
Solution to the Problem of Zantema on a
Persistent Property of Term Rewriting

Systems∗

Takahito Aoto

Department of Computer Science, Gunma University
Tenjincho 1-5-1, Kiryuu, 376-8515, Japan

E-mail: aoto@cs.gunma-u.ac.jp

Abstract

A property P of term rewriting systems is persistent if for any
many-sorted term rewriting system R, R has the property P if and
only if its underlying term rewriting system Θ(R), which results from
R by omitting its sort information, has the property P . It is shown
that termination is a persistent property of many-sorted term rewrit-
ing systems that contain only variables of the same sort.

1 Introduction

The technique of sort introduction in term rewriting has caught attention
recently [1][9]. In this paper we prove a conjecture which opens up a possi-
bility of new applications of this technique. The conjecture reads: for any
terminating many-sorted term rewriting system R, if R contains only vari-
ables of the same sort then Θ(R) is also terminating. Here, Θ(R)—called

∗This is a completely revised version of the paper Solution to the Problem of Zantema
on a Persistent Property of Term Rewriting Systems, which appeared in Proceedings of
the Joint International Symposium PLILP/ALP’98, Pisa, Italy, September 1998, pages
250–265, Lecture Notes in Computer Science 1490, Springer-Verlag, 1998.

1

the underlying term rewriting system of R—is the term rewriting system ob-
tained from R by omitting its sort information. The conjecture was raised by
Zantema and adapted in [4] as Rewriting Open Problem 60. The conjecture
is particularly useful to show that termination is preserved under suitable
translations of term rewriting systems (TRSs, for short). More precisely, it
follows that coding function symbols of higher arity in an arbitrary TRS by
binary symbols does not affect termination. Hence the problem of termi-
nation of arbitrary TRSs is equivalent to the problem of TRSs having only
symbols of arity at most 2.

A property φ of TRSs is said to be persistent if for any TRS R, φ(R)1 if
and only if φ(Θ(R)); this notion has been introduced by Zantema in [13]. We
say that φ is persistent for a class K of many-sorted TRSs if for any R ∈ K,
φ(R) if and only if φ(Θ(R)). Thus the conjecture above can be restated
as follows: termination is persistent for the class of many-sorted TRSs that
contain only variables of the same sort. It is known that confluence is persis-
tent for the class of many-sorted TRSs [2] and that termination is persistent
for the class of many-sorted TRSs that do not contain both duplicating and
collapsing rules [13]. Persistent properties in equational rewriting have been
studied in [10].

A property φ of TRSs is said to be modular for the direct sum if φ(R1)
and φ(R2) imply φ(R1∪R2) for any two TRSsR1 andR2 sharing no function
symbols. For component closed properties φ, persistency of φ for the class
of many-sorted TRSs implies modularity of φ for the direct sum of TRSs
[13]. For many useful properties φ of TRSs, not only modularity of φ for the
direct sum but modular aspects of φ for various combinations of TRSs have
been studied in a number of papers; see e.g. [8], [11], [12] for the modularity
of termination. Modular aspects of a combination of TRSs under a suitable
sort assignment condition have been studied in [1].

It is not always true but often so that persistency of property φ for a
subclass K of many-sorted TRSs implies modularity of φ for the direct sum
of TRSs from the class Θ(K) = {Θ(R) | R ∈ K}. Indeed, if we assign sorts
1×· · ·×1→ 1 to function symbols in R1 ∈ Θ(K) and 2×· · ·×2→ 2 to those
inR2 ∈ Θ(K), the statement φ(R1) and φ(R2) imply φ(R1∪R2) follows from
the persistency of φ provided that R1∪R2 under this sort assignment is also
contained in K. Thus, for example, persistency of termination for the class of
many-sorted TRSs that do not contain both duplicating and collapsing rules

1This stands for R has the property φ.

2

implies the corresponding modularity result for the direct sum of TRSs. To
the contrary, our requirement on the sorts of variables (variable-the-same-
sort condition) does not carry over for TRSs and therefore it is hard to
formalize the corresponding modularity result. This contrasts sharply with
other persistency results obtained so far.

The rest of this paper is organized as follows. In Section 2, we fix notion
and notations on many-sorted term rewriting used in this paper. In Section
3, we review how unsorted rewriting (or, more generally, rewriting over sorts
where some sorts are identified) is characterized by sort information. We
simplify the conjecture at the end of this section. Section 4 is devoted to the
rest of the proof. In Section 5, applications of our theorem and related works
are discussed. Our conclusions are presented in Section 6.

2 Preliminaries

We assume familiarity with basic notions in term rewriting. In what follows,
we fix notations used in this paper and recall some less common definitions.
We refer [3] and [6] for extensive surveys.Let S be a set of sorts (denoted by
α, β, γ, . . .), F a set of S-sorted function symbols (denoted by f, g, h, . . .), V a
set of S-sorted variables (denoted by x, y, z, . . .). We write f : α1×· · ·×αn →
β when f ∈ F has sort α1 × · · · × αn → β. We assume that there are
countably infinite variables of sort α for each sort α ∈ S. We denote by T
(and T α), or T (F ,V) (and T (F ,V)α) when necessary, the set of terms (of
sort α, respectively). For each term t, V(t) is the set of variables that appear
in t. Syntactical equality is denoted by ≡.

For each sort α, the hole of sort α is written as �α. A context is a
term possibly containing holes. We denote by C the set of contexts. We
write C : α1 × · · · × αn → βwhen C ∈ C has sort β (as a term) and has
n holes �α1 , . . . ,�αn from left to right in it. If C : α1 × · · · × αn → β
and t1 ∈ T α1 , . . . , tn ∈ T αn then C[t1, . . . , tn] is the term obtained from C by
replacing the holes with t1, . . . , tn from left to right. A context C is written as
C[] when C contains precisely one hole. A context is said to be empty when
C is a hole, otherwise non-empty. A term t is a (proper) subterm of a term
s, or equivalently s (properly) contains t when s ≡ C[t] (with non-empty C,
respectively).

We denote by Pos(t) the set of positions of a term t, and by t/p the
subterm of t at position p ∈ Pos(t). The empty (or root) position is denoted

3

by Λ. For u, v ∈ Pos(t), we write u ≤ v when u is a prefix of v. For a context
C, we write C[, . . . ,]p1,...,pn when C/p1, . . . , C/pn are all holes in C from left
to right.

A substitution σ is a mapping from V to T such that x and σ(x) have
the same sort for any x ∈ V . A substitution is extended to a homomorphism
from T to T in the obvious way; tσ stands for σ(t) for substitutions σ and
terms t.

A (many-sorted) rewrite rule is a pair l → r of terms such that (1) l
and r have the same sort, (2) l /∈ V , (3) V(r) ⊆ V(l). A many-sorted term
rewriting system (STRS, for short) is a set of rewrite rules. A rewrite rule
l → r is collapsing if r ∈ V ; it is duplicating if r contains more occurrences
of some variable than l does. Given an STRS R, a term s reduces to a term
t (denoted by s →R t) when s ≡ C[lσ]p and t ≡ C[rσ]p for some C[]p ∈ C,
l → r ∈ R and substitution σ. When this is the case, we also write s →p t.
We call s→R t a rewrite step, and the relation→R reduction (relation). The
(rewrite) redex of this rewrite step is lσ.

Suppose Cl, C
′
l ∈ C contain no variables. Redexes according to rules

Cl[~x] → r, C ′l [~y] → r′ overlap if there is a symbol f that is a simultaneous
instance of f in Cl and C ′l . A redex according to a rule Cl[~x] → r contains
a redex according to a rule C ′l [~y] → r′ if each instance of a symbol in C ′l is
also an instance in Cl. A redex in s according to a rule Cl[~x] → r contains
a position q if the root symbol of s/q is an instance of a non-root function
symbol in Cl.

A sequence s0 →R · · · →R sn →R · · · is called a reduction sequence.
The length of a finite reduction sequence s0 →R · · · →R sn equals to n.
Reduction sequences may be infinite.An STRS R is terminating if there are
no infinite reduction sequences. A term s is terminating when there are no
infinite reduction sequences starting from s.

The reflexive and transitive closure of →R is denoted by �R. One can
readily check that s and t have the same sort whenever s�R t.

Henceforth, the subscript R will be omitted when R is obvious from the
context.

3 Sort Information in Reduction and Terms

Let Φ be an equivalence relation on S. By identifying sorts according to
Φ, we obtain the set Φ(T) of terms well-sorted w.r.t. S/Φ (S modulo Φ).

4

Likewise, from an STRS R over sorts S, we obtain an STRS Φ(R) over sorts
S/Φ: an STRS that has the same rules as R and acts over Φ(T). Note that
terms in Φ(T) are possibly non-well-sorted w.r.t. S, but terms in T are well-
sorted w.r.t. S/Φ.The equivalence relation that identifies all sorts is denoted
by Θ. We call Θ(R) the underlying TRS of R.

Below, we assume S, F , Φ, R are fixed. Terms in Φ(T) are referred to
just terms, and→Φ(R) is abbreviated as→. Otherwise mentioned, well-sorted
terms (etc.) are meant to be well-sorted w.r.t. S.

Definition 3.1 1. The sort of a term t is defined by

sort(t) =

{
α if t ≡ xα,
β if t ≡ f(t1, . . . , tn) with f : α1 × · · · × αn → β.

2. Let p be a non-empty position in a term t. We define the sort of p in
t like this:

sort(f(t1, . . . , tn), i) = αi if f : α1 × · · · × αn → β,
sort(f(t1, . . . , tn), i.w) = sort(ti, w),

where i ∈ {1, . . . , n} and w 6= Λ.

3. A non-empty position p in t is a disconnection if sort(t, p) 6= sort(t/p).
When p is a disconnection, the proper subterm t/p is disconnected,
otherwise connected. A subterm of t is special if either it is t or it is
disconnected.

We note that R is well-sorted w.r.t. S and hence rewrite redexes contain
no disconnections.

Definition 3.2 Let t ≡ C[t1, . . . , tn] be a term with non-empty well-sorted
context C. We write t ≡ C[[t1, . . . , tn]] when all ti’s are disconnected. Terms
t1, . . . , tn are the principal subterms of t. C is the top well-sorted component
of t, denoted by cap(t). A top well-sorted component of special subterms of t
is a well-sorted component in t.

Thus, each term is partitioned into well-sorted components by the sort
information.

5

Example 3.3 Let
f : 2× 1→ 1
g : 0→ 1
h : 0× 2→ 0
a, b : 2

and Φ = {{0, 2}, {1}}. Let t ≡ f(h(a, b), g(b)). Then cap(t) ≡ f(�, g(�))2,
and t has two principal subterms h(a, b) and b. The term t has 4 well-sorted
components.

Definition 3.4 A rewrite step

s ≡ C[lσ]→ C[rσ] ≡ t

is destructive if lσ is a special subterm of s and sort(lσ) 6= sort(rσ).

The next lemma is shown in a straightforward way.

Lemma 3.5 If a rewrite step s ≡ C[u]p →p C[v]p ≡ t is destructive, then
the applied rule is collapsing and v is a principal subterm of u.

When this is the case, we say that cap(u) is eliminated, or the subterm
u collapses. If p is non-empty and sort(s, p) = sort(v), v becomes connected
along this rewrite step, resulting in a new well-sorted component.

Example 3.6 Let our signature, Φ, and the term t be the ones given in
Example 3.3. Let

R
{
f(a, g(x))→ g(x)
h(x, b)→ x

The following is a reduction sequence of Φ(R):

t → f(a, g(b))
→ g(b)

The first rewrite step is destructive and the second is not.

Definition 3.7 The rank of a term t is defined by

rank(t) =

{
1 if t ∈ T ,
1 + max{rank(ti) | 1 ≤ i ≤ n} if t ≡ C[[t1, . . . , tn]] (n > 0).

We note that rank(s) ≥ rank(t) whenever s→ t. The rank of a reduction
sequence is the rank of its starting term.

2In the sequel, we assume that every hole (at a non-empty position) has sort equivalent
to the sort of its position, and omit the superscripts of holes.

6

Simplification of the conjecture We prove in this paper that termina-
tion of R and Θ(R) coincide, for STRSs R that contain only variables of
the same sort. Such STRSs may have an arbitrary number of sorts other
than the (unique) sort of variables. It is, however, sufficient to restrict our
attention to the two-sorted case.

Lemma 3.8 Let R be an STRS whose collapsing rules are of the same sort,
namely 0. Then R is terminating if and only if ΦI(R) is terminating, where
ΦI identifies all sorts except 0.

Proof. (⇐) Trivial. (⇒) Suppose that S = {0, . . . , n} and ΦI identifies
sorts 1, . . . , n with 1. Let α : s0 → s1 → · · · be an infinite reduction sequence
over terms well-sorted on sort 0 and 1 (1 for the identified sort). Each term
can be partitioned into well-sorted components w.r.t. sorts 0, . . . , n. Since
we only have identified sorts 1, . . . , n with 1, for each disconnection p in si,
sort(si, p) differs from 0. Thus, by our assumption and Lemma 3.5, there
are no destructive rewrite steps in α. W.l.o.g, we may take α of a minimal
rank, that is, any reduction sequence of smaller rank is terminating. Then
all principal subterms in s0, s1, . . . are terminating, and since there are no
destructive rewrite steps in α, an infinite number of rewrite steps is performed
at the top well-sorted components. Finally, to obtain an infinite reduction
sequence well-sorted w.r.t. sort 0, . . . , n, for each si, replace all principal
subterms at positions of sort j1, j2, . . . with xj1 , xj2 , . . ., where x1, . . . , xn are
new variables of sort 1, . . . , n.

As a special case of the lemma, we know termination of R and ΦI(R)
coincide for STRSs R that contain only variables of the same sort. Thus, we
may assume that our signature is two-sorted, namely 0 and 1, and
rewrite rules contain only variables of the sort 0.

As in Lemma 3.8, one might think that the variable-single-sorted condi-
tion of our theorem (to be proved) may be weakened to the condition that
all collapsing rules are of the same sort. This is not true, as observed by the
following well-known Toyama’s counterexample to the modularity of termi-
nation for the direct sum:

R

f(a, b, x)→ f(x, x, x)
h(x, y)→ x
h(x, y)→ y

7

If we let
f : 1× 1× 1→ 1
h : 0× 0→ 0
a, b : 1

the STRS R is terminating, but Θ(R) is not.

4 Projecting Reduction Sequences

¿From now on, w.l.o.g., we assume that terms contain no variables. We also
set sort(t,Λ) = 1 for any term t and extend the notion of (dis)connection
accordingly.

Definition 4.1 1. The type of a position p in a term t is determined as
follows:

sort(t, p) sort(t/p) type
0 0 0 (zero)
0 1]] (right-bracket)
1 0 [[(left-bracket)
1 1 1 (one)

2. A bracket is a left- or a right-bracket.

3. Let p < q be positions of [[and]]. Then [p, q] is called a (matching
bracket-)pair at p if all brackets between p and q are member of some
matching bracket-pair [p′, q′] with p < p′ and q′ < q.

4. If t ≡ C ′[C[t1, . . . , tn]q1,...,qn]q (n ≥ 0), where q is the position of [[and
the [q, q.qi], for i ∈ {1, . . . , n}, are all pairs at q, then C is the layer at
q in t.

Like for strings every right-bracket matches at most one left-bracket,but,
due to the tree structure of terms, a left-bracket may be matched by any
number of right-brackets.

Example 4.2 Let
f : 0× 1→ 0
g : 1→ 0
h : 0× 1→ 1
a, b : 1

8

and Φ = Θ.

1. Let s ≡ g(h(a, f(a, b))). The term s has matching bracket-pairs [Λ, 1.1]
and [1.2, 1.2.1]; s has a layer at position Λ, namely g(h(�, f(a, b))) and
a layer at position 2.1, namely f(�, b).

2. Let t ≡ g(f(a, f(h(a, b), b))). The term t has matching bracket-pairs
[1, 1.1], [1, 1.2.1.1], and [1.2, 1.2.1]; t has a layer at position 1, namely
f(�, f(h(�, b), b)) and a layer at position 1.2, namely f(�, b).

Lemma 4.3 If s ≡ C ′[C[u]q]p →p C
′[u] ≡ t is destructive, then [p, q] is a

matching bracket-pair in s and u is connected in t.

Proof. By Lemma 3.5, the applied rule is collapsing. Thus, by our as-
sumption that the rewrite rules contain only variables of sort 0, sort(s/p) =
sort(s, p.q) = 0. Since u is a principal subterm of C[u] by Lemma 3.5, and by
our assumption that our signature is two-sorted (and sort(s,Λ) = sort(t,Λ) =
1), we know sort(s, p) = sort(t, p) = sort(u) = 1. Thus, u is connected in
t, and since rewrite redexes contain no disconnections, [p, q] is a matching
bracket-pair.

Example 4.4 Let our signature and the term t be the ones given in Example
4.2. Let

R
{
f(x, b)→ x
h(y, b)→ b

The following is a reduction sequence of Θ(R):

t → g(f(a, h(a, b)))
→ g(f(a, b))
→ g(a)

In the first and third rewrite steps, matching bracket-pairs [1.2, 1.2.1] and
[1, 1.1] ‘collapse’.

Definition 4.5 Any layer C at a position q = pj forms a d(istribution)-
redex at p. The corresponding d-step (→d) is an instance of the following
(schematic) d-rule.

f(~x, C[−→yi]~qi , ~z)→d C[
−−−−−−→
f(~x, yi, ~z)]~qi

f is the head (symbol) of the d-redex, and C is the layer of the d-redex.

9

Although we will use TRS-notions for d-rewriting, d-rules are not applied
like ordinary rewrite rules: a d-rule applies to a term only when C is a d-redex
in that term.

Example 4.6 Let our signature and the terms s, t be the ones given in Ex-
ample 4.2. One can perform d-steps from s, t like this:

s →d g(f(h(a, a), b))
→d f(g(h(a, a)), b)

t →d g(f(f(a, h(a, b)), b))
→d f(f(g(a), h(g(a), b)), b) ≡ u

We have a reduction sequence starting from u that ‘simulates’ the one in
Example 4.4:

u → f(g(a), h(g(a), b))
→ f(g(a), b)
→ g(a)

The idea is that brackets can be used to statically determine the collapse
behavior a term will have in the future. The goal of distribution is to decrease
the ‘bracket depth’ of a term, preserving infinite reduction sequences which
are possible from it.

Example 4.7 Let our signature be
f : 0× 0× 0→ 0
g : 1→ 0
h : 0× 0→ 0
a, b : 1

Let

R

f(g(a), g(b), x)→ f(x, x, x)
h(x, y)→ x
h(x, y)→ y

Then, Θ(R) has the following infinite reduction sequence:

f(g(a), g(b), g(h(a, b))) → f(g(h(a, b)), g(h(a, b)), g(h(a, b)))
→ f(g(a), g(h(a, b)), g(h(a, b)))
→ f(g(a), g(b), g(h(a, b)))→ · · ·

10

By projecting this reduction sequence over d-steps, we obtain the following
infinite reduction sequence of R.

f(g(a), g(b), h(g(a), g(b))) → f(h(g(a), g(b)), h(g(a), g(b)), h(g(a), g(b)))
→ f(g(a), h(g(a), g(b)), h(g(a), g(b)))
→ f(g(a), g(b), h(g(a), g(b)))→ · · ·

Lemma 4.8 1. If a rewrite redex and a d-redex overlap, then the rewrite
redex is contained in the layer of the d-redex.

2. If d-redexes overlap then either their head positions are identical or one
of the d-redexes is contained in the layer of the other.

Proof. Straightforward.

Below, we let objects range over elements of any kind in { left-bracket,
right-bracket, (matching bracket-)pair, layer, d-redex }.

Definition 4.9 Let s ≡ C[lσ]p → C[rσ]p ≡ t be a rewrite step. A position o
in s traces to

1. the position o in t if o 6> p,

2. all positions ppro
′ in t such that l/pl ≡ x ≡ r/pr if o = pplo

′.

For d-steps the definition is as for rewrite steps modified as follows (notation
from Definition 4.5):

1. any position po′ traces to positions of the form pqio
′ if o′ 6≥ j.

2. any position pjo′ traces to the position po′ if o′ ≥ qi for no i,

3. any position pjqio
′ traces to the position pqijo

′.

Symbols trace via their positions; objects trace via their positions, with
the constraint that the result is of the same kind again.

Something which does not trace to anything is said to be eliminated.
Tracing back and creation are the inverse of tracing and elimination.

Lemma 4.10 1. Any object traces back to some object of the same kind
along rewrite steps, and the objects’ <-order on positions is preserved.

11

2. Each symbol traces to the same symbol along d-steps.

3. Any d-redex other than the contracted one traces to (one or more) d-
redexes along d-steps.

Proof. 1. Use Lemma 4.3 and Lemma 4.8. 2. Straightforward. 3. Use
Lemma 4.8.

By (the first item of) the lemma and the fact that p < q holds for any
matching bracket-pair [p, q], one can always insert a dummy symbol of sort
1 → 0 at positions of unmatched]]’s without affecting rewriting, so we may
assume: All]]’s in a term are matched.

To show that projecting an infinite reduction sequence over d-steps yields
an infinite reduction sequence again, first, a strategy for d-rewriting is defined
which yields unique d-normal forms.

Termination of d-rewriting We show d-rewriting terminates, for any
strategy.

Definition 4.11 We let Ext a new alphabet extended with unary function
symbols [[,]], 0, for which prefix notation is used.

1. A translation is defined from terms to terms over Ext (E-terms) like
this: Insert at every position in a term t except of type 1, its type as
symbol resulting in t̃.

2. The depth of a symbol from F in an E-term is the number of [[-occurrences
minus that of]]-occurrences on the path from Λ to its occurrence.

3. The rewrite relation →e on E-terms is generated by:

f(~x, [[C[
−→
]]yi], ~z) →d̃ [[C[

−−−−−−−→
]]f(~x, yi, ~z)]

0[[C[
−→
]]yi] →0 0C[

−→
0yi]

]][[C[
−→
]]yi] →]] 0C[

−→
]]yi]

[[[[C[
−→
]]yi] →[[[[C[

−→
0yi]

where [[C[
−→
]]yi] lists all]]’s that match with this [[. U(pdate)-steps, →u

are generated by the last three rules.

12

We note that →u is size-decreasing, hence terminating.
Tracing of symbols from F along d̃-steps is defined by the corresponding

d-steps. It is easy to extend Lemma 4.10 as follows:

Lemma 4.12 Each symbol from F traces to that of the same depth along
d̃-steps.

Lemma 4.13 →d is terminating.

Proof. If s→d t, then s̃→d̃→u t̃, since →d is simulated by →d̃ after which
type information is updated by the→u step. (The rule used at the updating
step depends on the sort of f(. . .) in s and that of the position of f(. . .) in
s.) Hence it suffices to show termination of →e.

Updating can be postponed in →e: s →u→d̃ t implies s �d̃�u t. There
are two ‘critical postponent pairs’: (below, to simplify the illustration, we
assume f is unary and C has only one matching right-bracket.)

f([[[[C[]]D[
−→
]]ui]])→[[f([[C[0D[

−→
]]ui]])→d̃ [[C[0D[

−−−→
f(]]ui)]]

and
f([[C[]][[D[

−→
]]ui]])→]] f([[C[0D[

−→
]]ui]])→d̃ [[C[0D[

−−−→
]]f(ui)]]

Each can be resolved as

f([[[[C[]]D[
−→
]]ui]])→d̃ [[[[C[]]D[

−−−→
]]f(ui)]])→[[[[C[0D[

−−−→
]]f(ui)]])

and

f([[C[]][[D[
−→
]]ui]])→d̃ [[C[]]f([[D[

−→
]]ui])]→d̃ [[C[]][[D[

−−−→
]]f(ui)]]→]] [[C[0D[

−−−→
]]f(ui)]]

Hence u-steps can be postponed and since they are terminating, it remains
to show termination of →d̃.

Let s0 →d̃ s1 →d̃ · · · be an infinite reduction sequence. Label each symbol
from F by its depth. Let m be the maximal depth of s0. By Lemma 4.12, si’s
are all contained in the set of terms over {fi | f ∈ F , 0 ≤ i ≤ m}∪{0, 1, [[,]]}.
We set fi ≥ gj iff i ≤ j, and fi > 0, [[,]], which results in a well-founded order
on {fi | f ∈ F , 0 ≤ i ≤ m} ∪ {0, [[,]]}. Using Lemma 4.12, it is checked

that si →d̃ si+1 implies si >rpo si+1, where >rpo is the recursive path-order
generated by >.This is a contradiction.

13

Confluence of the locally-leftmost strategy Due to overlap between
heads of d-steps, d-rewriting is not confluent. A confluent strategy will have
to avoid such overlaps (in the future).

Example 4.14 Let our signature be

f : 1× 1→ 0
g : 1→ 1
h : 0× 0→ 0
k : 0→ 0
a, b : 1

D-steps starting from a term s ≡ k(f(g(h(a, b)), k(a))) are illustrated in
the Figure below. Note that s contains d-redexes at positions 1.1.1 and 1.2
having distinct heads. There are two d-normal forms of s, namely s1 ≡
k(h(k(f(g(a), a)), k(f(g(b), a)))) and s2 ≡ k(k(h(f(g(a), a), f(g(b), a)))).

s

	�
�
�d
1.1.1

@
@
@
d

1.2 R

· ·

	�
�
�d
1.1

@
@
@
d

1.2 R 	�
�
�d
1.1.1

· ·

	�
�
�d
1.1.2

@
@
@
d

1.2.2 R

· · s2

d 1.1

?

@
@
@
d

1.2.2 R 	�
�
�d
1.1.2

s1

Definition 4.15 1. The virtual head q̂ of a position q in t is p̂ if q = pj
and has type 1, and q otherwise. Virtual heads of layers are defined via
their positions.

2. A d-cluster at a position q in t is the set of all d-redexes in t having q
as virtual head.

14

3. A locally-leftmost strategy →ll may only contract a d-redex which is
leftmost among all d-redexes in the same d-cluster.

Thus, in Example 4.14, we only obtain s1 by the locally-leftmost strategy.
One easily extend Lemma 4.10 as follows:

Lemma 4.16 Any ll-redex other than the contracted one traces to ll-redexes
(if any) along ll-steps.

Lemma 4.17 →ll is confluent.

Proof. Since →d is terminating, so is →ll, and thus it suffices to show that
→ll is locally confluent. Since there are no two ll-redexes sharing a head, a
common reduct of two ll-steps at p and q 6= p can be found by contracting
only redexes to which they trace. Using Lemma 4.16, one ensures they are
again ll-redexes.

Theorem 4.18 Every term t has a unique d-normal form, denoted by ll(t).

Any deterministic strategy would trivially yield confluence, but such
strategies generally do not commute with rewrite steps (needed in Lemma
4.22).

Projection over locally-leftmost steps First we show that ordinary
rewrite steps commute with ll-reductions to d-normal form, so we can speak
of about the projection of the former over the latter.

Definition 4.19 The depth of a position p in a term t is the number of
positions of d-clusters on the path from Λ to p. The depth of t is the maximal
depth of its positions. A dead-step, →† is a rewrite step with redex at depth
0.

Lemma 4.20 The depth of a term does not increase by rewriting.

Proof. Use Lemma 4.8.

The depth of a reduction sequence is the depth of its starting term.

15

Lemma 4.21 If s1 ←ll s → t, then s1 �ll s2 � t1 �ll t. If s →† t, then
s2 →† t1.

Proof. Straightforward, using Lemma 4.8. Note that ll-redexes trace to
ll-redexes (if any) along rewrite steps.

Note that compensating ll-steps are needed in case of a non-left-linear
rule in R. This is the reason to project over ll-reductions to d-normal form
instead of over single d-steps.

Lemma 4.22 If s→ t, then ll(s)� ll(t). If s→† t, then ll(s)→† ll(t).

Proof. For any term u, let]u = max{n | n is the length of u �d ll(u)}.
Note]u is well-defined since→d is terminating and every term contains only
finitely many d-redexes. We show s � t implies ll(s) � ll(t) by double
induction on]s and the length of s � t. When]s = 0, the statement
follows from Lemma 4.10. For the induction step, suppose]s 6= 0. When
s ≡ t, we have nothing to do; so, suppose s → t′ � t. Since s is not
d-normal, by Lemma 4.21, s →d s1 �d s2 � t1 �d t′ for some terms
s1, s2, t1 (A). Since →ll is confluent (Lemma 4.17),]s1 <]s holds, and thus
ll(s1) � ll(t1) by induction hypothesis (B). Also, since the length of t′ � t
is shorter than that of s � t, ll(t′) � ll(t) by induction hypothesis (C).
Finally, by Theorem 4.18, we have ll(s) ≡ ll(s2) and ll(t′) ≡ ll(t1). Thus,
ll(s) � ll(t). The statements of the lemma immediately follows from this
and the latter statement of Lemma 4.21

s - t′ -- t

s1

d

?
(A)

(C)

s2

d
??

-- t1

d

??

(B)

ll(s)

d
??

-- ll(t′)

d ??
-- ll(t)

d

??

16

Theorem 4.23 Let R be an STRS that contains only variables of the same
sort. Then R is terminating if and only if Θ(R) is terminating.

Proof. By Lemma 4.22, one can associate to every infinite reduction se-
quence α : t0 → t1 → · · · in Θ(R) a reduction sequence ll(α) : ll(t0) �
ll(t1) � · · ·. W.l.o.g. we may take α of a minimal depth, that is any re-
duction sequence of smaller depth is terminating. Then since steps below
d-clusters are in subterms of smaller depth, α must contain infinitely many
dead-steps. Thus, ll(α) is infinite.

By the definition of d-step, we know that the top positions of proper
disconnected subterms of a d-normal term are of type]]. Thus, we may
assume that ll(α) is of rank ≤ 2 by the reason exactly same as that appearing
immediately below Lemma 4.10.

If either ll(α) is of rank 1 or there is a principal subterm of ll(t0) that is
not terminating, we have done; so suppose otherwise. Then it follows that
infinitely many number of rewrite steps are performed at the top well-sorted
components. Thus, to obtain an infinite reduction sequence ofR, it suffices to
replace, for each ll(ti), its all principal subterms at positions of sort j1, j2, . . .
with xj1 , xj2 , . . ., where x1, . . . , xn are new variables of sort 1, . . . , n.

5 Applications and Related Results

The technique of sort introduction based on our result, as well as that based
on other known persistency results, is useful to detect properties of TRSs.

Example 5.1 Let R = {f(g(a), g(b), x) → f(x, x, x), g(x) → x}. To show
termination of R, we assume the following sort assignment: {f :0× 0× 0→
1, g : 0 → 0, a : 0, b : 0}. By Theorem 4.23, it suffices to show termination of
R under this sort assignment. Terms of sort 0 are terminating and confluent,
since only applicable rule is g(x)→ x. Terms of sort 1 have form f(t1, t2, t3)
where t1, t2, t3 are terms of sort 0. Suppose contrary that there exists an
infinite reduction sequence of terms of sort 1. Then since terms of sort 0
are terminating, it must contain a reduction at the root position, which has
the form f(g(a), g(b), t) → f(t, t, t) for some term t of sort 0. Since g(a)
and g(b) have distinct normal forms and terms of sort 0 are confluent, we
never have g(a) � t � g(b). Thus we know that every reduction sequence
starting from f(t, t, t) never has a reduction at the root position. Since t is
terminating, this implies f(t, t, t) is terminating, which is a contradiction.

17

It is known that termination is persistent for the class of STRSs that
do not contain both collapsing and duplicating rules [13]. However, the
argument above does not work with this result, because R is collapsing and
duplicating.

Another kind of applications of our result is to prove that termination is
preserved under suitable translations of TRSs.

Example 5.2 ([4]3) For each n-ary function symbol f ∈ F , let f1, . . . , fn−1

be new binary function symbols, and let F̂ be the collection of such new
function symbols. Define a transformationˆ from terms over F to those over
F̂ by

t̂ =

{
t if t ∈ V,
f1(t̂1, f2(t̂2, f3(· · · , fn−1(t̂n−1, t̂n) · · ·))) if t ≡ f(t1, . . . , tn).

And, finally let R̂ = {l̂ → r̂ | l → r ∈ R}. Using Theorem 4.23, one can
show that R is terminating if and only if R̂ is terminating.

(⇐) Trivial. (⇒) We introduce a set of sorts by S = {0}∪⋃{δ1
f , . . . , δ

n−2
f |

f ∈ F , f is n-ary}, and sort assignment on F̂ as: f1 : 0 × δ1
f → 0,

fi : 0 × δif → δi−1
f (i = 2, . . . , n − 2), and fn−1 : 0 × 0 → δn−2

f for

each f ∈ F . By Theorem 4.23, R̂ is terminating if and only if R̂ is ter-
minating on this sort assignment. Suppose R̂ is not terminating. Then
there also exists an infinite reduction sequence over terms well-sorted un-
der this sort assignment. W.l.o.g. we assume terms in this reduction se-
quence have sort 0. It is clear from the sort assignment that if once a func-
tion symbol fi occurs in a well-sorted term of sort 0, it occurs in a form
of f1(s1, f2(s2, . . . , fn−2(sn−2, fn−1(sn−1, sn)) . . .)) for some terms s1, . . . , sn.
Thus, all these terms have form t̂ for some t and so one can reversely trans-
late this infinite reduction sequence to that of terms on F . Thus, we know
R is not terminating.

Note that, in the example above, function symbols in F̂ has arity of at
most 2, and therefore terms in T (F̂ ,V) have simple structures. Instead, not
all terms in T (F̂ ,V) are images of terms in T (F ,V). We believe, however,
that this kind of coding that preserves termination behavior would be help-
ful for studying properties of complicated systems by interpreting them in
simpler systems.

3This application is due to Zantema.

18

A well-known way of simulating a TRS by another TRS containing sim-
pler function symbols is “currying”: each function symbol is coded by a con-
stant and a new binary function symbol for “application” is added. Again
new terms have simple structures and not all new terms are the images of
original terms. It is shown in [5], [7] that this transformation also does not
affect termination behavior of TRSs.

6 Concluding Remarks

We have proved that for any terminating many-sorted TRS R, if R contains
only variables of the same sort then its underlying TRS is also terminating.
This is the positive solution to the problem of Zantema that has been ap-
peared as Rewriting Open Problem 60 in [4]. We have also presented some
applications of this result.

Acknowledgments

The author is grateful to Hans Zantema for an account on his motivation
of the conjecture. Deep appreciation goes to an anonymous referee of this
journal version for many refinements of the proof.

References

[1] T. Aoto and Y. Toyama. On composable properties of term rewrit-
ing systems. In Proceedings of the 6th International Joint Conference,
ALP’97 – HOA’97, Southampton, UK, volume 1298 of Lecture Notes in
Computer Science, pages 114–128. Springer-Verlag, 1997.

[2] T. Aoto and Y. Toyama. Persistency of confluence. Journal of Universal
Computer Science, 3(11):1134–1147, 1997.

[3] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, Cambridge, 1998.

[4] N. Dershowitz, J.-P. Jouannaud, and J. W. Klop. More problems in
rewriting. In Proceedings of the 5th International Conference on Rewrit-
ing Techniques and Applications (RTA-93), Montreal, Canada, volume

19

690 of Lecture Notes in Computer Science, pages 468–487. Springer-
Verlag, 1993.

[5] J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Compar-
ing curried and uncurried rewriting. Journal of Symbolic Computation,
21:15–39, 1996.

[6] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 1–116. Oxford University Press, 1992.

[7] A. Middeldorp, H. Ohsaki, and H. Zantema. Transforming termination
by self-labelling. In Proceedings of the 13th International Conference on
Automated Deduction (CADE-13), New Brunswick, NJ, USA, volume
1104 of Lecture Notes in Artificial Intelligence, pages 373–387. Springer-
Verlag, 1996.

[8] E. Ohlebusch. On the modularity of termination of term rewriting sys-
tems. Theoretical Computer Science, 136:333–360, 1994.

[9] H. Ohsaki. Termination of Term Rewriting Systems: Transformation
and Persistence. PhD thesis, University of Tsukuba, 1998.

[10] H. Ohsaki and A. Middeldorp. Type introduction for equational rewrit-
ing. In Proceedings of the 4th International Symposium on Logical Foun-
dations of Computer Science, volume 1234 of Lecture Notes in Computer
Science, pages 283–293. Springer-Verlag, 1997.

[11] M. Schmidt-Schauß, M. Marchiori, and S. E. Panitz. Modular termina-
tion of r-consistent and left-linear term rewriting systems. Theoretical
Computer Science, 149:361–374, 1995.

[12] Y. Toyama, J. W. Klop, and H. P. Barendregt. Termination for di-
rect sums of left-linear complete term rewriting systems. Journal of the
Association for Computing Machinery, 42(6):1275–1304, 1995.

[13] H. Zantema. Termination of term rewriting: interpretation and type
elimination. Journal of Symbolic Computation, 17:23–50, 1994.

20

