is
defined as
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check(U, S, inside(SubS, M), Valid ):-
trigger(U, SubU, S, SubS, active(S, SubS) ),
check(SubU, SubS, M, valid(SubS, M) ).

A compound move is managed by accessing the subumpire of the subgame
and then dispatching it to the right subumpire. The triggering of a subgame
is defined for free interleaving as

trigger(U, SubU, S interleave free, SubS, active(S interleave free, SubS)):-
pick(U, SubU, S, SubS, running(S, SubS)).

The predicate pick/4 is defined specifically to deal with the way a run-
ning game is accessed during the umpiring process. Similarly, for constraint
interleaving we write

trigger(U, SubU, S interleave constr, SubS, active(S interleave constr, SubS)):-
accept(U, SubU, S, SubS, overtaking(S, SubS)).

trigger(U, SubU, S interleave constr, SubS, active(S interleave constr, SubS)):-
not overtaking(S, ),
pick(U, SubU, S, SubS, running(S, SubS)).

The implementation predicate accept/4 is defined to access the subumpire
of overtaking subgames. We rely on the following definitions:

pick(U, SubU, S, SubS, Running):- solve(U, [pick(SubU, S, SubS), Running]).
accept(U, S, SubS, Overtaking):- solve(U, [accept(SubU, S, SubS), Overtaking]).

This requires that we specify pick/3 and accept/3 rules in the database of
the umpire. We also need to define

solveOne(C, running(S, SubS)):- running(S, SubS).
solveOne(C, overtaking(S, SubS)):- overtaking(S, SubS).

so that the umpire can test if a game is running or overtaking.
Another issue of implementing a compound game is how to display a

compound move:

display(U, S, inside(SubS, M), effects(S, inside(SubS, M))):-
solve(U, subumpire(SubS, SubU)),
display(SubU, SubS, M, effects(SubS, M)),
display(U, S, inside(SubS,M), effects(S, inside(SubS, M))).

In any interleaving mode, the effects of a submove are displayed first with
the right subumpire, and then we display the effects of the submove at the
compound game as a whole.
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5.4 Autonomous play for compound games

This section is based on the synchronisation techniques used in Section 4.3
and the example definitions for the QUERY protocol given so far.

5.4.1 Compound environments

For autonomous play of compound games, we introduce compound environ-
ments consisting of subenvironments. The issue now is how the moves are
consumed in the subenvironments. We assume that each environment holds
a record of the subenvironments as

subenv(SubS, SubE).

Such an assertion defines that the subgame SubS is played in the suben-
vironment SubE. With this organisation in mind, the program below shows
how to consume a compound move:

consume(E, S, inside(SubS, M), available(S, inside(SubS, M))):-
explore(E, SubE, S, SubS, running(S, SubS)),
consume(SubE, SubS, M, available(SubS, M)).

The environment must explore the various subenvironments to find a
move being made by a player. Subenvironments are explored until a suben-
vironment holds an atomic game with a move made in it. Such an atomic
move is consumed by the method defined in Section 4.3.1. Once a subenvi-
ronment has been chosen, we need to check that the game it contains is a
running game:

explore(E,SubE,S,SubS,Running):- solve(E, [explore(SubE,S,SubS), Running])).

Domain-specific definitions for explore/3 are needed locally for each (sub-)
environment. A consumed move is then displayed. Displaying a compound
move is similar to the definition of display/4 given for the compound umpire
in the previous section; however, the difference now is that the display is
managed by the environment and its subenvironments as opposed to the
umpire and its subumpires.

5.4.2 Autonomous players for compound games

An autonomous player engaged in a compound game must be able to co-
ordinate the choice and execution of submoves made in the subenvironment
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holding the subgames of the main game. We express the choice of a compound
move by expressing a preference in a subgame played in a subenvironment,
and then by making a move in that subgame:

choose(P, E, S, inside(SubS, M), valid(S, inside(SubS, M))):-
prefer(P, E, SubE, S, SubS, active(S, SubS)),
choose(P, SubE, SubS, M, valid(SubS, M)).

One way to define how a preference is made for subgame is for a player
to express it first, and then to check whether this game is active:

prefer(P, E, SubE, S, SubS, Active):- solve(P, [prefer(SubE, S, SubS), Active]).

By expressing preferences in this way, a player is able to coordinate selections
of moves made in multiple subgames.

Once a compound move is selected, it must be executed. This is done by
using the following program:

execute(P, E, S, inside(SubS, M), effects(S, inside(SubS,M))):-
solve(E, subenv(SubS, SubE)),
execute(P, SubE, SubS, M, effects(SubS, [M])),
execute(P, E, S, inside(SubS,M), effects(S, inside(SubS, M))).

First the player executes the move in the subenvironment of the subgame,
and then the effects of the same move are applied in the main game to handle
any dependencies existing between the subgame and the main game.

6 Conclusion

We have presented a game-based architecture for developing interactive com-
ponents in computational logic. The architecture was illustrated with exam-
ples from agent-interaction protocols. These protocols were formulated using
two different game organisations. One is based on an umpire component that
centrally controls the moves made by player components. The other is based
on autonomous players making moves through the medium of an environ-
ment holding the state of the game. Both umpired and autonomous play are
exemplified also in the context of compound games. The advantage of sup-
porting this class of games is that decentralised and centralised organizations
of components can be combined to capture interactions of a complex nature.

One advantage of our approach is that by viewing an agent as an au-
tonomous player of a compound game, this agent can be engaged in multiple
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conversations based on interaction protocols. In this context we showed how
agents coordinate their conversation acts [BF95] by showing how to coor-
dinate moves in a compound game. We also sketched how synchronisation
can be achieved in our framework. In particular, we showed how to simulate
synchronisation via shared variables with assertions in a shared database
of an environment. Alternatively, synchronisation via communication and
message passing can be incorporated by introducing a synchronisation game,
supported through the notion of compound games.

From the development point of view, the architecture provides a set of
reusable programs that integrate the different components of an interactive
system. A component is represented by classes of programs illustrating how
instances of these classes can interact with each other. In this context our
framework provides the generic part of an application that can be specialised
by the developer to support the functionality required from a given appli-
cation domain. The framework further distinguishes between the notions
of compound interactions, coordination of concurrency, and synchroniza-
tion. Such notions are studied in interactive systems using object-oriented
[NGT92, MN98, Joh97, Sch95, SFJ96] or agent-oriented [SC99] techniques.
In this case, our work is intended as a study investigating how to support
similar techniques in computational logic setting.

Compared with our previous formulation of games using object-level pro-
grams [SS97, Sta96], this work introduces metaprograms to interpret the
object-level rules that represent games, players, umpires, and environments.
The representation chosen in this work is also simpler than the one we present
in [Sta98], in that here we reduce the different types of rules that describe
a component into two: rules representing how inferences are drawn from
existing state properties of a component, and effects rules representing how
updates are carried out in that component. The advantages of this approach
are that representing a game component is now simpler and the formulating
interactions amongst these components is conceptually clearer.

Our work on games bears no relation with game theory for economic
modelling [VM44] and its applications to interactive systems in the sense
presented by Genesereth, Ginsberg, and Rosenschein [GGR86]. Also, our
use of games is different from the way games are often applied to model
interaction in theoretical computer science (as in Abramsky and Jagadeesan
[AJ94], Abramsky and McCusker [AM95], and Nerode and Yakhnis [NY92]).
Instead, we use games to view interaction as a rule-governed activity with the
emphasis more on the existence of clearly specified legal moves rather than
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on any specific notion of winning. However, notions such as winning are
becoming increasingly important in multiagent systems applications, where
agents may, for example, negotiate according to the rules of a protocol. The
detailed discussion of such issues we intend to present in a future work, where
we also plan to investigate the semantics of game interactions.

Appendix: The QUERY protocol as a game

new( qprotocol(Id, PlayerA, PlayerB, Query) ):-
assert( rule(qprotocol(Id), player(PlayerA), []) ),
assert( rule(qprotocol(Id), player(PlayerB), []) ),
assert( rule(qprotocol(Id), next(PlayerA), []) ),
assert( rule(qprotocol(Id), about(Query), []) ).

rule(qprotocol(Id),
terminating( answered(Pa, Pb, Query, Answer) ), [
next(Pb),
previous(select(Pa, inform(Query, Answer)))

]).
rule(qprotocol(Id),

terminating( failed(Pa, Pb, Query) ), [
next(Pb),
previous(select(Pa, failure(Query)))

]).
rule(qprotocol(Id),

terminating( refused(Pa, Pb, Query) ), [
next(Pb),
previous(select(Pa, refuse(Query)))

]).
rule(qprotocol(Id),

terminating( didnotunderstand(Pa, Pb, Query) ), [
next(Pb),
previous(select(Pa, notunderstood(Query)))

]).

rule(qprotocol(Id), available( select(P, query(Q)) ), [player(P)]).
rule(qprotocol(Id), available( select(P, inform(Q,A)) ), [player(P)]).
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rule(qprotocol(Id), available( select(P, failure(Q)) ), [player(P)]).
rule(qprotocol(Id), available( select(P, refuse(Query)) ), [player(P)]).
rule(qprotocol(Id), available( select(P, notunderstood(Q)) ), [player(P)]).

rule(qprotocol(Id),
necessary( select(P, query(Query)) ), [
next(P),
not previous( )

]).

rule(qprotocol(Id),
possible( select(NextP, Act) ), [
next(NextP),
previous(select(PreviousP, query(Q))),
member(Act, [inform(Q,A),failure(Q),refuse(Q),notunderstood(Q)]),

]).

effectsRule(qprotocol(Id),
select(P, Act),
[Act = query(Q),
player(LastP),
not P == LastP],
[add(previous(select(P, Act)),
delete(next( )),
add(next(PreviousP)),
add(last(P))

]).

effectsRule(qprotocol(Id),
select(P, Act),
[not Act = query(Q)],
[delete(previous( )),
add(previous(select(P, Act)),
delete(next( )),
delete(last(LastP)),
add(next(LastP)),
add(last(P))

]).
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