
Polymorphic Types in Functional Logic
Programming∗

J.C. González-Moreno
M.T. Hortalá-González

M. Rodŕıguez-Artalejo

Dpto. Sistemas Informáticos y Programación

UCM, Madrid
jcmoreno@ei.uvigo.es

{teresa,mario}@sip.ucm.es

13 July 2001

Abstract

The rewriting logic CRWL has been proposed as a semantic frame-
work for higher-order functional logic programming, using applicative
rewriting systems as programs and lazy narrowing as the goal solving
procedure. We present an extension of CRWL with a polymorphic
type system, and we investigate the consequences of type discipline
both at the semantic level and at the operational level. Semanti-
cally, models must be extended to incorporate a type universe. Oper-
ationally, lazy narrowing must maintain suitable type information in
goals, in order to guarantee well-typed computed answers.

∗This research has been partially supported by the Spanish National Project TIC98-
0445-C03-02 “TREND” and the Esprit BRA Working Group EP-22457 “CCLII”. A pre-
liminary version of the paper, much shorter and including no proofs, was published as
[20].

1

1 Introduction

Research on functional logic programming (FLP, for short) has been pursued
for longer than ten years, aiming at the integration of the best features of
functional programming (FP) and logic programming (LP). In this paper, we
investigate the integration of two fundamental characteristics: logical seman-
tics, mainly developed in the LP field, and type discipline, best understood
in FP languages. Regarding the FP side, we restrict our attention to non-
strict languages such as Haskell [43], whose advantages from the viewpoint of
declarative programming are widely recognized. Thanks to lazy evaluation,
functions in a non-strict language can sometimes return a result even if the
values of some arguments are not known, or known only partially, and the
semantic values intended for some expressions can be infinite objects. In the
rest of the paper, “FP” must be understood as “non-strict FP”.

Logical semantics characterizes the meaning of a pure logic program P
(a set of definite Horn clauses) as its least Herbrand model, represented
by the set of all the atomic formulas that are logical consequences of P in
Horn logic [2, 14, 3]. Disregarding those proposals without a clear semantic
basis, most early approaches to the integration of FP and LP, as e.g. [28,
16, 26] were based on the idea of adding equations to LP languages. This
approach is appealing because equational logic is simple, well-known and
widely applicable. Equational logic captures LP by representing Horn clauses
as a particular kind of conditional equations, and it seems to capture also FP
by viewing functional programs as sets of oriented equations, also known as
term rewriting systems (shortly, TRSs) [10, 30, 6]. Certainly, term rewriting
serves as an operational model for FP, but in spite of this equational logic
does not provide a logical semantics for FP programs. In general, the set of all
equations that are logical consequences of a functional program in equational
logic do not characterize the meaning of the program. As a simple example,
let P be the FP program consisting of the following two equations:

repeat1(X) ≈ [X|repeat1(X)]

repeat2(X) ≈ [X,X|repeat2(X)]

Here [X|Xs] represents a list with head X and tail Xs, and the notation
[X,X|repeat2(X)] abbreviates [X|[X|repeat2(X)]]. In a non-strict FP
language, it is understood that the expressions repeat1(0) and repeat2(0)

have the same meaning, namely an infinite list formed by repeated occur-
rences of 0. If equational logic would characterize the meaning of P, both

2

expressions should be interchangeable for the purposes of equational deduc-
tion, which is not the case. In particular, repeat1(0) ≈ repeat2(0) cannot
be deduced from P in equational logic.

In contrast to the failure of equational logic, denotational semantics [21] is
able to characterize the meaning of functional programs. In our example, the
common meaning of repeat1(0) and repeat2(0) is the limit of a sequence
of partially defined lists with increasing information, built with the help of a
special symbol ⊥ which represents an undefined value:

⊥ � [0|⊥] � [0,0|⊥] � [0,0,0|⊥] � · · ·

Borrowing ideas from denotational semantics, [19] proposed a rewriting logic
CRWL to characterize the logical meaning of higher-order FP and FLP pro-
grams. The main results in [19] are existence of least Herbrand models for all
programs, in analogy to the LP case, as well as soundness and completeness
of a lazy narrowing calculus CLNC for goal solving. No type discipline was
considered.

Regarding type discipline, most functional languages use Milner’s type
system [35, 9], which helps to avoid errors and to write more readable pro-
grams. This system has two crucial properties. Firstly, “well-typed programs
don’t go wrong”, i.e., it is guaranteed that no type errors will occur during
program execution, without any need of dynamic type checking at run time.
Secondly, types are polymorphic, because they include type variables with a
universal reading, standing for any type. For instance, a function to com-
pute the length of a list admits the polymorphic type [α] → int, meaning
that it will work for a list of values of any type α. Polymorphism promotes
genericity of programs.

Type discipline in LP [12, 34] is not as well understood as in FP. Often one
finds a distinction between the so-called descriptive and prescriptive views of
types. The descriptive approach is applied to originally untyped programs,
and views types a posteriori as approximations (usually regular supersets)
of the success sets of predicates. On the contrary, the prescriptive approach
views types a priori as imposing a restriction to the semantics of a program,
so that predicates only accept arguments of the prescribed types. Usually,
the prescriptive view leads to explicit type annotations in programs.

In our opinion, polymorphic type systems in Milner’s style are also a good
choice for LP and FLP languages. Types in Milner’s type system have both
a prescriptive and a descriptive rôle. More precisely, a type τ1 → τ for a

3

function f prescribes an argument of type τ1 and describes a result of type τ ,
which is guaranteed as long as the prescription for the argument is obeyed.
The prescriptive part is in fact imposed, since an expression f(e) is rejected
at compile time if e has not type τ1, in spite of the fact that f(e) might
happen to have a well defined value of type τ for some e that has not type
τ1. Mixing the prescriptive and descriptive views is also useful to understand
some type systems for LP, where different types can be assigned to different
modes of use of the same predicate. For each particular mode of use, one can
think of a type prescription for the input arguments and a type description
for the output arguments.

In the past, polymorphic type systems have been proposed for Prolog
programs [39, 23, 22], for equational logic programs [24] and for higher-order
logic programs in the language λ-Prolog [40, 41, 31]. Exactly as in Milner’s
original system, the aim of [39] was to guarantee that “well-typed programs
don’t go wrong” without any type checking at run time. On the contrary,
the type systems in [23, 22, 24, 41, 31] can accept a wider class of well-typed
programs, but type computations at run time are needed.

Currently, polymorphic type systems are supported by existing FLP lan-
guages such as Curry [13] and T OY [32]. In the case of T OY, no dynamic
type checking is performed by the current implementation. As a consequence,
absence of type errors at run time is guaranteed for purely functional compu-
tations, but not for more complicated computations involving higher-order
logic variables.

The present paper is a thoroughly revised, corrected and extended version
of [20]. It is intended as a contribution to a better understanding of polymor-
phic type discipline in FLP languages with a logical semantics. Starting from
the results in [19], we extend the rewriting logic CRWL and the narrowing
calculus CLNC with a polymorphic type system, and we investigate the con-
sequences of type discipline both at the semantic level and at the operational
level. At the semantic level, we modify the models from [19] to incorporate a
type universe. However, we do not require programs to be well-typed in order
to be regarded as meaningful. Every program P has a logical meaning given
by a least Herbrand model, which is well-behaved w.r.t. types in the case
that P is well-typed. At the operational level, we modify CLNC to include
some type information in goals. More precisely, a type environment assigning
types to variables is maintained within each goal. The modified narrowing
calculus is designed to be sound and complete in a reasonable sense w.r.t.
the computation of well-typed solutions. Moreover, dynamic type checking

4

takes place only at those computation steps where some logic variable which
is acting as a function becomes bound.

The rest of the paper is organized as follows. In Section 2 we introduce
Higher-Order (shortly, HO) FLP programs as a special kind of applicative
TRSs, as well as a polymorphic type system. In Section 3 we give all the
constructions and results concerning the logical semantics of well-typed pro-
grams, including all the proofs that were omitted in [20], as well as new
examples. In Section 4 we present the lazy narrowing calculus CLNC, show-
ing by means of detailed examples that all the type checking mechanisms
embodied in the calculus are really needed. The soundness and completeness
of CLNC are presented in a revised formulation w.r.t. [20], and the proofs
which were missing in [20] are now provided. All along the paper we include
some succint comparison to related work. We summarize our conclusions in
the final Section 5 and we collect most of the technical proofs in an Appendix.

2 Programming with Applicative Rewrite

Systems

2.1 Types and Expressions

Since we are interested in HO FLP languages with a type discipline, we
need a suitable syntax to represent types and expressions of any type. To
introduce types, we assume a countable set TVar of type variables α, β, . . .
and a countable ranked alphabet TC =

⋃
n∈N TC n of type constructors C.

Types τ ∈ Type are built as

τ ::= α (α ∈ TVar) | (C τ1 . . . τn) (C ∈ TC n) | (τ → τ ′)

Types without any occurrence of → are called datatypes. By convention,
C τn abbreviates (C τ1 . . . τn), “→” associates to the right, and τn → τ
abbreviates τ1 → · · · → τn → τ . The set of type variables occurring in τ
is written tvar(τ). A type τ is called monomorphic iff tvar(τ) = ∅, and
polymorphic otherwise.

A polymorphic signature over TC is a triple Σ = 〈TC ,DC ,FS〉, where
DC =

⋃
n∈NDC n resp. FS =

⋃
n∈N FSn are ranked sets of data constructors

resp. defined function symbols. Moreover, each c ∈ DC n comes with a type
declaration c :: τn → C αk, where n, k ≥ 0, α1, . . . , αk are pairwise different,

5

τi are datatypes, and tvar(τi) ⊆ {α1, . . . , αk} for all 1 ≤ i ≤ n (so-called
transparency property). Also, every f ∈ FSn comes with a type declaration
f :: τn → τ , where τi, τ are arbitrary types.

As we will see later on, functions f ∈ FSn must be defined by means
of rewrite rules with n formal parameters. Moreover, the types declared in
a signature for data constructors and defined functions are the principal or
most general ones, which can be instantiated to more particular types (pos-
sibly involving “→”) for different uses of the constructor or function. Note
that the principal types of data constructors must respect the transparency
property and the additional restriction requiring the principal types of ar-
guments to be datatypes. As we will see, transparency is essential for our
results. The additional restriction is not imposed by current FP [43] or FLP
[13, 32] languages, and we have not checked whether our results remain valid
when dropping it. However, we believe that this restriction is not a severe
limitation for practical programming; see Example 1 below.

In the sequel, we use the notation (h :: τ) ∈var Σ to indicate that Σ
includes the type declaration h :: τ up to a renaming of type variables. For
any signature Σ, we write Σ⊥ for the result of extending Σ with a new data
constructor ⊥ :: α, intended to represent an undefined value that belongs
to every type. As notational conventions, we use c, d ∈ DC , f, g ∈ FS and
h ∈ DC ∪FS , and we define the arity of h ∈ DC n∪FSn as ar(h) = n. In the
sequel, we always suppose a given signature Σ, which will not always appear
explicitly in our notation. Assuming a countable set DVar of data variables
X, Y, . . . (disjoint with TVar), partial expressions e ∈ Exp⊥ are defined as
follows:

e ::= X (X ∈ DVar) | ⊥ | h (h ∈ DC ∪ FS) | (e e1)

These expressions are usually called applicative, because (e e1) stands for
the application operation (represented as juxtaposition) which applies the
function denoted by e to the argument denoted by e1. First-order (shortly,
FO) expressions can be translated to applicative expressions by means of
so-called curried notation. For instance, f(X, g(Y)) becomes (f X (g Y)).
The set of data variables occurring in e is written var(e). An expression
e is called closed iff var(e) = ∅, and open otherwise. An expression e is
called linear iff every X ∈ var(e) has one single occurrence in e. Following a
usual convention, we assume that application associates to the left, and we
use the notation e en to abbreviate e e1 . . . en. Expressions e ∈ Exp without

6

occurrences of ⊥ are called total. Two important subclasses of expressions
are partial data terms t ∈ Term⊥, defined as

t ::= X (X ∈ DVar) | ⊥ | (c tn) (c ∈ DC n)

and partial patterns t ∈ Pat⊥, defined as:

t ::= X (X ∈ DVar) | ⊥ | (c tm) (c ∈ DC n, m ≤ n) |
(f tm) (f ∈ FSn, m < n)

Note that expressions (f tm) with f ∈ FSn and m ≥ n are not allowed
as patterns, because they are potentially reducible using rewrite rules for f .
Total data terms t ∈ Term and total patterns t ∈ Pat are defined analogously,
but omitting ⊥. Note that Term⊥ ⊂ Pat⊥ ⊂ Exp⊥. As usual in FP, data
terms are used to represent data values. Patterns generalize data terms and
can be used as an intensional representation of functions, as we will see in
Subsection 2.3.

Most functional languages allow also λ-abstractions of the form λX.e to
represent functions. Some approaches to HO FLP also permit λ-abstractions,
see e.g. [25, 46, 48, 33]. In spite of some known decidability results for partic-
ular cases, in general λ-abstractions can give rise to undecidable unification
problems [17]. We restrict ourselves to λ-free applicative expressions, which
are expressive enough for most programming purposes.

The next example illustrates some of the notions introduced so far.

Example 1 (Polymorphic Signature)
Let us consider a polymorphic signature with TC 0 = {bool, nat}, TC 1 =
{list}, TC 2 = {sum}, DC 0 = {true, false, z, nil}, DC 1 = {s, ls, rs},
DC 2 = {cons}, FS 0 = {one}, FS 1 = {not, negate, head, tail, unpack,
wild, extend, pp, p}, FS 2 = {and, or, plus, map, snd, twice, (++)}, FS 3 =
{third, split} and with the following type declarations:

true, false :: bool z, one :: nat

cons :: α → list α → list α nil :: list α
negate :: list bool → list bool s :: nat → nat

tail, extend :: list α → list α not :: bool → bool

and, or :: bool → bool → bool head :: list α → α
plus :: nat → nat → nat p, pp :: nat → bool

map :: (α → β) → list α → list β wild :: α → β

7

(++) :: list α → list α → list α snd :: α → β → β
twice :: (α → α) → α → α ls :: α → sum α β
third :: α → β → γ → γ rs :: β → sum α β
split :: list α → list α → list α → bool

unpack :: (β → β) → α

Then, we can build data terms such as (s X), (cons (s X) (cons Y nil)); pat-
terns such as (plus z), (snd X), (twice twice), (twice (plus X)); and ex-
pressions, like (map (plus X) (cons (s X) nil)), (twice (plus X) Y). And
we can also build the type list (sum (α → bool) α), for lists whose ele-
ments can represent either values of type α or boolean functions over such
values.

In the sequel, we use Prolog notation for the list constructors, writing []

for nil and [X|Xs] for cons X Xs. We also write [α] for the type list α.
In concrete examples, we sometimes use infix notation for other constructors
and function symbols, writing e.g. Xs ++ Ys instead of (++) Xs Ys.

The following classification of expressions is useful: X em, with X ∈ DVar
and m ≥ 0, is called a flexible expression, while h em with h ∈ DC ∪ FS is
called a rigid expression. Moreover, a rigid expression is called active iff
h ∈ FS and m ≥ ar(h), and passive otherwise. Note that any pattern is
either a variable or a passive rigid expression. As we will see in Subsection 3.1,
outermost reduction makes sense only for active rigid expressions.

Following the spirit of denotational semantics [21], we view Pat⊥ as the
set of finite elements of a semantic domain, and we define the approximation
ordering � as the least partial ordering over Pat⊥ satisfying the following
properties: ⊥ � t, for all t ∈ Pat⊥; X � X, for all X ∈ DVar; and htm � hsm

whenever these two expressions are patterns and ti � si for all 1 ≤ i ≤
m. Pat⊥, and more generally any partially ordered set (shortly, poset), can
be converted into a semantic domain by means of a technique called ideal
completion; see e.g. [37]. Our semantics in Section 3 will be based on posets.

As usual, we define type substitutions σt ∈ TSub as mappings σt : TVar →
Type extended to σt : Type → Type in the natural way. Similarly, we consider
partial data substitutions σd ∈ DSub⊥ given by mappings σd : DVar → Pat⊥,
total data substitutions σd ∈ DSub given by mappings σd : DVar → Pat, and
substitutions given as pairs σ = (σt, σd). By convention, we write τσt instead
of σt(τ), and θtσt for the composition of θt and σt, such that τ(θtσt) = (τθt)σt

for any τ . We define the domain dom(σt) as the set of all type variables α
such that σt(α) �= α, and the range ran(σt) as

⋃
α∈dom(σt)

tvar(σt(α)). For any

8

subset A ⊆ dom(σt) we define the restriction σt � A as the type substitution
σ′

t such that dom(σ′
t) = A and σ′

t(α) = σt(α) for all α ∈ A. Similar notions
can be defined for data substitutions. the identity substitution id = (idt, idd)
is such that idt(α) = α for all α ∈ TVar and idd(X) = X for all X ∈ DVar.

The subsumption ordering over Type is defined by the condition τ ≤ τ ′

iff τ ′ = τσt for some σt ∈ TSub. A similar ordering can be defined over
Exp⊥, and extended to work over DSub⊥ by defining θd ≤ θ′d iff θ′d = θdσd

for some σd ∈ DSub⊥. For any set of data variables X , we use the notations
θd ≤ θ′d[X] (resp. θd ≤ θ′d[\X]) to indicate that Xθ′d = Xθdσd holds for some
σd ∈ DSub⊥ and all X ∈ X (resp. all X �∈ X). The subsumption ordering
over Type also induces a subsumption ordering over TSub. Finally, let us
mention the approximation ordering over DSub⊥, defined by the condition
σd � σ′

d iff σd(X) � σ′
d(X), for all X ∈ DVar.

2.2 Well-typed Expressions

Inspired by Milner’s type system [35, 9] and by various approaches to type
systems for LP [12, 34], we now introduce the notion of well-typed expression.
We define a type environment as any set T of type assumptions X :: τ for
data variables, such that T does not include two different assumptions for
the same variable. The domain dom(T) and the range ran(T) of a type
environment are the set of all data variables resp. type variables that occur
in T . For any variable X ∈ dom(T), the unique type τ such that (X :: τ) ∈ T
is noted as T (X). Given σt ∈ TSub, we define Tσt as the type environment T ′

such that dom(T ′) = dom(T) and T ′(X) = T (X)σt for all X ∈ dom(T). We
write T ≤ T ′ iff T ′ = Tσt for some σt ∈ TSub. Type judgements T �WT e :: τ
are derived by means of the following type inference rules:

VR T �WT X :: τ , if T (X) = τ .

ID T �WT h :: τσt, if (h :: τ) ∈var Σ⊥ and σt ∈ TSub.

AP T �WT (e e1) :: τ , if T �WT e :: (τ1 → τ) and T �WT e1 :: τ1, for some
τ1.

Note that the rule ID reflects the implicit universal quantification of type
variables in the types of data constructors and defined functions. On the
contrary, the rule VR treats the types of data variables as fixed by the

9

current type environment. This corresponds to the distinction between let-
bound and λ-bound identifiers in the classical presentation of polymorphic
type inference [35, 9].

An expression e ∈ Exp⊥ is called well-typed in a type environment T iff
there exists some type τ such that T �WT e :: τ . Expressions that admit
more than one type in T are called polymorphic. A well-typed expression
always admits a so-called principal type that is more general than any other.
Adapting ideas from [35, 9], we define a type reconstruction algorithm TR to
compute principal types. Assume an expression e and a type environment T
such that var(e) ⊆ dom(T). Then TR(T, e) returns a pair of the form (eτ , E)
where eτ is a type annotation of e and E is a system of equations between
types, expressing most general conditions for τ to be a valid type of e. The
algorithm TR works by structural recursion on e:

VR TR(T, X) = (Xτ , ∅), if T (X) = τ .

ID TR(T, h) = (hτ , ∅), if (h :: τ) ∈var Σ⊥ is a fresh variant of h’s type
declaration.

AP TR(T, (e e1)) = ((eτ1→γ eτ1
1)γ , E ∪ E1 ∪ {τ ≈ τ1 → γ}), if TR(T, e) =

(eτ , E), TR(T, e1) = (eτ1
1 , E1), tvar(E) ∩ tvar(E1) ⊆ ran(T), γ /∈

tvar(E) ∪ tvar(E1) is a fresh type variable.

Type-annotated expressions, as those returned by TR, have the following
syntax:

eτ ::= Xτ (X ∈ DVar, τ ∈ Type) |
hτσt (h :: τ ∈var Σ⊥, σt ∈ TSub) | (eτ1→τ eτ1

1)τ

Implicitly, we are assuming that a type-annotated expression never includes
two different annotations for the same variable. In the sequel we often abbre-
viate type annotations by omitting some intermediate types. In particular,
we write (eτn→τ eτn

n)τ , or even more simply (eτn→τ eτn
n), to abbreviate a full

type annotation of an expression of the form (e en). The following lemma
says that type-annotated expressions correspond to the derivation of type
judgements in a natural way. The straightforward proof is omitted.

Lemma 1 (Type Annotation vs. Type Derivation)
Given a type-annotated expression eτ , let e be the expression obtained from
eτ by erasing all type annotations, and let T be the implicit type environment

10

of eτ , which consists of all the type assumptions X :: τ such that Xτ occurs
as a part of eτ . Then T �WT e :: τ . Reciprocally, whenever T �WT e :: τ ,
there is some type annotation eτ of e whose implicit type environment is T .
�

The algorithm TR also returns a system E of equations between types.
By definition, its set of solutions TSol(E) consists of all σt ∈ TSub such
that τσt = τ ′σt for all τ ≈ τ ′ ∈ E. If E is solvable (i.e., TSol(E) �= ∅), a
most general solution mgu(E) = σt ∈ TSol(E) can be computed by means
of Robinson’s unification algorithm (see e.g. [2]). The key properties of the
type reconstruction algorithm are given by the next theorem, whose proof
can be found in the Appendix.

Theorem 1 (Type Reconstruction)
Assume TR(T, e) = (eτ , E). Then:

1. For every σt ∈ TSol(E): Tσt �WT e :: τσt.

2. Reciprocally: if T ≤ T ′ and τ ′ ∈ Type are such that T ′ �WT e :: τ ′,
then there exists σt ∈ TSol(E) such that Tσt = T ′ and eτσt = eτ ′

. �

Assuming TR(T, e) = (eτ , E) with solvable E, and σt = mgu(E), we write
PT(T, e) = τσt for the principal type of e w.r.t. T , and PA(T, e) = eτσt for
the principal type annotation of e w.r.t. T . Here, eτσt is meant as the result
of applying σt to all the type annotations occurring within eτ . In particular,
the outermost type annotation in eτσt is τσt.

In order to compute a principal type for an expression e with var(e) =
{X1, . . . , Xn} one can invoke TR(T, e) with T = {X1 :: α1, . . . , Xn :: αn},
where αi are n pairwise different type variables. All the expressions from
Example 1 are well-typed in suitable environments, and some of them have
a polymorphic principal type. For instance, twice twice is well-typed in the
empty environment. Moreover, PA(∅, twice twice) can be computed as

(twice((α→α)→α→α)→(α→α)→α→α twice(α→α)→α→α)(α→α)→α→α

The following three lemmata state some technically useful properties of
type inference. Proofs are given in the Appendix.

Lemma 2 (Typing Monotonicity)
Assume t ∈ Pat⊥, τ ∈ Type and a type environment T such that T �WT t :: τ .
Then T �WT t′ :: τ holds also for every pattern t′ � t. �

11

Lemma 3 (Well-typed Substitution)
Assume two type environments T0, T1, a partial expression e such that T0 �WT

e :: τ , and a substitution σ = (σt, σd) which is well-typed in the sense that
T1 �WT Xσd :: T0(X)σt for all X ∈ var(e). Then, it is also true that
T1 �WT eσd :: τσt. �

Lemma 4 (Type Instantiation)
Assume T �WT e :: τ . Then Tσt �WT e :: τσt holds for any substitution
σt ∈ TSub. �

In fact, Lemma 4 is a particular case of Lemma 3. Moreover, Lemma 3
admits the following reformulation, which is helpful when working type an-
notations. A proof is also given in the Appendix.

Lemma 5 (Well-typed Substitution in a Type-annotated Expres-
sion)
Assume a type-annotated expression eτ and a substitution σ = (σt, σd) which
is well-typed in the sense that Xσd can be annotated with type τ0σt for every
type-annotated variable Xτ0 occurring in eτ . Then, eτσ is a type-annotated
expression. �

When applying Lemma 5 in the sequel, we often assume that eτσ has
been built as a principal type annotation.

As part of the definition of polymorphic signatures we have required a
transparency property for the principal types of data constructors. Due to
transparency, the types of the variables occurring in a data term t can be
deduced from the type of t. It is useful to isolate those patterns that have a
similar property. To this purpose, we define transparent patterns as

t ::= X (X ∈ DVar) | ⊥ | (c tm) (c ∈ DC n, m ≤ n) |
(f tm) (f ∈ FSn, m < n)

where the subpatterns ti in (ctm) and (f tm) must be recursively transparent,
and the principal type of the defined function f in (f tm) must be of the form
τm → τ with tvar(τm) ⊆ tvar(τ).

In the sequel, we say that a type which can be written as τm → τ ful-
filling tvar(τm) ⊆ tvar(τ) is m-transparent, and a function symbol f will be
called m-transparent iff its principal type is m-transparent. Note that a data
constructor c is always m-transparent for all m ≤ ar(c).

12

Types and patterns that are not transparent are called opaque. As a
typical example of an opaque pattern, consider (snd X), whose principal
type (β → β) reveals no information on the type of X. Different instances
of (snd X) actually keep the principal type (β → β), independently of the
type of the expression substituted for X. The following transparency lemmata
(proved in the Appendix) show that such a behaviour is not possible for
transparent patterns.

Lemma 6 (Transparency)
Assume a transparent pattern t and two type environments T1, T2 such that
T1 �WT t :: τ and T2 �WT t :: τ , for a common type τ . Then T1(X) = T2(X)
holds for every X ∈ var(t). �

In the sequel, we sometimes use the notation T �WT a :: τ :: b to indicate
that the expressions a and b have a common type τ in the type environment
T .

Lemma 7 (Transparent Decomposition)
Assume a m-transparent h ∈ DC ∪FS such that T �WT ham :: τ :: hbm holds
for a common type τ . Then, there exists types τi such that T �WT ai :: τi :: bi

holds for all 1 ≤ i ≤ m. �

2.3 Programs

Following [19], we define CRWL programs as a special kind of applicative
TRSs, but now requiring well-typedness. More precisely, assuming f ∈ FSn

whose declared type (up to renaming of type variables) is of the form f ::
τn → τ , a well-typed defining rule for f must have the following form:

f t1 . . . tn︸ ︷︷ ︸
left hand side (l)

→ r︸︷︷︸
right hand side

⇐ C︸︷︷︸
condition

T︸︷︷︸
type environment

where l must be linear, ti must be transparent patterns, r must be an ex-
pression such that var(r) ⊆ var(l), the condition C must consist of finitely
many (possibly zero) so-called joinability statements a � b where a, b are ex-
pressions, and T must be a type environment whose domain is the set of all
data variables occurring in the rewrite rule, and such that: T �WT ti :: τi for
1 ≤ i ≤ n, T �WT r :: τ and T �WT C :: bool. The symbol ⊥ never occurs
in a defining rule. A well-typed CRWL program can be any set of well-typed

13

defining rules for different symbols f ∈ FS . Neither termination nor con-
fluence is required. In particular, the lack of confluence means that CRWL
programs can define non-deterministic functions, whose usefulness for FLP
languages has been advocated in [18]. Hence, the restriction var(r) ⊆ var(l)
is not motivated by confluence, but needed for a type preservation result
presented as Theorem 2 in Subsection 3.1.

The meaning of joinability statements will be explained in the next sec-
tion. An additional explanation is needed to understand the previous def-
initions. In T �WT C :: bool, we view C as an “expression” built from
symbols in the current signature Σ, plus the two additional “operations”
(�) :: α → α → bool and (,) :: bool→ bool→ bool, used in infix notation
to build conditions.

Note that defining rules in a well-typed program are type-general and
transparent, because they match exactly the principal type declared for the
corresponding function and they use transparent patterns in their left-hand
sides. The transparency of function definitions made no sense in [19], but it
is important in a typed setting. We consider also untyped programs, which
are sets of untyped defining rules where the type environment T is missing.
The restriction var(r) ⊆ var(l) is not needed for untyped programs.

In practice, users of FP languages such as Haskell [43] or FLP languages
such as T OY [32] provide type declarations only for data constructors. In
most practical cases, this allows an automatic inference of the principal types
of defined function symbols, using a type reconstruction algorithm embedded
into the language’s implementation. Note, however, that our class of CRWL
programs allows so-called polymorphic recursion. The typability problem
is known to be undecidable for programs which use polymorphic recursion
[29], and any implemented type reconstruction algorithm is bound to fail
sometimes for such programs.

The next program, based on the signature from Example 1, will be useful
as a basis for other examples in the rest of the paper. It consists of obviously
well-typed definitions, except for the following three exceptions: the rewrite
rule defining the function wild, which has extra variables in its right-hand
side; the first rewrite rule defining the function extend, which is not type-
general; and the rewrite rule defining the function unpack, which has an
opaque pattern in its left-hand side.

Example 2 (CRWL Program)

not :: bool → bool

14

not false → true ⇐ ∅ ∅
not true → false ⇐ ∅ ∅

or :: bool → bool → bool

or true X → true ⇐ ∅ {X :: bool}
or false X → X ⇐ ∅ {X :: bool}

negate :: [bool] → [bool]

negate [] → [] ⇐ ∅ ∅
negate [X|Xs] → [not X|negate Xs] ⇐ ∅ {X :: bool, Xs :: [bool]}

extend :: [α] → [α]
extend [] → [z] ⇐ ∅ ∅
extend [X|Xs] → [X,X|Xs] ⇐ ∅ {X :: α, Xs :: [α]}

and :: bool → bool → bool

and true X → X ⇐ ∅ {X :: bool}
and false X → false ⇐ ∅ {X :: bool}

head :: [α] → α
head [X|Xs] → X ⇐ ∅ {X :: α, Xs :: [α]}

one :: nat

one → s z

tail :: [α] → [α]
tail [X|Xs] → Xs ⇐ ∅ {X :: α, Xs :: [α]}

plus :: nat → nat → nat

plus z Y → Y ⇐ ∅ {Y :: nat}
plus (s X) Y → s (plus X Y) ⇐ ∅ {X, Y :: nat}

unpack :: (β → β) → α
unpack (snd X) → X ⇐ ∅ {X :: α}

wild :: α → β
wild X → Y ⇐ ∅ {X :: α, Y :: β}

15

p :: nat → bool

p (s Y) → true ⇐ ∅ {Y :: nat}

pp :: nat → bool

pp (s X) → p X ⇐ ∅ {X :: nat}

map :: (α → β) → [α] → [β]
map F [] → [] ⇐ ∅ {F :: (α → β)}
map F [X|Xs] → [F X|map F Xs] ⇐ ∅

{F :: (α → β), X :: α, Xs :: [α]}
snd :: α → β → β
snd X Y → Y ⇐ ∅ {X :: α, Y :: β}

twice :: (α → α) → α → α
twice F X → F (F X) ⇐ ∅ {F :: (α → α), X :: α}

(++) :: [α] → [α] → [α]
[] ++ Ys → Ys ⇐ ∅ {Ys :: [α]}
[X|Xs] ++ Ys → [X|Xs ++ Ys] ⇐ ∅ {X :: α, Xs, Ys :: [α]}

third :: α → β → γ → γ
third X Y Z → Z ⇐ ∅ {X :: α, Y :: β, Z :: γ}

split :: [α] → [α] → [α] → bool

split Xs Ys Zs → true ⇐ Xs � Ys ++ Zs {Xs, Ys, Zs :: [α]}

In the previous program, most patterns in the left-hand sides are data
terms of FO type, except for the HO pattern (snd X) in function unpack and
the HO variable F in functions map and twice. The usefulness of HO patterns
as intensional representations of functions is better illustrated in the next ex-
ample, where circuit is used as an alias for the type bool→ bool→ bool→
bool. Functions of this type are intended to represent simple circuits which
receive three boolean inputs and return a boolean output.

Example 3 (Use of HO Patterns: Simple Circuits)

x1, x2, x3 :: circuit

x1 X1 X2 X3 → X1 ⇐ ∅ {X1, X2, X3 :: bool}
x2 X1 X2 X3 → X2 ⇐ ∅ {X1, X2, X3 :: bool}

16

x3 X1 X2 X3 → X3 ⇐ ∅ {X1, X2, X3 :: bool}

notGate :: circuit → circuit

notGate C X1 X2 X3 → not (C X1 X2 X3) ⇐ ∅
{C :: circuit, X1, X2, X3 :: bool}

andGate :: circuit → circuit → circuit

andGate C1 C2 X1 X2 X3 → and (C1 X1 X2 X3) (C2 X1 X2 X3) ⇐ ∅
{C1, C2 :: circuit, X1, X2, X3 :: bool}

orGate :: circuit → circuit → circuit

orGate C1 C2 X1 X2 X3 → or (C1 X1 X2 X3) (C2 X1 X2 X3) ⇐ ∅
{C1, C2 :: circuit, X1, X2, X3 :: bool}

size :: circuit → nat

size x1 → z

size x2 → z

size x3 → z

size (notGate C) → s (size C) ⇐ ∅ {C :: circuit}
size (andGate C1 C2) → plus (size C1) (size C2) ⇐ ∅

{C1, C2 :: circuit}
size (orGate C1 C2) → plus (size C1) (size C2) ⇐ ∅

{C1, C2 :: circuit}
This obviously well-typed program should be completed with the defini-

tion of function plus, as in Example 2. Functions x1, x2 and x3 represent
the basic circuits which just copy one of the inputs to the output. More
interestingly, the HO functions notGate, andGate and orGate take circuits
as parameters and build new circuits, corresponding to the logical gates NOT,
AND and OR. The function size, whose definition uses HO patterns for cir-
cuits, computes the number of gates of a given circuit. Imagine that we are
interested in a circuit whose output coincides with the majority of its three
inputs. Using λ-notation, a circuit with this desired behaviour can be written
as follows:

λX1.λX2.λX3.(and (or (and X1 X3) X2) (or X1 X3))

In our λ-free setting, an intensionally different circuit with the same be-
haviour can be represented as a pattern:

(andGate (orGate (andGate x1 x3) x2) (orGate x1 x3))

More generally, many patterns in the signature of this example are useful
representations of circuits. The problem of finding a pattern that realizes a

17

circuit with a given logical behaviour has been discussed in detail in [47]. The
solution can be easily written as a T OY program [32], using a lazy generate-
and-test method that exploits the combination of lazy evaluation and non-
deterministic functions. The use of HO patterns as formal parameters and/or
computed results is not possible in Haskell [43].

3 A Rewriting Logic for Program Semantics

3.1 Rewriting Calculi

In [19], a rewriting logic was proposed to deduce from an untyped CRWL
program P certain statements that characterize the meaning of P. More
precisely, two kinds of statements must be considered: approximation state-
ments e → t, meaning that t ∈ Pat⊥ approximates the value of e ∈ Exp⊥; and
joinability statements a � b, meaning that a → t, b → t holds for some total
t ∈ Pat. The collection of all t such that e → t can be deduced from P leads
to a logical characterization of e’s meaning, as we will see in Subsection 3.2.
On the other hand, joinability statements are needed for conditions in rewrite
rules, as well as for goals (see Section 4). They do not behave as equations
in equational logic, for two reasons: t is required to be a total pattern rather
than an arbitrary expression, and it is not required to be unique. Requiring
unicity of t would lead to a deterministic version of joinability, which has
been used under the name strict equality in several FLP languages, as e.g.
[15, 38].

Roughly, a deduction of e → t in CRWL corresponds to a finite sequence
of rewrite steps going from e to t in the TRS P ∪ {X → ⊥}. Unfortunately,
this simple idea does not work directly, because it leads to an inconvenient
treatment of non-determinism (see [18, 47] for details). Therefore, two special
rewriting calculi were proposed in [19] to formalize CRWL deducibility in a
HO setting. The first one, called Basic Rewriting Calculus (BRC for short)
expresses reflexivity, monotonicity and transitivity of CRWL-reductions in a
natural way. Its definition is as follows.

Definition 1 (The Basic Rewriting Calculus BRC)

18

BT: e →⊥ RF: e → e

TR:
e → e′ e′ → e′′

e → e′′
MN:

e → e′ e1 → e′1
(e e1) → (e′ e′1)

R:
C

l → r
if (l → r ⇐ C) ∈ [P]⊥

J:
a → t b → t

a � b
if t is a total pattern

The inference rule R above uses the set of (possibly partial) instances of
rewrite rules from P, that is defined as follows, ignoring the type environ-
ments:

[P]⊥ = {(l → r ⇐ C)σd | (l → r ⇐ C T) ∈ P, σd ∈ DSub⊥}

Due to the rules BT and R, BRC is not equivalent to classical rewriting. The
alternative Goal Oriented Rewriting Calculus (shortly GORC), given below,
looks still more unnatural from the classical rewriting viewpoint. The moti-
vation to introduce GORC is the top-down, goal-oriented format of GORC
proofs. As we will see in Section 4, this feature provides a useful basis for
the design of goal-solving calculi.

Definition 2 (The Goal-Oriented Rewriting Calculus GORC)

BT: e →⊥ RR: X → X if X ∈ DVar

OR:
e1 → t1 · · · en → tn C r a1 . . . am → t

f e1 . . . en a1 . . . am → t

if t �≡ ⊥ is a pattern, m ≥ 0, and f t1 . . . tn → r ⇐ C ∈ [P]⊥

DC:
e1 → t1 · · · em → tm
h e1 . . . em → h t1 . . . tm

if h t1 . . . tm is a rigid pattern

J:
a → t b → t

a � b
if t is a total pattern

BRC and GORC are essentially equivalent, as shown by the following
result.

19

Proposition 1 (Rewriting Calculi Equivalence)
For any CRWL program P, BRC and GORC derive the same approximation
and joinability statements.

Proof idea: Reasoning by induction on the structure of proofs, it is possible
to show that BRC proofs can be converted into GORC proofs and viceversa.
We omit a detailed reasoning because it would be very similar to the proof
of Proposition 4.1 in [18], which deals with the FO fragment of CRWL in an
untyped setting. This reference includes also more motivation for the intro-
duction of both rewriting calculi. �

In the sequel we refer mainly to the GORC calculus. We use the no-
tation P �GORC ϕ to assert that the statement ϕ can be deduced from
the program P using GORC. Next we show a simple example of a GORC
proof, based on the program from Example 2 and deriving snd (tail [X])

� snd (tail [Y]).

Example 4 (A Simple GORC Proof)

1. snd (tail [X]) � snd (tail [Y]) by JN, 2, 3

2. snd (tail [X]) → snd [] by DC, 4

3. snd (tail [Y]) → snd [] by DC, 5

4. tail [X] → [] by OR, 6, 8

5. tail [Y] → [] by OR, 7, 8

6. [X] → [X|[]] by DC, 8, 9

7. [Y] → [Y|[]] by DC, 8, 10

8. [] → [] by DC

9. X → X by RR

10. Y → Y by RR

The next definition will be useful later on.

Definition 3 (Structured GORC Proofs)
The structure of a GORC proof Π for statement ϕ (in symbols, Π � ϕ) obeys

20

to the following abstract syntax:

(Π � ϕ) ::= BT � e → ⊥
| RR � X → X

| (Π1 � e1 → t1 & · · · & Πn � en → tn & Π′ � C &

Π′′ � r am → t) +(OR) � f en am → t

if (f tn → r ⇐ C) ∈ [P]⊥

| (Π1 � e1 → t1 & · · · & Πm � em → tm) +(DC)

� h em → h tm

| (Π1 � a → t & Π2 � b → t) +(JN) � a � b

When writing structured GORC proofs in the rest of the paper, we some-
times abbreviate them by omitting some parts which are unneeded or can be
deduced from the context.

There is a natural relation between GORC deducibility and the approxi-
mation ordering � over Pat⊥, as shown by the following lemma. We omit the
straightforward proof, which proceeds by induction over the size of GORC
proofs. A proof of item 3 for the FO fragment of CRWL can be found in
[18], Lemma 4.1.

Lemma 8 (Basic Properties of GORC)
Assume a (not necessarily well-typed) CRWL program P. The following prop-
erties hold:

1. For any t, t′ ∈ Pat⊥: P �GORC t′ → t ⇐⇒ t � t′.

2. For any e ∈ Exp⊥, t, t′ ∈ Pat⊥: P �GORC e → t′ and t � t′ =⇒
P �GORC e → t.

3. For any e ∈ Exp⊥, t ∈ Pat⊥ and σd, σ
′
d ∈ DSub⊥ such that σd � σ′

d:
P �GORC eσd → t =⇒ P �GORC eσ′

d → t with a proof of the same size
and structure. �

Let us now consider the relationship between GORC provability and the
polymorphic type system introduced in Subsection 2.2. Note that P �GORC

e → t corresponds to a purely functional computation reducing e to t. Al-
though GORC derivations do not perform any kind of type checking, they

21

do always preserve types in the case of a well-typed program. The following
subject reduction lemma, proved in the Appendix, guarantees that a single
OR step is type-preserving.

Lemma 9 (One Step Subject Reduction for GORC)
Assume that a well-typed program P includes a defining rule f tn → r ⇐
C T0 for a defined symbol with principal type f :: τn → τ0. Suppose
also a type environment T and a substitution σ = (σt, σd) which verifies
T �WT tiσd :: τiσt for all 1 ≤ i ≤ n. Then T �WT rσd :: τ0σt. �

The proof of Lemma 9 relies on the Lemmata 3, 4, and 6. Type-preservation
for arbitrary GORC derivations is ensured by the next result, whose full proof
is given in the Appendix.

Theorem 2 (Subject Reduction for GORC)
Consider a well-typed program P. Assume e ∈ Exp⊥, τ ∈ Type and a type
environment T such that T �WT e :: τ . Then, for every t ∈ Pat⊥:

P �GORC e → t =⇒ T �WT t :: τ.

Proof idea: Induction on the size of a given GORC proof for P �GORC e →
t. A case distinction is needed according to the GORC inference rule applied
at the last step. The OR case is the most interesting one; it is proved with
the help of Lemma 9. �

When defining well-typed program rules in Subsection 2.3, we have re-
quired absence of extra variables in the right-hand sides, as well as type
generality and transparency of the left-hand sides. All these requirements
are needed for the subject reduction property to hold. This is shown by the
next example, based on the program from Example 2.

Example 5 (Subject Reduction Failure)

1. {X ::α} �WT wild X ::bool and P �GORC wild X → z, but {X ::α} ��WT

z :: bool.

2. ∅ �WT extend [] :: [bool] and P �GORC extend [] → [z], but ∅
��WT [z] :: [bool].

3. ∅ �WT unpack (snd z) :: bool and P �GORC unpack (snd z) → z, but
∅ ��WT z :: bool.

22

Our result on the existence of well-typed least Herbrand models for well-
typed programs (see Lemma 11 and Theorem 3 in Subsection 3.2) crucially
depend on the subject reduction property, and thus on the absence of extra
variables in right-hand sides. Both the GORC calculus and the construction
of least Herbrand models are concerned only with the behaviour of rewriting
computations. Goal solving in the logic programming sense is the task of the
lazy narrowing calculus CLNC presented in Section 4. In contrast to GORC,
computations in CLNC do not instantiate extra variables in an arbitrary
way. Therefore, it might be the case that extra variables on right-hand sides
are no obstacle for the well-typed behaviour of lazy narrowing. We have not
investigated this problem.

Independently of the extra variables issue, the possible occurrence of HO
logic variables in goals implies that no analogon of the subject reduction
property can be found for goal solving in CLNC. As we will see, dynamic
type checking is needed in order to face this difficulty. In Section 4 we also
use GORC proofs to witness the correctness of solutions computed by CLNC.
For this reason, the following notion is useful to investigate the construction
of well-typed CLNC computations.

Definition 4 (Type-annotated GORC Proofs)
Type-annotated GORC proofs are built by extending GORC proofs with con-
sistent type information. More precisely, we use the following abstract syntax
to describe the structure of type-annotated GORC proofs:

(Π �ϕ) ::= BT � eτ → ⊥τ

| RR � Xτ → Xτ

| (Π1 � eτ1
1 → tτ11 & · · · & Πn � eτn

n → tτn
n & Π′ � Cbool &

Π′′ � (rµm→τ aµm
m)τ → tτ) +(OR) � (f τn→µm→τ eτn

n aµm
m)τ → tτ

if (f τn→µm→τ t
τn

n)µm→τ → rµm→τ ⇐ Cbool ∈ [P]TA
⊥

| (Π1 � eτ1
1 → tτ11 & · · · & Πm � eτm

m → tτm
m) +(DC)

� (hτm→τ eτm
m)τ → (hτm→τ t

τm

m)τ

| (Π1 � aτ → tτ & Π2 � bτ → tτ) +(JN) � aτ � bτ

The notation [P]TA
⊥ refers to the set of type-annotated (and possibly partial)

instances of defining rules from the well-typed program P. It can be defined
in two stages:

23

• Due to Lemma 1, each rule (f tn → r ⇐ C T) ∈ P for a func-
tion with principal type f :: τn → τ can be type-annotated to become
(f τn→τ t

τn

n)τ → rτ ⇐ Cbool (with implicit type environment T). Let
PTA be the set of all possible, principal type annotations of rules from
P, built in this way.

• Define [P]TA
⊥ as the set of all the type-annotated rule instances (lτ →

rτ ⇐ Cbool)θ, such that (lτ → rτ ⇐ Cbool) ∈ PTA and θ = (θt, θd) is
well-typed in the sense of Lemma 5.

All the expressions occurring within a type-annotated GORC proof are
supposed to be fully type-annotated in the way explained in Subsection 2.2.
Obviously, type-annotated GORC proofs always represent a well-typed com-
putation. Some GORC proofs, however, cannot be type-annotated. Consid-
ering again the well-typed program P from Example 2, we get:

Example 6 (Type Annotation of GORC Proofs)

(a) The GORC proof from Example 4 can be type-annotated. The type-
annotated version of the first line of the proof (somewhat abbreviated)
would look as follows:

(snd[α]→β→β (tail[α]→[α] [Xα][α])[α])β→β

�

(snd[α]→β→β (tail[α]→[α] [Yα][α])[α])β→β

This is an instance of the principal type-annotation, chosen to enable a
consistent type-annotation of all the other statements occurring in the
proof. The principal type annotation, namely

(snd[α1]→β→β (tail[α1]→[α1] [Xα1][α1])[α1])β→β

�

(snd[α2]→β→β (tail[α2]→[α2] [Yα2][α2])[α2])β→β

would not allow a consistent type annotation of the second and third
lines of the proof. This is because the JN case in Definition 4 requires
tτ be the same type-annotated pattern in the two premises aτ → tτ

and bτ → tτ .

24

(b) On the other hand, the following GORC proof cannot be type-annotated,
because the only possible type-annotations of the lines 1, 2 and 3 are
not consistent with the requirements of Definition 4 in the JN case.

1. snd (tail [z]) � snd (tail [true]) by JN, 2, 3

2. snd (tail [z]) → snd [] by DC, 4

3. snd (tail [true]) → snd [] by DC, 5

4. tail [z] → [] by OR, 6, 8

5. tail [true] → [] by OR, 7, 8

6. [z] → [z|[]] by DC, 9, 8

7. [true] → [true|[]] by DC, 10, 8

8. [] → [] by DC

9. z → z by DC

10. true → true by DC

3.2 Models

A logical semantics for CRWL programs has been presented in [19] for an
untyped HO language, and in [5] for a typed FO language with algebraic
datatypes. Here we combine both approaches, using models with a data
universe and a type universe. Let us recall some notions about posets, that
are needed for our data domains.

A poset with bottom ⊥ is any set S partially ordered by �, with least
element ⊥. Def (S) denotes the set of all maximal elements u ∈ S, also called
totally defined. Assume X ⊆ S. X is a directed set iff for all u, v ∈ X there
exists w ∈ X such that u, v � w. X is a cone iff ⊥ ∈ X and X is downwards
closed w.r.t. �. X is an ideal iff X is a directed cone. We write C(S) (resp.
I(S)) for the set consisting of all the subsets X ⊆ S which are cones (resp.
ideals) of S. I(S) ordered by set inclusion ⊆ is a poset with bottom {⊥},
called the ideal completion of S. Mapping each u ∈ S into the principal
ideal 〈u〉 = {v ∈ S | v � u} gives an order preserving embedding. There
is a natural correspondence between the ideal completions of posets and a
popular class of semantic domains, called algebraic cpos [21]; more details
are given in [37, 18]. For our needs in this paper, the following intuitions
will suffice: the elements of a poset S represent finite approximations of
data values; defined elements in Def (S) represent totally computed finite
values of deterministic expressions; ideals in I(S) represent possibly infinite

25

values of deterministic expressions; and cones in C(S) represent values of
non-deterministic expressions.

In the sequel we overload the symbol ⊥ to stand for the bottom ele-
ment of any poset, as well as for the syntactic ⊥ used in partial expressions.
Assume two posets with bottom D and E. To model deterministic resp.
non-deterministic functions, we define:

[D →n E] = {f : D → C(E) | ∀u, u′ ∈ D : (u � u′ ⇒ f(u) ⊆ f(u′))}
[D →d E] = {f ∈ [D →n E] | ∀u ∈ D : f(u) ∈ I(E)}

Given f ∈ [D →n E] and X ∈ C(D), we write f(X) to abbreviate
⋃

u∈X f(u).
It is easily checked that f(X) ∈ C(E). This fact will be implicitly used in
the sequel. As models for CRWL programs we use algebras of the following
kind.

Definition 5 (Algebras)
For any signature Σ we consider algebras of the form

A = 〈DA, TA, @A,⇒A, ::A, {CA}C∈TC , {cA}c::τ∈DC , {fA}f ::τ∈FS 〉

such that the following conditions hold:

1. The data universe DA is a poset, whose elements are called data in-
tensions.

2. The type universe TA is a set, whose elements are called type inten-
sions.

3. The apply operation @A, that will be used in infix notation, belongs to
[DA×DA →n DA] and satisfies ⊥@Av = 〈⊥〉 for all v ∈ DA. For given
elements ui ∈ DA, the notation “u0 @A u1 @A · · · @A uk” represents a
cone defined as 〈u0〉, if k = 0, and (u0 @A · · · @A uk−1)@A uk, if k > 0.

4. ⇒A : TA × TA → TA, that will be used in infix notation, interprets the
type constructor “→”.

5. ::A ⊆ DA × TA interprets type membership. For each l ∈ TA, the
extension of l, defined as EA(l) = {u ∈ DA | u ::A l}, must be a cone
in DA.

26

6. For each C ∈ TC n, CA : (TA)n → TA (simply CA ∈ TA if n = 0),
interprets the type constructor C.

7. For each c ∈ DC n, cA ∈ DA.

8. For each f ∈ FSn, fA ∈ DA if n > 0, and fA ∈ C(DA), if n = 0.

9. For all h, k such that h ∈ DC n, 0 ≤ k ≤ n or h ∈ FSn, 0 ≤ k < n, and
for all u1, . . . , uk ∈ DA there is v ∈ DA such that hA@Au1@A · · · @Auk

= 〈v〉. Moreover, if all the ui are maximal then v is also maximal.

The elements of DA are called data intensions because they can be in-
terpreted as functions by means of the apply operation @A, but they are
not “true functions”. Analogously, the type intensions belonging to TA are
interpreted as cones of data intensions by means of the membership relation
::A, but they are not “true sets”. Thanks to intensional semantics, one can
work in a HO language while avoiding undecidability problems, especially
undecidability of HO unification [17]. Variants of this idea have occurred
previously in some LP and equational LP languages, as e.g. in [7, 23, 22, 24].
The paper [7] presents an untyped HO LP language called HiLog, with in-
tensional semantics. In [23, 22, 24] one finds models and polymorphic type
systems for FO LP and equational LP, as well as a suggestion to simulate
HO programming by means of data intensions and user-defined apply pred-
icates. This goes back to a technique proposed by Warren [49]. In order to
well-type the apply predicates, type-generality of predicate definitions has
to be abandoned. Moreover, [23, 22, 24] require explicit type annotations in
terms, so that untyped expressions and programs have no semantic meaning.

To explain item 9 in Definition 5, let us abbreviate hA @A u1 @A · · · @Auk

as hA u1 . . . uk. This stands for the result of applying hA to k arguments.
Therefore, item 9 requires that the application of a data constructors and the
partial application of a defined function to a number of arguments less than
its arity, must return a deterministic result, totally defined if the arguments
are. Given h ∈ DC n ∪FSn, we say that hA is deterministic iff hA u1 . . . un is
an ideal for all u1, . . . , un ∈ DA. According to item 9, this is always the case
for cA, for any c ∈ DC n.

The technical requirements of Definition 5 are motivated by the properties
of a particular class of algebras, called Herbrand Algebras.

27

Definition 6 (Herbrand Algebras)
Assume a type environment T with dom(T) = DVar. An algebra A is called
a Herbrand algebra over T iff the following conditions are satisfied:

1. DA = Pat⊥, and TA = Type.

2. τ1 ⇒A τ = τ1 → τ , and CA(τ1, . . . , τn) = C τ1 . . . τn, for all C ∈ TC n.

3. t ::A τ iff T �WT t :: τ , for all t ∈ Pat⊥, τ ∈ Type.

4. ⊥@A t = X @A t = 〈⊥〉, for all t ∈ Pat⊥, X ∈ DVar.

5. t @A t1 = 〈(t t1)〉, whenever (t t1) ∈ Pat⊥.

6. cA = c, for all c ∈ DC.

7. fA = f , for all f ∈ FS such that ar(f) > 0.

A valuation η = (ηt, ηd) over A is given by two mappings ηt : TVar → TA

(the type valuation) and ηd : DVar → DA (the data valuation). A valuation
η is totally defined iff ηd(X) ∈ Def (DA) for all X ∈ DVar. We write Val(A)
resp. DefVal(A) for the set of all valuations resp. totally defined valuations
over A. The values of types and expressions in A under η are computed
recursively:

• [[α]]Aη = ηt(α), for α ∈ Type.

• [[(C τ1 . . . τn)]]Aη = CA([[τ1]]
Aη, . . . , [[τn]]Aη), for C ∈ TC n.

• [[τ1 → τ]]Aη = [[τ1]]
Aη ⇒A [[τ]]Aη.

• [[⊥]]Aη = 〈⊥〉.

• [[X]]Aη = 〈ηd(X)〉, for X ∈ DVar.

• [[c]]Aη = 〈cA〉, for c ∈ DC.

• [[f]]Aη = 〈fA〉 if ar(f) > 0 and fA otherwise, for f ∈ FS.

• [[(e e1)]]
Aη = [[e]]Aη @A [[e1]]

Aη.

Sometimes we write [[e]]Aηd and [[τ]]Aηt for [[e]]Aη and [[τ]]Aη, respectively.

28

Note that in the case of Herbrand algebras, valuations are the same as
substitutions. Some simple properties of evaluation are stated in the next
proposition, whose proof is sketched in the Appendix.

Proposition 2 (Basic Properties of Evaluation)
Assume τ ∈ Type, e ∈ Exp⊥, t ∈ Pat⊥ and η ∈ Val(A). Then:

1. [[τ]]Aηt ∈ TA, and [[e]]Aηd ∈ C(DA).

2. If fA is deterministic for every f ∈ FS occurring in e, then [[e]]Aηd ∈
I(DA).

3. [[t]]Aηd = 〈v〉, for some v ∈ DA. Moreover, if t ∈ Pat is total and
η ∈ DefVal(A), then v ∈ Def (DA).

4. If A is a Herbrand algebra, then [[τ]]Aηt = τηt and [[t]]Aηd = 〈tηd〉. �

Another basic result establishes a natural relationship between substitu-
tion and evaluation. We omit the straightforward proof by induction over
the syntactic structure of τ , e. Similar results can be found in [18, 5].

Lemma 10 (Substitution Lemma)
Consider a valuation η = (ηt, ηd) ∈ Val(A) and a substitution σ = (σt, σd).
Define another valuation ησ = (ησt, ησd) ∈ Val(A) by the conditions:

• (ησt)(α) = [[σt(α)]]Aηt for all α ∈ TVar.

• (ησd)(X) = v ∈ DA such that [[σd(X)]]Aηd = 〈v〉 for all X ∈ DVar;
note that v exists because of Proposition 2, item 3.

Then, [[τσt]]
Aηt = [[τ]]Aησt for every τ ∈ Type, and [[eσd]]

Aηd = [[e]]Aησd for
every e ∈ Exp⊥. �

Algebras and valuations are not always well-behaved w.r.t. types. The
following definition isolates the well-typed ones.

Definition 7 (Well-typed Algebras)

1. A valuation η = (ηt, ηd) over A is well-typed w.r.t. a type environment
T iff every X :: τ ∈ T verifies that ηd(X) ∈ EA([[τ]]Aηt).

2. An algebra A is well-typed iff for every type valuation ηt:

29

(a) cA ∈ EA([[τ]]Aηt), for c :: τ ∈ DC n.

(b) fA ∈ EA([[τ]]Aηt), for f :: τ ∈ FSn, n > 0.

(c) fA ⊆ EA([[τ]]Aηt), for f :: τ ∈ FS 0.

(d) For all u, u1 ∈ DA, for all t, t1 ∈ TA: if u ∈ EA(t1 ⇒A t) and
u1 ∈ EA(t1) then u @A u1 ⊆ EA(t).

The next result, proved in the Appendix, guarantees that the evaluation
of well-typed expressions in well-typed algebras behaves as expected.

Proposition 3 (Well-typed Evaluation)
Assume a type environment T , a well-typed algebra A, and a valuation η ∈
Val(A) that is well-typed w.r.t. T . Then, for every e ∈ Exp⊥ such that
T �WT e :: τ , one has [[e]]Aηd ⊆ EA([[τ]]Aηt). �

In the rest of this section we prove the existence of least Herbrand models
for CRWL programs. The notion of model, borrowed from [19], does not
depend on the type system.

Definition 8 (Models)
Given an algebra A and a program P, we define:

1. A satisfies an approximation statement e → t under η ∈ Val(A) iff
[[e]]Aη ⊇ [[t]]Aη.

2. A satisfies a condition C under η ∈ Val(A) iff for every a � b ∈ C
there is some totally defined element v ∈ [[a]]Aη ∩ [[b]]Aη.

3. A satisfies a rewrite rule (l → r ⇐ C T) iff [[l]]Aη ⊇ [[r]]Aη holds for
every η ∈ Val(A) such that A satisfies C under η.

4. A is a model of P iff A satisfies all the rewrite rules belonging to P.

Note that neither ηt nor the type environments attached to rewrite rules
are needed in the previous definition. Therefore, untyped programs can also
have models. In the sequel, we write (A, η) � ϕ (where ϕ maybe an ap-
proximation statement or a joinability statement) to note that A satisfies ϕ
under η, and we write A � P to note that A is a model of P. We are mainly
interested in least Herbrand models, that are defined as follows:

30

Definition 9 (Least Herbrand Models)
Assume a program P and a type environment T such that dom(T) = DVar.
The least Herbrand model of P over T , noted as MP(T), is the unique
Herbrand algebra over T that satisfies the two following requirements:

1. f tn−1 @MP (T) tn = {t ∈ Pat⊥ | P �GORC f tn → t}, for f ∈ FSn, n > 0.

2. fMP(T) = {t ∈ Pat⊥ | P �GORC f → t}, for f ∈ FS 0.

By inspecting Definitions 5, 6 and 9, it can be checked that MP(T) is
well defined, and such that the following condition holds for any f ∈ FSn

and arbitrary patterns t1, . . . , tn ∈ Pat⊥: fMP (T) tn = {t ∈ Pat⊥ | P �GORC

f tn → t}. More precisely, the essential properties of MP(T) are given by
the next two lemmata, whose proofs can be found in the Appendix.

Lemma 11 (Least Herbrand Models are Well Defined)
Assume a CRWL program P and the type environment T such that dom(T) =
DVar. Then:

1. MP(T) is a well-defined Herbrand algebra, in the sense of Definitions 5,
6.

2. Moreover, if P is well-typed, then MP(T) is also well-typed. �

Lemma 12 (Characterization Lemma)
Consider a least Herbrand model MP(T) and σd ∈ DSub⊥, which serves as
a valuation over MP(T). Then:

1. For every e ∈ Exp⊥: [[e]]MP (T)σd = {t ∈ Pat⊥ | P �GORC eσd → t}

2. For every approximation or joinability statement ϕ:

(MP(T), σd) � ϕ ⇐⇒ P �GORC ϕσd. �

According to item 2 from Lemma 11, MP(T) is well-typed whenever P is
well-typed. The proof of this fact relies essentially on the subject reduction
property of GORC, given by Theorem 2. According to Lemma 12, semantic
validity in MP(T) behaves the same as derivability in GORC. This allows
to prove the next theorem, which is the main result in this section.

31

Theorem 3 (Canonicity of Least Herbrand Models)
MP(T) � P holds for any program P, and for every approximation or join-
ability statement ϕ the three following conditions are equivalent:

1. P �GORC ϕ.

2. (A, η) � ϕ, for all A � P and all η ∈ DefVal(A).

3. (MP(T), id) � ϕ. �

A full proof of this theorem is given in the Appendix. The equivalence
of items 1 and 2 shows that GORC is sound and complete for deriving those
statements which hold in all models of a given program P under all possi-
ble totally defined valuations. The result cannot be weakened to arbitrary
valuations, as shown by the statement X � X. Moreover, item 3 character-
izes those statements in terms of truth in MP(T). Therefore, the canonic
model MP(T) can be viewed as the logical semantics of P, in analogy to
the least Herbrand model of a LP program over a Herbrand universe with
variables [14, 3]. Least Herbrand models of FO CRWL programs can be also
characterized as least fixpoints and as free objects in a category of models
[36, 18, 5]. These results could be extended to the present HO setting, but
we will not dwell on this issue.

4 A Lazy Narrowing Calculus for Goal

Solving

In this section we extend the untyped lazy narrowing calculus CLNC from
[19] to prevent type errors at run time. Other existing narrowing calculi,
as e.g. [42, 44, 45, 25, 48, 33], can be used as a basis for the goal solving
mechanism of a HO FLP language. With the exception of [42], all these
approaches deal with simply-typed λ-terms, which give rise to undecidable
unification problems in the general case [17]. The calculus in [42] is designed
for an untyped, λ-free setting, similarly to our former approach in [19]. The
main novelty of the present approach is the treatment of polymorphic types in
the context of a HO FLP language which avoids the complications related to
general HO unification of λ-terms. As argued in [47], artificial incompleteness
problems in narrowing calculi often arise due to an improper choice of the

32

semantics. This is not the case for our logical semantics from Section 3, which
has been chosen to reflect the computational behaviour of lazy functions.

We recall that initial goals G for CLNC are finite systems of joinability
statements a � b. A correct solution for such a G is any total data sub-
stitution θd such that P �GORC aθd � bθd for all a � b ∈ G. Soundness
and completeness of CLNC, as proved for untyped programs in [19], remain
valid for well-typed programs. In the typed setting, however, one would like
to avoid the computation of ill-typed answers, whenever the program and
the initial goal are well-typed. Unfortunately, there are problematic situa-
tions where run time type errors can occur in CLNC. A first kind of problem
arises when a HO logic variable F occurs as head in some flexible expres-
sion (F em). In CLNC there are special transformations to guess a suitable
pattern t as binding for F in such cases, and sometimes t em may become
ill-typed. For instance, given the well-typed goal F X � true, CLNC can
guess the binding F �→ plus z, leading to an ill-typed goal and eventually
to the ill-typed solution {F �→ plus z, X �→ true}. As a second example,
consider map F [true,X] � [Y,false]. This is also a well-typed goal, but
CLNC can compute an ill-typed solution represented by the set of bindings
{F �→ plus z, X �→ false, Y �→ true}.

A second kind of problematic situation is related to statements h am �

h bm, joining two rigid and passive expressions. In CLNC a decomposition
transformation reduces such condition to a system of simpler conditions
ai � bi. We say that such a decomposition step is transparent iff h is m-
transparent and opaque otherwise. In the case of an opaque decomposition
step, some of the new conditions ai � bi may become ill-typed. Consider
for instance the two well-typed goals snd true � snd z and snd (map s [])

� snd (map not []). Both of them become ill-typed after a decomposition
step. In the first case the goal is unsolvable, while in the second case the
computation ultimately succeeds, in spite of the type error. Opaque decom-
position steps are also possible for approximation statements h am → h tm.
Moreover, guessing a binding for a logic variable F which occurs as head in
a flexible expression (F em), can subsequently give rise to opaque decompo-
sition.

Unfortunately, avoiding opaque decomposition is not easy, because its
eventual occurrence is undecidable, even for reasonably simple programs and
goals. A proof of this result, as well as a brief discussion on the harmfulness
of opaque decompositions from a practical viewpoint, can be found in Sub-
section 4.2 below. The other source of type errors described above, namely

33

the computation of ill-typed bindings logic variables, is a well-known prob-
lem. It can arise in the case of HO logic variables, and sometimes also in
the case of FO logic variables (for programs which allow subtyping or do not
impose transparency and type-generality requirements). Different solutions
have been proposed, some of which are summarized below.

As shown in [23, 22, 24] for the case of FO typed SLD resolution and
FO typed narrowing, respectively, a goal solving procedure that works with
fully type-annotated goals can detect ill-typed bindings at run time, since
they cause failure at the level of type unification. For instance, when trying
to solve the type-annotated goal (Fα→bool Xα)bool � truebool the ill-typed
binding Fα→bool �→ (plusnat→nat→nat znat)nat→nat would be prevented by a
failure of type unification. Another possibility is to embed ad hoc mechanisms
at a lower implementation level to take care of type unification problems at
run time in an efficient way, as proposed in [31] for implementing polymorphic
typing in the HO logic language λ-Prolog [40]. In the particular case of
monomorphically typed programs, the problem is easier to solve, because no
type unification is needed. In this vein, a recent paper [1] proposes a Warren-
like [49] type-preserving translation of HO programs into FO programs in a
monomorphic FLP setting. This technique is useful to prune the search space
and to ensure well-typed computations without dynamic type checking, but
it fails to handle goals with polymorphic function-typed variables.

Full type annotations have the disadvantage that goal solving becomes
more complex and less efficient, also for those computations that do not
need any dynamic type checking. Therefore, some optimization techniques
were proposed in [23, 22, 24] to alleviate this difficulty. Our aim here is to
adopt a less costly solution to extend CLNC with dynamic type checking,
avoiding type-annotations. We use goals G similar to those from [19], but
extended with a type environment T , and the notion of solution will be also
extended so that solutions can provide bindings both for the data variables
occurring in G and for the type variables occurring in T . Those CLNC
transformations that must compute a binding t for some HO variable F
will perform dynamic type checking, using type unification to ensure that
the type of t is compatible with T (F). The CLNC transformations not
related to HO variable bindings will perform no dynamic type checking. In
case of a computation that involves no functional application of HO logic
variables, the only overhead w.r.t. untyped CLNC consists in maintaining
the type environment T of the current goals, which of course evolves along
the computation. This is not too costly, because all the type assumptions

34

needed for T can be taken from the type environment of the initial goal and
the type environments of the rewrite rules in the program, which are known
in advance.

In the rest of this section we develop these ideas and we investigate the
soundness, completeness and type preservation properties of the resulting
lazy narrowing calculus. Since the eventual occurrence of opaque decom-
position during a CLNC computation is undecidable, our soundness result
guarantees a well-typed computed answer only under the assumption that
no opaque decomposition steps have occurred in the computation. On the
other hand, our completeness result only ensures the well-typed computation
of those solutions whose correctness is witnessed by some type-annotated
GORC proof.

4.1 Admissible Goals and Solutions

The lazy narrowing calculus CLNC from [19] works with goals that include
both joinability statements a � b to be solved and approximation statements
e → t to represent delayed unifications, introduced by lazy narrowing steps.
Moreover, goals in G include a solved part to represent the answer data
substitution computed so far, and they satisfy a number of goal invariants.
Here we must extend this class of goals, adding a type environment and a
second solved part to represent an answer type substitution. Those (data and
type) variables of a goal that have been introduced locally by previous CLNC
steps will be viewed as existential. For technical convenience, in the rest of
the paper we assume a countable set of existential variables, and we use the
notation (l → r ⇐ C T) ∈var P to indicate that (l → r ⇐ C T) is a
renaming of some defining rule from P, using fresh existential type variables
in T and fresh existential data variables in the rewrite rule. We also write
a � b for any one of the conditions a � b or b � a. The formal definition of
goal follows. More motivation and explanations can be found in [18, 47] for
the untyped FO case.

Definition 10 (Admissible Goals)
Admissible goals have the form G = P C Sd St T , where:

1. The delayed part P = e1 → t1, . . . , ek → tk is a multiset of approxi-
mation statements, with ei ∈ Exp, ti ∈ Pat. The set of produced data
variables of G is defined as pvar(P) = var(t1) ∪ · · · ∪ var(tk), and the

35

production relation is defined over var(G) by the condition X �P Y
iff there is some 1 ≤ i ≤ k such that X ∈ var(ei) and Y ∈ var(ti).

2. The unsolved part C = a1 � b1, . . . , al � bl is a multiset of joinability
statements. The set of demanded data variables of G is defined as
ddvar(C) = {X ∈ DVar | X em � b ∈ C, for some em, b}.

3. The data solved part Sd = {X1 ≈ s1, . . . , Xn ≈ sn} is a set of equations
in solved form, such that each si ∈ Pat and each Xi occurs exactly once
in P C Sd. We write σd for mgu(Sd).

4. The type solved part St = {α1 ≈ τ1, . . . , αm ≈ τm} is a set of type
equations in solved form, such that each τi ∈ Type and each αi occurs
exactly once in G. We write σt for mgu(St).

5. T = {X1 :: τ1, . . . , Xp :: τp} is called the type environment of G. We
assume that var(P C Sd) ⊆ {X1, . . . , Xp} = dom(T).

6. G must fulfill the following conditions, called goal invariants:

LN The tuple (t1, . . . , tk) is linear.

EX All produced data variables are existential.

NC The transitive closure of the production relation �P is irreflexive.

SL No produced variable enters the solved part: var(Sd) ∩ pvar(P) =
∅.

Note that any admissible goal verifies (P C)σd = (P C) and Tσt =
T , because of the requirements in items 3 and 4 above. By convention, initial
goals are of the form G0 = ∅ C ∅ ∅ T0, and include no existential
variables.

For typing purposes, goals can be viewed as “expressions” built from
variables, symbols in the current signature and binary “operations” (�),
(→), (≈) of type α → α → bool and (,) of type bool → bool → bool,
used in infix notation. We say that a goal G = P C Sd St T is
well-typed iff there is some T ≤ T ′ such that T ′ �WT (P, C, Sd) :: bool. In
addition, G is called type-closed iff T itself can be taken as T ′. More formally:

Definition 11 (Well-typed Goals)
Consider an admissible goal G = P C Sd St T and assume

36

TR(T, (P, C, Sd)) = (−, E), where TR is the type reconstruction algorithm
from Subsection 2.2.

1. G is called well-typed iff TSol(E) �= ∅. If this is the case, we write
σ̂t = mgu(St, E), T̂ = T σ̂t and Ĝ = P C Sd Ŝt T̂ .

2. A well-typed goal G is called type-closed iff T = T̂ . In the case that G
is well-typed, but not type-closed, Ĝ is called the type closure of G.

Note that a well-typed goal is not always type-closed, as shown next.

Example 7 (Type-closure of a Well-typed Goal)

1. A well-typed goal which is not type-closed:
G = ∅ F X � true ∅ ∅ {X :: α1, F :: α1 → α}.

2. Its type-closure:
Ĝ = ∅ F X � true ∅ α ≈ bool {X :: α1, F :: α1 → bool}.

The following technical lemma gives a useful characterization of well-
typed goals. A proof is included in the Appendix.

Lemma 13 (Characterization of Well-typed Goals)
For any admissible goal G = P C Sd St T , the three following
conditions are equivalent:

(a) G is well-typed.

(b) There is some T ≤ T ′ such that T ′ �WT (P, C, Sd) :: bool.

(c) There is some T ≤ T ′ such that

(c1) For every (e → t) ∈ P there is some type τ such that T ′ �WT e :: τ ,
T ′ �WT t :: τ .

(c2) For every (a � b) ∈ C there is some type τ such that T ′ �WT a :: τ ,
T ′ �WT b :: τ .

(c3) For every (X ≈ t) ∈ Sd, T ′ �WT t :: τ , where τ = T ′(X).

Moreover, T ′ can be always chosen as T̂ , if it exists. �

37

In the sequel, the notation T �WT G will abbreviate T �WT (P, C, Sd) ::
bool. According to Lemma 13, this indicates that G is well-typed and type-
closed. Similarly, the abbreviation T̂ �WT G can be used to indicate that G
is a well-typed goal.

Next, we define solutions of admissible goals. According to our definition,
solutions are proved to be correct by means of certain GORC proofs, called
witnesses.

Definition 12 (Solutions and Well-typed Solutions)
Let G = P C Sd St T be an admissible goal for a program P.

1. A solution of G is any data substitution θd ∈ DSub⊥ satisfying the
following conditions:

(a) θd(X) is a total pattern, for all X ∈ dom(θd) \ pvar(P).

(b) θd ∈ Sol(Sd).

(c) P �GORC (P C)θd, intended to mean that P �GORC ϕθd must
hold for all ϕ ∈ P ∪ C.

2. We write Sol(G) for the set of all the solutions of G. Any multiset
M containing one GORC proof for each statement ϕθd, ϕ ∈ P ∪C, is
called a witness for θd ∈ Sol(G).

3. A well-typed solution of G is any pair (R, θ) formed by a type environ-
ment R and a substitution θ = (θt, θd) such that

(a) θd ∈ Sol(G).

(b) dom(R) ⊆ ran(θd) \ dom(T).

(c) θt ∈ TSol(St).

(d) (Tθt∪R) �WT Tθ, intended to mean that (Tθt∪R) �WT Xθd :: τθt

must hold for all (X :: τ) ∈ T .

4. We write WTSol(G) for the set of all the well-typed solutions of G. A
witness for (R, θ) is defined simply as a witness for θ ∈ Sol(G).

Items 1 and 2 in the previous definition correspond essentially to our
former notion of solution in the untyped setting from [19]. The rôle of the
type environment R in well-typed solutions is to provide type assumptions
for the new data variables introduced in ran(θd); see item 3 in the definition.

38

Of course, ill-typed goals can have solutions, in the sense of items 1 and
2. More strangely perhaps, some ill-typed goals have well-typed solutions.
For example R = ∅, θt = ∅ and θd = ∅ give a well-typed solution for the
ill-typed goal G = ∅ tail [z] � tail [true] ∅ ∅ ∅.

In the case of well-typed solutions of well-typed goals, one expects the
goal to remain well-typed when the solution is applied to it. As shown by
the next lemma (proved in the Appendix) this can be guaranteed only for
type-closed goals.

Lemma 14 (Well-typed Solutions and Type-closure)

1. For any well-typed goal G, WTSol(Ĝ) ⊆ WTSol(G). The opposite
inclusion is false in general.

2. Assume a well-typed and type-closed goal G and (R, θ) ∈ WTSol(G).
Then (Tθt ∪ R) �WT Gθd. In particular, for all (a � b) ∈ C there is
some τ ′ ∈ Type such that (Tθt ∪ R) �WT aθd :: τ ′ and (Tθt ∪ R) �WT

bθd :: τ ′ (and analogously for (e → t) ∈ P and (X ≈ t) ∈ Sd). These
claims can fail if G is not type-closed. �

In view of the previous lemma, we restrict our attention to well-typed
solutions of well-typed and type-closed goals. We are also interested in type-
annotated witnesses for such solutions, in the sense of the following definition:

Definition 13 (Type-annotated Witness)
Assume a well-typed and type-closed goal G = P C Sd St T for a
well-typed program P. A type-annotated witness of (R, θ) ∈ WTSol(G), if it
exists, is obtained by considering the principal type annotation (P C)bool

with implicit type environment T , and taking a multiset M of type-annotated
GORC proofs for the type-annotated statement in (P C)boolθ. Note that
the type-annotated “expression” (P C)boolθ makes sense because of Lemma
5, and has implicit type environment Tθt ∪ R.

In the sequel, we write TASol(G) for the set of all (R, θ) ∈ WTSol(G)
which have a type-annotated witness. Trivially, TASol(G) ⊂ WTSol(G).
However, the inclusion is strict, as shown by the next example.

39

Example 8 (Type-annotated Witness)
Consider:

G = ∅ snd (tail [X]) � snd (tail [Y]) ∅ ∅
{X :: α1, Y :: α2},

R = ∅, θt = {α1 �→ nat, α2 �→ bool} and θd = {X �→ z, Y �→ true}. Note
that G is well-typed and type-closed, and (R, θ) ∈ WTSol(G). However, no
type-annotated witness exists due to Example 6(b).

As we will see in the next subsection, maintaining type-closed goals dur-
ing CLNC computations would be as expensive as working with fully type-
annotated goals. Therefore, CLNC is designed to avoid the computation of
type closures whenever possible.

4.2 Lazy Narrowing Calculus

Now we are ready to extend the lazy narrowing calculus CLNC from [19] with
dynamic type checking. We keep CLNC as the name of the new calculus. As
in [19], the notation G ��CLNC G′ means that G is transformed into G′ in one
step. The aim when using CLNC is to transform a well-typed, type-closed
initial goal G0 = ∅ C ∅ ∅ T0 into a well-typed solved goal Gn =
∅ ∅ Sd St Tn with type closure Ĝn = ∅ ∅ Sd Ŝt T̂n, and
to return (Tnσ̂t\T0σ̂t, (σ̂t, σd)) as the answer computed for G0. A sequence of
transformation steps G0 ��CLNC · · · ��CLNC Gn going from an initial goal G0

to a solved goal Gn, is called CLNC derivation and noted as G0 ��∗
CLNC Gn.

Due to Lemma 14, it is relevant to assume type-closedness for the initial goal
G0 and to compute the type closure of the final goal Gn before extracting the
computed answer. Some intermediate goals Gi may be not type-closed, but
nevertheless they stand for their closures Ĝi for the purpose of considering
potential solutions. The need to include the type environments (Tnσ̂t \ T0σ̂t)
as part of computed answers will be justified in Subsection 4.3.

Due to the convention that P and C are understood as multisets, CLNC
assumes no particular selection strategy for choosing the goal statement to
be processed in the next step. For writing failure rules we use FAIL, rep-
resenting an irreducible inconsistent goal. We also use some hopefully self-
explanatory abbreviations for tuples. In particular, am � bm stands for m
new joinability statements ai � bi, and similarly for approximation state-
ments. According to the notations introduced in Definition 10, CLNC rules

40

rely on the convention that S ′
t is the set of type equations in solved form rep-

resenting the unifier σ′
t. Moreover, some CLNC rules use the notation “[· · ·]”

meaning an optional part of a goal, present only under certain conditions.
Some other rules refer to the set svar(e) of those data variables that occur
in e at some position outside the scope of evaluable function calls. Formally,
svar(X) = {X} for any data variable X; for a rigid and passive expression
e = h em, svar(e) =

⋃m
i=1 svar(ei); and svar(e) = ∅ in any other case.

In spite of their complex appearance, CLNC transformation rules are
natural in the sense that they are designed to guess the shape of GORC
derivations step by step. For instance, the transformations NR1 and GN
guess the shape of OR steps in GORC proofs. As a lazy narrowing calculus,
CLNC emulates suspensions and sharing by means of the approximation
statements in the delayed part of goals. This and other interesting features
regarding occurs check and safe cases for eager variable elimination, have
been discussed briefly in [19] for the untyped HO case, and more widely
in [18, 47] for the untyped FO case. Here we focus on the treatment of
dynamic type checking. Each CLNC transformation has attached certain
side conditions, labelled with the symbols •, ∗ and ◦, that must be checked
before applying the transformation to the current goal G. In particular, those
CLNC transformations whose name is marked with � have a side condition
of type ◦ that performs dynamic type checking. In all such cases, there is a
candidate binding X �→ t for some HO variable X. The type T (X) assumed
for X in the current goal’s environment is compared to the principal type of
t by means of type unification. In case of success, the type solved part of the
goal is properly actualized, and the CLNC step can be performed. In case
of failure, the CLNC step is forbidden for the particular binding X �→ t. Of
course, this does not exclude the possibility to try a different application of
the same CLNC transformation, with a different binding.

The CLNC Calculus
Rules for the Unsolved Part

Identity & Decomposition (ID) � (p ≥ 0)

P X ap � X bp, C Sd St T

�� (P ap � bp, C Sd)[ρd, X ≈ h V m] S ′
t ([V m :: τm], T̂)σ′

t

41

• X /∈ pvar(P).

◦ p = 0 and S ′
t = St; or [p > 0, m ≥ 0, h V m ap rigid and passive; V m

fresh existential variables; σ′
t = mgu(Ŝt, τ ≈ τ ′) where τ ′ = T̂ (X),

h :: τm → τ ∈var Σ.

∗ ρd = {X �→ h V m}.]

Decomposition (DC1)

P h am � h bm, C Sd St T

�� P am � bm, C Sd St T

• h am, h bm rigid and passive.

Binding & Decomposition (BD) � (k ≥ 0)

P X ak � s bk, C Sd St T

�� (P ak � bk, C Sd)ρd, X ≈ s S ′
t T̂ σ′

t

• s ∈ Pat; X /∈ var(s); X /∈ pvar(P); var(s) ∩ pvar(P) = ∅.
∗ ρd = {X �→ s}.
◦ k = 0 and S ′

t = St; or k > 0, sbk rigid and passive, and σ′
t = mgu(Ŝt, τ ≈

τ ′) where τ = T̂ (X), τ ′ type-annotation of s in PA(T̂ , s bk).

Imitation & Decomposition (IM) � (k ≥ 0)

P X ak � h em bk, C Sd St T

�� (P V m ak � em bk, C Sd)ρd, X ≈ h V m S ′
t

(V m :: τm, T̂)σ′
t

• h em bk rigid and passive; X /∈ pvar(P); X /∈ svar(h em); V m fresh
existential variables; BD not applicable.

∗ ρd = {X �→ h V m}.
◦ k = 0 and S ′

t = St; or k > 0 and σ′
t = mgu(Ŝt, τ ≈ τ ′) where τ ′ = T̂ (X),

h :: τm → τ ∈var Σ.

42

Outer Narrowing (NR1) (k ≥ 0)

P f en ak � b, C Sd St T

�� en → tn, P C ′, r ak � b, C Sd St T ′, T

• (f tn → r ⇐ C ′ T ′) ∈var P.

Guess & Outer Narrowing (GN) � (k ≥ 0)

P X eq ak � b, C Sd St T

�� (eq → sq, P C ′, r ak � b, C Sd)ρd, X ≈ f tp S ′
t

(T ′, T̂)σ′
t

• q > 0; X /∈ pvar(P); (f tp sq → r ⇐ C ′ T ′) ∈var P.

∗ ρd = {X �→ f tp}.
◦ σ′

t = mgu(Ŝt, τ ′ ≈ λq → τ) where (f :: τ p → λq → τ) ∈var Σ, τ ′ =

T̂ (X).

Guess & Decomposition (GD) �

P X ap � Y bq, C Sd St T

�� (P V m−p, ap � Wm−q bq, C Sd)ρd, X ≈ h V m−p,

Y ≈ h W m−q S ′
t (V m−p :: τ ′

m−p, W m−q :: τ ′′
m−q, T̂)σ′

t

• p+q > 0; X, Y different; X, Y /∈ pvar(P); V m−p, W m−q fresh existential
variables; (h V m−p ap), (h W m−q bq) rigid and passive.

∗ ρd = {X �→ h V m−p, Y �→ h W m−q}.
◦ σ′

t = mgu(Ŝt, τ ′ ≈ λ′
p → τ ′

0, τ ′′ ≈ λ′′
q → τ ′′

0) where τ ′ = T̂ (X),

τ ′′ = T̂ (Y), (h :: τ ′
m−p → λ′

p → τ ′
0), (h :: τ ′′

m−q → λ′′
q → τ ′′

0) ∈var Σ,
two fresh variants of the principal type of h, sharing no type variables.

Conflict (CF1)

P h ap � h′ bq, C Sd St T �� FAIL

• h �= h′ or p �= q; h ap, h′ bq rigid and passive.

43

Cycle (CY)

P X � a, C Sd St T �� FAIL

• X �= a and X ∈ svar(a).

Rules for the Delayed Part

Decomposition (DC2)

h em → h tm, P C Sd St T

�� em → tm, P C Sd St T

• h em rigid and passive.

Output Binding & Decomposition (OB) � (k ≥ 0)

X ek → h tm sk, P C Sd St T

�� (ek → sk, P C Sd)ρd, [X ≈ h tm] S ′
t T̂ σ′

t

• [X /∈ pvar(P).]

∗ ρd = {X �→ h tm}.
◦ k = 0 and S ′

t = St; or k > 0 and σ′
t = mgu(Ŝt, τ ≈ τ ′) where τ ′ = T̂ (X),

(h :: τm → τ) ∈var Σ.

Input Binding (IB)

t → X, P C Sd St T

�� (P C)ρd Sd St T

• t ∈ Pat.

∗ ρd = {X �→ t}.

Input Imitation (IIM)

h em → X, P C Sd St T

�� (em → V m, P C)ρd Sd St (V m :: τm), T

44

• h em /∈ Pat rigid and passive; X ∈ ddvar(C); V m fresh existential
variables.

∗ ρd = {X �→ h V m}.
◦ (h :: τm → τ) ∈var Σ.

Elimination (EL)

e → X, P C Sd St T

�� P C Sd St T

• X /∈ var(P C).

Outer Narrowing (NR2) (k ≥ 0)

f en ak → t, P C Sd St T

�� en → tn, r ak → t, P C ′, C Sd St T ′, T

• (t /∈ DVar or t ∈ ddvar(C)); (f tn → r ⇐ C ′ T ′) ∈var P.

Output Guess & Outer Narrowing (OGN) � (k ≥ 0)

X eq ak → t, P C Sd St T

�� (eq → sq, r ak → t, P C ′, C Sd)ρd, [X ≈ f tp] S ′
t

(T ′, T̂)σ′
t

• q > 0; [X /∈ pvar(P)]; (f tp sq → r ⇐ C ′ T ′) ∈var P; t /∈ DVar or
t ∈ ddvar(C).

∗ ρd = {X �→ f tp}.
◦ σ′

t = mgu(Ŝt, τ ′ ≈ λq → τ) where (f :: τ p → λq → τ) ∈var Σ, τ ′ =

T̂ (X).

Output Guess & Decomposition (OGD) �

X eq → Y, P C Sd St T

�� (eq → W q, P C Sd)ρd, [X ≈ h V p] S ′
t

(V p :: τp, W q :: λq, T̂)σ′
t

• q > 0; Y ∈ ddvar(C); [X /∈ pvar(P)]; V p, W q fresh existential variables;
(h V p W q) rigid and passive.

45

∗ ρd = {X �→ h V p, Y �→ (h V p W q)}.
◦ σ′

t = mgu(Ŝt, τ ′ ≈ λq → τ, τ ′′ ≈ τ) where (h :: τ p → λq → τ) ∈var Σ,

τ ′ = T̂ (X), τ ′′ = T̂ (Y).

Conflict (CF2)

h ap → h′ tq, P C Sd St T �� FAIL

• h �= h′ or p �= q; h ap rigid and passive.

There is a simple relationship between the current presentation of CLNC
and the untyped version from [19]. Dropping St T from our current goals,
and omitting all the side conditions which refer to types in our current CLNC
transformations, gives back essentially the untyped goals and the CLNC
transformations from [19], except for some minor modifications which we
found convenient to introduce while working out the present soundness and
completeness results. Due to this fact, the soundness and completeness re-
sults given for untyped CLNC in [19] are still valid in our present setting,
with respect to “forgetful” CLNC derivations which omit dynamic checking.
Of course, we are presently not interested in such untyped derivations, and
the current CLNC transformations are intended for well-typed goals. More-
over, the CLNC transformations marked with � must be applied to the type
closure Ĝ of the current goal G, rather than to G itself, in the case that G is
not type-closed. For this reason, the formulation of the � transformations
uses Ŝt and T̂ , rather than St and T , for building the transformed goal. This
caution is very important, because several CLNC transformations do not
preserve type-closedness of goals, and the type environment in a type-closed
goal bears more precise information in general. Therefore, for goals G �= Ĝ,
the direct application of � to G may leave some type errors undetected. In
the case of CLNC derivations involving no functional applications of HO logic
variables, � transformations are never applied, and the costly computation
of type closures can be avoided.

Note that even the � transformations do not perform dynamic type
checking in some cases, as indicated in their formulation. For instance, ID
in the case p = 0 simply eliminates an identity X � X from the current goal.
Similar comments apply to BD, IM and OB in the case k = 0.

At this point, we can prove that the detection of eventual opaque decom-
position in CLNC computations is an undecidable problem. More precisely,

46

let us define the Opaque Decomposition Problem (ODP, for short) as follows:
given a well-typed CRWL program P and a well-typed and type-closed initial
goal G for P, tell if solving G w.r.t. P by using CLNC can eventually lead to
an opaque decomposition step. The next theorem, proved in the Appendix,
shows that the restriction of ODP to a quite simple class of programs and
goals is undecidable.

Theorem 4 (Undecidability of ODP)
Let us say that a CRWL program P is simple iff all the defining rules in P
are unconditional and have data terms as patterns in their left-hand sides.
Analogously, let us consider simple initial goals of the form ∅ f tn �

g sm ∅ ∅ ∅, where f ∈ FSn, g ∈ FSm and ti, sj are closed data
terms. Then, the restriction of ODP to simple programs and simple initial
goals is undecidable. �

Note that Theorem 4 does not mean that CLNC is useless for the pur-
pose of avoiding ill-typed computations. Type errors due to ill-typed bind-
ings of HO logic variables are always avoided. Regarding type errors due
to opaque decompositions, our feeling is that they occur rarely in practice.
Obviously, the opaque decomposition problem cannot arise in FO CRWL
programs, where transparent data terms are always used in place of possibly
opaque patterns. In fact, type preservation results for lazy narrowing com-
putations in such a setting are known [5, 4]. Beyond the FO case (which
includes, of course, FO logic programming) opaque decompositions are pos-
sible, but sometimes they do not cause any type errors. We conjecture that
the impossibility of run-time type errors due to opaque decomposition can
be formally proved for a restricted subclass of HO CRWL programs and
goals. More precisely, we have in mind the class of simple (but possible
higher-order) programs used in the proof of Theorem 4, and goals of the
form ∅ e � R ∅ ∅ {R :: τ} where e is a closed expression of type
τ . This essentially corresponds to pure functional programming.

To investigate the previous conjecture is beyond the scope of this paper.
In any case, an actual implementation of CLNC could (and should) raise a
warning to the user whenever some opaque decomposition step has occurred
during the computation. This may (but not must) indicate a run time type
error.

The soundness and completeness of CLNC are investigated in subsec-
tion 4.3. In the rest of this subsection we illustrate the behaviour of CLNC

47

by means of examples, all of them using well-typed functions defined in the
program from Example 2. Some of the examples present a complete CLNC
derivation. In such cases, the initial goal is always well-typed and type-
closed, and the part of the current goal which is transformed at each step is
underlined.

Our first example shows that type-closedness of goals is not invariant
under CLNC transformations. It can be lost because of an opaque decom-
position step, as in item (a), or also because of a narrowing step, as in item
(b). In the derivation (b), the new goal is not type closed because the prin-
cipal type of the defined function head (introduced by the narrowing step)
has not been unified with the type expected by the goal’s environment. In
both cases, the final solved goal must be type-closed before extracting the
computed answer, which would be not a well-typed solution otherwise.

Example 9 (Type-closedness of Goals is not CLNC Invariant)

(a) Opaque Decomposition

G0 = ∅ snd X � snd Y ∅ ∅ {X :: α, Y :: β} ��DC1

G1 = ∅ X � Y ∅ ∅ {X :: α, Y :: β} ��BD

G2 = ∅ ∅ X ≈ Y ∅ {X :: α, Y :: β} �=
Ĝ2 = ∅ ∅ X ≈ Y α ≈ β {X, Y :: β}

Computed answer, restricted to variables in G0:

(∅, ({α �→ β}, {X �→ Y})).

(b) Outer Narrowing

G0 = ∅ head L � H ∅ ∅ {L :: [α], H :: α} ��NR1

G1 = L→ [X|Xs] X � H ∅ ∅
{L :: [α], H :: α, Xs :: [β], X :: β} ��OB

G2 = ∅ X � H L ≈ [X|Xs] ∅
{L :: [α], H :: α, Xs :: [β], X :: β} ��BD

G3 = ∅ ∅ L ≈ [H|Xs], X ≈ H ∅
{L :: [α], H :: α, Xs :: [β], X :: β} �=

Ĝ3 = ∅ ∅ L ≈ [H|Xs], X ≈ H β ≈ α

{L :: [α], H :: α, Xs :: [α], X :: α}

48

Computed answer, restricted to variables in G0:

({Xs :: [α]}, (∅, {L �→ [H|Xs]})).

Our second example shows a complete CLNC derivation where no HO
variables occur and no dynamic type checking is needed.

Example 10 (A Well-typed Computation without Dynamic Type
Checking)

G0 = ∅ map (plus X) [Y] � [s z] ∅ ∅ {X, Y :: nat} ��NR1

(plus X)→ F, [Y|[]]→ [X1|X1s] [F X1|map F X1s] � [s z]

∅ ∅ {X, Y :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��IB,DC2

Y→ X1, []→ X1s [(plus X) X1|map (plus X) X1s] � [s z] ∅
∅ {X, Y :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��IB2

∅ [plus X Y|map (plus X) []] � [s z|[]] ∅ ∅
{X, Y :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��DC1

∅ plus X Y � s z, map (plus X) [] � [] ∅ ∅
{X, Y :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��NR1

X→ (s X2), Y→ Y2 s (plus X2 Y2) � s z, map (plus X) [] � []

∅ ∅ {X, Y, X2, Y2 :: nat; X1s :: [α]; X1 :: α; F :: α → β}
��OB,IB

∅ s (plus X2 Y) � s z, map (plus (s X2)) [] � [] X ≈ s X2

∅ {X, Y, X2, Y2 :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��DC1

∅ plus X2 Y � z, map (plus (s X2)) [] � [] X ≈ s X2 ∅
{X, Y, X2, Y2 :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��NR1

X2→ z, Y→ Y3 Y3 � z, map (plus (s X2)) [] � [] X ≈ s X2

∅ {X, Y, X2, Y2, Y3 :: nat; X1s :: [α]; X1 :: α; F :: α → β}
��OB,IB

∅ Y � z, map (plus (s z)) [] � [] X ≈ s z, X2 ≈ z ∅
{X, Y, X2, Y2, Y3 :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��BD

∅ map (plus (s z) [] � [] X ≈ s z, X2 ≈ z, Y ≈ z ∅
{X, Y, X2, Y2, Y3 :: nat; X1s :: [α]; X1 :: α; F :: α → β} ��NR1

49

(plus (s z))→ F1, []→ [] [] � [] X ≈ s z, X2 ≈ z, Y ≈ z

∅ {X1s :: [α]; X, Y, X2, Y2, Y3 :: nat; X1 :: α; F :: α → β;

F1 :: α1 → β1} ��IB,DC2,DC1

∅ ∅ X ≈ s z, X2 ≈ z, Y ≈ z ∅ {X, Y, X2, Y2, Y3 :: nat;

X1s :: [α]; X1 :: α; F :: α → β; F1 :: α1 → β1} = Gn = Ĝn

Computed answer, restricted to variables in G0:

(∅, (∅, {X �→ s z, Y �→ z})).

Finally, we present a series of examples designed to show that the dynamic
type checking side conditions embodied in CLNC are really needed. There
is a different example for each of the eight transformations marked with �,
which can perform dynamic type checking. All the examples show that type
errors can occur if dynamic type checking is omitted, or applied to a goal
which is not type-closed. Some of the � marked CLNC transformations are
such that a type error caused by opaque decompositions can escape from
dynamic type checking. The examples do also illustrate these situations.

Example 11 (CLNC Transformation ID)

1. Type-closure and dynamic checking are necessary. Consider G �= Ĝ,
given as:

G = ∅ X Y � X (not Z) ∅ ∅ {X :: α → β, Y :: α, Z :: γ}
Ĝ = ∅ X Y � X (not Z) ∅ α ≈ bool, γ ≈ bool

{X :: bool→ β, Y :: bool, Z :: bool}

Dynamic type checking prevents the application of ID to Ĝ with bind-
ing {X �→ twice}, since T̂ (X) = bool → β, twice :: (α′ → α′)→ α′

→ α′ and mgu(bool→ β ≈ (α′ → α′)→ α′ → α′) = FAIL.

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (X) = α → β, twice :: (α′ → α′)→ α′ → α′ and mgu(α →
β ≈ (α′ → α′) → α′ → α′) = {α �→ (α′ → α′), β �→ (α′ → α′)} and
hence G ��ID,wrong G′, where

G′ = ∅ Y � not Z X ≈ twice α ≈ α′ → α′, β ≈ α′ → α′

{X :: (α′ → α′)→ α′ → α′, Y :: α′ → α′, Z :: γ}

50

Note that G′ is ill-typed, although it admits an untyped solution: σd =
{X �→ twice, Y �→ false, Z �→ true}.

2. Opaque decomposition escapes from dynamic type checking. This is
not possible for transformation ID. Since X ap � X bp is well-typed

w.r.t. T̂ , the type T̂ (X) forces the types of ap and bp to be the same.

Example 12 (CLNC Transformation BD)

1. Type-closure and dynamic checking are necessary. Consider G �= Ĝ,
given as:

G = ∅ X Y � s N, negate Y � Z ∅ ∅
{X :: α → nat, Y :: [bool], Z :: [bool], N :: nat}

Ĝ = ∅ X Y � s N, negate Y � Z ∅ α ≈ [bool]

{X :: [bool]→ nat, Y :: [bool], Z :: [bool], N :: nat}

Dynamic type checking prevents the application of BD to Ĝ with bind-
ing {X �→ s}, since T̂ (X) = [bool]→ nat, s :: nat→ nat in PA(T̂ , s N)
and mgu([bool]→ nat ≈ nat→ nat) = FAIL.

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (X) = α → nat, s :: nat→ nat and mgu(α → nat ≈
nat→ nat) = {α �→ nat} and hence G ��BD,wrong G′, where

G′ = ∅ Y � N, negate Y � Z X ≈ s α ≈ nat

{X :: nat→ nat, Y :: [bool], Z :: [bool], N :: nat}

Note that G′ is ill-typed, although it admits an untyped solution: σd =
{X �→ s, N �→ [], Y �→ [], Z �→ []}.

2. Opaque decomposition escapes from dynamic type checking. This is
not possible for transformation BD. Since X ak � s bk is well-typed
w.r.t. T̂ , the type T̂ (X) and the type annotation of s in PA(T̂ , s bk)
must have the form µk → µ and νk → µ, respectively, with µk and νk

such that T̂ �WT ak :: µk and T̂ �WT bk :: νk. Moreover, dynamic type
checking unifies µk → µ and νk → µ as part of the BD transformation.
Therefore, ak and bk cannot become ill-typed in the new goal.

Example 13 (CLNC Transformation IM)

51

1. Type-closure and dynamic checking are necessary. Consider G �= Ĝ,
given as:

G = ∅ X Y � cons (head [z]) L, negate Y � Z ∅ ∅
{X :: α → [nat], Y :: [bool], L :: [nat], Z :: [bool]}

Ĝ = ∅ X Y � cons (head [z]) L, negate Y � Z ∅
α ≈ [bool] {X :: [bool]→ [nat], Y :: [bool],

L :: [nat], Z :: [bool]}

Dynamic type checking prevents the application of IM to Ĝ with bind-
ing {X �→ cons A}, since T̂ (X) = [bool] → [nat], cons A :: [α1] →
[α1] and mgu([bool]→ [nat] ≈ [α1]→ [α1]) = FAIL.

In the case of G, dynamic type checking does not prevent a type er-
ror. One gets: T (X) = α → [nat], cons A :: [α1]→ [α1], mgu(α →
[nat] ≈ [α1] → [α1]) = {α �→ [nat], α1 �→ nat} and hence
G ��IM,wrong G′, where

G′ = ∅ A � head [z], Y � L, negate Y � Z X ≈ cons A

α ≈ [nat], α1 ≈ nat {X :: [nat]→ [nat], Y :: [bool],

L :: [nat], Z :: [bool], A :: nat}

Note that G′ is ill-typed, although it admits a solution: σd = {X �→
cons z, A �→ z, Y �→ [], L �→ [], Z �→ []}.

2. Opaque decomposition escapes from dynamic type checking. Consider
G = Ĝ, given as:

G = ∅ X (tail [z]) � third one (tail [true]) ∅ ∅
{X :: [nat]→ β → β}

Dynamic type checking does not prevent the application of IM to
G with binding {X �→ third A}. In fact T (X) = [nat] → β → β,
third A :: α1 → β1 → β1, mgu([nat] → β → β ≈ α1 → β1 → β1) =
{α1 �→ [nat], β1 �→ β} and therefore:

G ��IM G′ = ∅ A � one, tail [z] � tail [true] X ≈ third A

α1 ≈ [nat], β1 ≈ β {X :: [nat]→ β → β, A :: δ}

52

The step G ��IM G′ involves opaque decomposition, and G′ turns out
to be ill-typed. Nevertheless G′ admits the solution σd = {A �→ s z, X �→
third (s z)}.

Example 14 (CLNC Transformation GN)
Type-closure and dynamic checking are necessary. Consider G �= Ĝ, given
as:

G = ∅ F X � true ∅ ∅ {X :: α1, F :: α1 → α}
Ĝ = ∅ F X � true ∅ α ≈ bool {X :: α1, F :: α1 → bool}

Dynamic type checking prevents the application of GN to Ĝ with binding
{F �→ plus z}, since T̂ (F) = α1 → bool, plus z :: nat→ nat and mgu(α1 →
bool ≈ nat→ nat) = FAIL.

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (F) = α1 → α, plus z :: nat→ nat, mgu(α1 → α ≈ nat →
nat) = {α �→ nat, α1 �→ nat} and hence G ��GN,wrong G′, where

G′ = X→ N N � true F ≈ plus z α ≈ nat, α1 ≈ nat

{F :: nat→ nat, X :: nat, N :: nat}

Note that G′ is ill-typed, although it admits a solution: σd = {F �→ plus z,
X �→ true, N �→ true}.

Example 15 (CLNC Transformation GD)

1. Type-closure and dynamic checking are necessary. Consider G �= Ĝ,
given as:

G = ∅ X (tail [z]) � Y (tail [true]) ∅ ∅
{X :: α1 → β, Y :: α2 → β}

Ĝ = ∅ X (tail [z]) � Y (tail [true]) ∅ α1 ≈ [nat],

α2 → [bool] {X :: [nat]→ β, Y :: [bool]→ β}

Dynamic type checking prevents the application of GD to Ĝ with
binding {X �→ cons A, Y �→ cons B}, since T̂ (X) = [nat] → β,
T̂ (Y) = [bool] → β, cons A :: [β1]→ [β1], cons B :: [β2]→ [β2]

and mgu([nat] → β ≈ [β1]→ [β1], [bool] → β ≈ [β2] → [β2]) =
FAIL.

53

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (X) = α1 → β, T (Y) = α2 → β, cons A :: [β1]→ [β1],
cons B :: [β2]→ [β2] and mgu(α1 → β ≈ [β1] → [β1], α2 → β ≈
[β2] → [β2]) = {α1 �→ [β1], α2 �→ [β1], β �→ [β1], β2 �→ β1} and
hence G ��GD,wrong G′:

G′ = ∅ A � B, tail [z] � tail [true] X ≈ cons A,

Y ≈ cons B α1 ≈ [β1], α2 ≈ [β1], β ≈ [β1], β2 ≈ β1

{X :: [β1]→ [β1], Y :: [β1]→ [β1], A :: β1, B :: β1}
Note that G′ is ill-typed, although it admits a solution: σd = {X �→
cons A, Y �→ cons A, B �→ A}.

2. Opaque decomposition escapes from dynamic type checking. Consider
G = Ĝ, given as:

G = ∅ X (tail [z]) � Y (tail [true]) ∅ ∅
{X :: [nat]→ β, Y :: [bool]→ β}

Dynamic type checking does not prevent the application of GD to
G with binding {X �→ snd, Y �→ snd}. In fact T (X) = [nat] →
β, T (Y) = [bool] → β, snd :: α1 → β1 → β1, snd :: α2 → β2 → β2,
mgu([nat] → β ≈ α1 → β1 → β1, [bool] → β ≈ α2 → β2 → β2) =
{α1 �→ [nat], α2 �→ [bool], β �→ (β1 → β1), β2 �→ β1} and therefore:

G ��GD G′ = ∅ tail [z] � tail [true] X ≈ snd, Y ≈ snd

α1 ≈ [nat], α2 ≈ [bool], β ≈ (β1 → β1), β2 ≈ β1

{X :: [nat]→ β1 → β1, Y :: [bool]→ β1 → β1}
The step G ��GD G′ involves opaque decomposition, and G′ turns out to
be ill-typed. Nevertheless G′ admits the solution σd = {X �→ snd, Y �→
snd}.

Example 16 (CLNC Transformation OB)
Type-closure and dynamic checking are necessary. Consider G �= Ĝ, given
as:

G = X Y→ s N negate Y � Z ∅ ∅ {X :: α → nat,

Y :: [bool], Z :: [bool], N :: nat}
Ĝ = X Y→ s N negate Y � Z ∅ α ≈ [bool]

{X :: [bool]→ nat, Y :: [bool], Z :: [bool], N :: nat}

54

Dynamic type checking prevents the application of OB to Ĝ with binding
{X �→ s}, since T̂ (X) = [bool] → nat, s :: nat→ nat and mgu([bool] →
nat ≈ nat→ nat) = FAIL.

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (X) = α → nat, s :: nat→ nat and mgu(α → nat ≈ nat →
nat) = {α �→ nat} and hence G ��OB,wrong G′, where

G′ = Y→ N negate Y � Z X ≈ s α ≈ nat {X :: nat→ nat,

Y :: [bool], Z :: [bool], N :: nat}
Note that G′ is ill-typed, although it admits a solution: σd = {X �→ s, Y �→
[], Z �→ [], N �→ []}.

Example 17 (CLNC Transformation OGN)
Type-closure and dynamic checking are necessary. Consider G �= Ĝ, given
as:

G = F X→ true ∅ ∅ ∅ {X :: α1, F :: α1 → α}
Ĝ = F X→ true ∅ ∅ α ≈ bool {X :: α1, F :: α1 → bool}

Dynamic type checking prevents the application of OGN to G with binding
{F �→ plus z}, since T̂ (F) = α1 → bool, plus z :: nat→ nat and mgu(α1 →
bool ≈ nat→ nat) = FAIL.

In the case of G, dynamic type checking does not prevent a type error.
One gets: T (F) = α1 → α, plus z :: nat→ nat, mgu(α1 → α ≈ nat →
nat) = {α �→ nat, α1 �→ nat} and hence G ��OGN,wrong G′, where

G′ = X→ N, N→ true ∅ F ≈ plus z α ≈ nat, α1 ≈ nat

{F :: nat→ nat, X :: nat, N :: nat}
Note that G′ is ill-typed, although it admits a solution: σd = {F �→ plus z,
X �→ true, N �→ true}.

Example 18 (CLNC Transformation OGD)
Type-closure and dynamic checking are necessary. Consider G �= Ĝ, given
as:

G = X (tail [z])→ Y Y � [Z|tail [true]] ∅ ∅
{X :: α → [β], Y :: [β], Z :: β}

Ĝ = X (tail [z])→ Y Y � [Z|tail [true]] ∅ α ≈ [nat],

β ≈ bool {X :: [nat]→ [bool], Y :: [bool], Z :: bool}

55

Dynamic type checking prevents the application of OGD to Ĝ with bind-
ing {X �→ cons A}, since T̂ (X) = [nat] → [bool], cons A :: [α1]→ [α1],
T̂ (Y) = [bool], cons A B :: [α2] and mgu([nat] → [bool] ≈ [α1] →
[α1], [bool] ≈ [α2]) = FAIL.

In the case of G, dynamic type checking does not prevent a type er-
ror. One gets: T (X) = α → [β], cons A :: [α1]→ [α1], T (Y) = [β],
cons A B :: [α2], mgu(α → [β] ≈ [α1] → [α1], [β] ≈ [α2]) = {α �→
[β], α1 �→ β, α2 �→ β} and hence G ��OGD,wrong G′, where

G′ = tail [z] → B [A|B] � [Z|tail [true]] X ≈ cons A

α ≈ [β], α1 ≈ β, α2 ≈ β {X :: [β]→ [β], Y :: [β], Z :: β,

A :: β, B :: [β]}

Note that G′ is ill-typed, although it admits a solution: σd = {X �→ cons Z,
A �→ Z, B �→ []}.

Examples 11–18 illustrate situations where a type error leads to an ill-
typed goal which has nevertheless some solutions, in the sense of Defini-
tion 12, items 1, 2. Of course, there are also cases where a type error leads
to an unsolvable goal.

4.3 Soundness and Completeness

In this final subsection we present soundness and completeness results for
CNLC. The main results are Theorem 5 and Theorem 6, corresponding to
Theorem 2 and Theorem 3 in [20]. After the publication of [20], where no
proofs were included, we unfortunately discovered some mistakes in our hand-
written proofs for these results. Regarding the Soundness Theorem 2 from
[20], we missed to recognize that a well-typed solved goal must be type-closed
before extracting a solution. Moreover, we did not notice that the empty type
environment in the solution extracted from a solved goal must be extended
to a generally non-empty environment, in order to obtain a computed answer
for the initial goal. With respect to the Completeness Theorem 3 in [20], we
failed to recognize that this result should be stated on the basis of solutions
for the type-closures of the well-typed goals under consideration, rather than
for the goals themselves. This is relevant because of the difference between
the two sets of solutions WTSol(Ĝ) and WTSol(G) in the case that G is
well-typed, but not type-closed; see Lemma 14. Presently we have found
proofs for revised formulations of both theorems.

56

We are interested in well-typed goals G for a well-typed program P. We
write TG for the type environment of G, and we use the notation (R, θ) ∈ex

WTSol(G) to indicate the existence of some (R′, θ′) ∈ WTSol(G) such that θ
and θ′ can differ only over existential variables. Remember that initial goals
are of the form G0 = ∅ C ∅ ∅ T0 and include no existential variables,
while solved goals have the form Gn = ∅ ∅ Sd St Tn. As defined at
the beginning of Subsection 4.2, the answer computed by a CLNC derivation
with initial goal G0 and final solved goal Gn is (Tnσ̂t\T0σ̂t, (σ̂t, σd)), where the
type substitution σ̂t comes from the type-closure of Gn. All these assumptions
and notational conventions will be kept in the rest of this subsection.

Now we are ready to discuss soundness. The following lemma (proved in
the Appendix) ensures the correctness of computed answers, extracted from
solved goals.

Lemma 15 (Computed Answers)
Assume a well-typed solved goal G = ∅ ∅ Sd St T with type-closure
Ĝ = ∅ ∅ Sd Ŝt T̂ . Then the computed answer (∅, (σ̂t, σd)) is a
well-typed solution of both G and Ĝ. �

Regarding soundness of one single CLNC step, we have the following
lemma. A proof is given in the Appendix.

Lemma 16 (One-step Soundness)
Assume a well-typed goal G, for a well-typed program P. Then:

1. If G ��CLNC FAIL, then Sol(G) = ∅.

2. If G ��CLNC G′, then G′ is an admissible goal, and every (R, θ) ∈
WTSol(G′) verifies ((TG′θt\TGθt)∪R, θ) ∈ex WTSol(G). Moreover, G′

is again well-typed, unless the CLNC step from G to G′ has performed
an opaque decomposition. �

Our desired soundness result follows from Lemma 16:

Theorem 5 (Soundness)
Consider a well-typed program P and a CLNC derivation G0 ��CLNC · · ·
��CLNC Gn, where G0 is well-typed and type-closed initial goal, Gn is a solved
goal, and all the steps are transparent. Then all the goals are well-typed and
the computed answer is correct, i.e. (Tnσ̂t \ T0σ̂t, (σ̂t, σd)) ∈ WTSol(G0).

57

Proof: Due to Lemma 15, we know (∅, (σ̂t, σd)) ∈ WTSol(Gn). Moreover,
the type environments of the goals along the CLNC derivation, affected by
σ̂t, form an increasing chain T0σ̂t ⊆ · · · ⊆ Tnσ̂t. Therefore, by reiterated ap-
plication of Lemma 16, we can obtain (Tnσ̂t \ T0σ̂t, (σ̂t, σd)) ∈ex WTSol(G0).
Since G0 includes no existential variables, the desired conclusion follows. �

The rôle of the type environment (Tnσ̂t \ T0σ̂t) in a computed answer
is to provide type assumptions for the new variables occurring in the range
of the computed data substitution. This can be seen in Example 9(b). An
additional illustration is provided by the next example, based on the program
from Example 2.

Example 19 (Computed Answer with Non-empty Type Environ-
ment)

Ĝ0 = G0 = ∅ pp N � true ∅ ∅ {N :: nat} ��NR1

G1 = N→ s X p X � true ∅ ∅ {N, X :: nat} ��OB

G2 = ∅ p X � true N ≈ s X ∅ {N, X :: nat} ��NR1

G3 = X→ s Y true � true N ≈ s X ∅ {N, X :: nat} ��OB

G4 = ∅ true � true N ≈ s (s Y), X ≈ s Y ∅ {N, X, Y :: nat}
��DC1

G5 = ∅ ∅ N ≈ s (s Y), X ≈ s Y ∅ {N, X, Y :: nat}

G5 = Ĝ5 yields the computed answer (TG5 σ̂t \TG0 σ̂t, σ) with TG5σ̂t \TG0 σ̂t =
{X, Y :: nat}, σt = ∅ and σd = {N �→ s (s Y), X �→ s Y}.

This computed answer is a well-typed solution of G0, as predicted by
Theorem 5. The type environment (TG5 σ̂t \TG0 σ̂t) is necessary, since (∅, σ) /∈
WTSol(G0).

In order to prove completeness of CLNC, we use a well-founded ordering
over witnesses of solutions, as in [19, 18]. Let ≺ be the well-founded multiset
ordering for multisets of natural numbers [11, 6]. Then:

Definition 14 (Ordering for Witnesses)
Let M, M′ be finite multisets of (possibly type-annotated) GORC proofs.
Let SM, SM′ be the corresponding multisets of natural numbers, obtained

58

by replacing each GORC proof by its size, understood as the number of GORC
inference steps. Then we define M�M′ iff SM ≺ SM′.

The next result, also proved in the Appendix, guarantees that CLNC
transformations can be chosen to make progress according to a given type-
annotated witness.

Lemma 17 (One-step Completeness)
Assume a well-typed goal G, for a well-typed program P, as well as a so-
lution (R, θ) ∈ TASol(Ĝ) with type-annotated witness M. If G is not
yet solved, there is some well-typed goal G′ such that G ��CLNC G′ and
(R, θ) ∈ex TASol(Ĝ′) with witness M′ �M. �

In contrast to the formulation of Lemma 2 in [20], the previous lemma
assumes well-typed solutions of the type closures of the goals under consid-
eration. Omitting the type closures would lead to the following problem:
G might be not type-closed, and G′ might become type-closed by virtue of
one of the CLNC transformations marked with �. In this case, proving
(R, θ) ∈ex TASol(Ĝ′) might be impossible due to item 1 from Lemma 14.

Our desired completeness result can be easily deduced from Lemma 17:

Theorem 6 (Completeness)
Assume a well-typed goal G0, for a well-typed program P, as well as a type-
annotated solution (R, θ) ∈ TASol(G0). Then there exists a CLNC deriva-
tion G0 ��∗

CLNC Gn consisting entirely of well-typed goals, where the solved
form Gn with associated computed answer (Tnσ̂t \ T0σ̂t, (σ̂t, σd)) is such that
(R, θ) ∈ex TASol(Ĝn), which implies σ̂t ≤ θt[tvar(G0)] and σd ≤ θd[var(G0)].

Proof: Reiterate the application of Lemma 17, starting from (R, θ) ∈
TASol(Ĝ0), which follows from the hypothesis because G0 is type-closed.
Since the ordering � is well-founded, the reiteration must eventually termi-
nate with a well-typed solved goal Ĝn such that (R, θ) ∈ex TASol(Ĝn). This
means the existence of some (R′, θ′) ∈ TASol(Ĝn) such that θ and θ′ can dif-
fer only over existential variables. Then θ′t = σ̂tθ

′
t and θ′d = σdθ

′
d follows from

θ′t ∈ TSol(Ŝt) and θ′d ∈ Sol(Sd), respectively. Since G0 includes no existential
variables, we can conclude that σ̂t ≤ θt[tvar(G0)] and σd ≤ θd[var(G0)] as
desired. �

Example 20 below illustrates the need of a type-annotated witness in the
hypothesis of Theorem 6. We assume the program from Example 2. The

59

initial goal G0 admits the well-typed solution (∅, (∅, {X �→ [], Y �→ []})).
Due to opacity of snd, no type-annotated witness for this solution exists.
In the CLNC derivation shown below, the goal G1 becomes ill-typed after
the first opaque decomposition step. The rest of the CLNC steps do not
require any dynamic type checking and can be performed in spite of the fact
that the goals are not well-typed. The ill-typed solved goal G7 obtained at
the end provides no well-typed computed answer. Nevertheless, the data
substitution σd extracted from G7 subsumes the data part of the initially
given solution. This is consistent with the completeness of untyped CLNC,
as proved in Theorem 4.2 from [19].

Example 20 (A Well-typed Solution Lacking a Type-annotated
Witness)

Ĝ0 = G0 = ∅ snd (head [X,[true]]) � snd (head [Y,[z]]) ∅
∅ {X :: [bool], Y :: [nat]} ��DC1

Ĝ1 �= G1 = ∅ head [X,[true]] � head [Y,[z]] ∅ ∅
{X :: [bool], Y :: [nat]} ��NR1

G2 = [X|[[true]]] → [X1|X1s] X1 � head [Y,[z]] ∅ ∅
{X :: [bool], Y :: [nat], X1 :: α1, X1s :: [α1]} ��DC2

G3 = X→ X1, [[true]] → X1s X1 � head [Y,[z]] ∅ ∅
{X :: [bool], Y :: [nat], X1 :: α1, X1s :: [α1]} ��IB2

G4 = ∅ X � head [Y,[z]] ∅ ∅ {X :: [bool], Y :: [nat],

X1 :: α1, X1s :: [α1]} ��NR1

G5 = [Y|[[z]]]→ [Y1|Y1s] X � Y1 ∅ ∅ {X :: [bool],

Y :: [nat], X1 :: α1, X1s :: [α1], Y1 :: α2, Y1s :: [α2]}
��DC2,IB2

G6 = ∅ X � Y ∅ ∅ {X :: [bool], Y :: [nat], X1 :: α1,

X1s :: [α1], Y1 :: α2, Y1s :: [α2]} ��BD

G7 = ∅ ∅ X ≈ Y ∅ {X :: [bool], Y :: [nat], X1 :: α1,

X1s :: [α1], Y1 :: α2, Y1s :: [α2]}

60

5 Conclusions

We have presented a polymorphic type system which extends a previous
approach to HO FLP, based on the rewriting logic CRWL [19]. We have
defined a natural class of well-typed programs, and we have extended both
the models and the lazy narrowing calculus CLNC from [19] to take types
into account. Our logical semantics assigns a meaning both to well-typed
and to untyped programs. With respect to lazy narrowing, we have identified
two possible sources of run-time type errors in CLNC computations, namely
opaque decompositions and ill-typed bindings for HO logic variables.

Regarding the first problem, we have shown that the eventual occurrence
of opaque decomposition steps is undecidable in general, and we have argued
that the difficulty is nevertheless bearable from a practical viewpoint. On
the other hand, we have proposed dynamic type checking mechanisms to
prevent the second problem, causing only a small overhead in computations
that involve no use of HO logic variables acting as functions. We have proved
that CLNC with dynamic type checking is sound and complete with respect
to the logical semantics in a reasonable sense, namely: computed answers are
always correct and well-typed unless opaque decomposition has taken place;
and correct solutions which have a type-annotated witness are covered by
well-typed computed answers.

As future work, we are interested in working out and testing an imple-
mentation of dynamic type checking. The T OY system [32], which works
on top on Prolog, is an available possibility. Another interesting approach
would be to extend the abstract machine from [27] (whose design supports
extensibility and modifiability) with dedicated mechanisms for dynamic type
checking.

Acknowledgements We are grateful to two anonymous reviewers for their
stimulating criticisms. We also thank our colleagues Miguel Palomino and
Eva Ullán, who carefully read an earlier version of this paper and made many
useful comments and suggestions.

References

[1] S. Antoy and A. Tolmach. Typed Higher-order Narrowing without
Higher-Order Strategies. In Proc. 4th Int. Symposium on Functional and

61

Logic Programming (FLOPS’99), volume 1722 of LNCS, pages 335–352.
Springer-Verlag, 1999.

[2] K.R. Apt. Logic Programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 10, pages 493–574.
Elsevier and The MIT Press, 1990.

[3] K.R. Apt and M. Gabbrielli. Declarative Interpretations Reconsidered.
In Proc. Int. Conf. on Logic Programming (ICLP’94), The MIT Press,
pages 74–89, 1994.

[4] P. Arenas-Sánchez and M. Rodŕıguez-Artalejo. A Lazy Narrowing Cal-
culus for Functional Logic Programming with algebraic polymorphic
types. In Proc. Int. Symp. on Logic Programming (ILPS’97), The MIT
Press, pages 53–68, 1997.

[5] P. Arenas-Sánchez and M. Rodŕıguez-Artalejo. A Semantic Framework
for Functional Logic Programming with Algebraic Polymorphic Types.
In Proc. Int. Joint Conference on Theory and Practice of Software
Development (TAPSOFT’97), volume 1214 of LNCS, pages 453–464.
Springer-Verlag, 1997.

[6] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[7] W. Chen, M. Kifer, and D.S. Warren. Hilog: A Foundation for Higher-
Order Logic Programming. Journal of Logic Programming, 15:187–230,
1993.

[8] N. Cutland. Computability. An Introduction to Recursive Function The-
ory. Cambridge University Press, 1980.

[9] L. Damas and R. Milner. Principal Type Schemes for Functional Pro-
grams. In Proc. ACM Symp. on Principles of Programming Languages
(POPL’82), ACM Press, pages 207–212, 1982.

[10] N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 6,
pages 243–320. Elsevier and The MIT Press, 1990.

62

[11] N. Dershowitz and Z. Manna. Proving Termination with Multiset Or-
derings. Communications of the ACM, 22(8):465–476, 1979.

[12] F. Pfenning (ed.). Types in Logic Programming. The MIT Press, 1992.

[13] M. Hanus (ed.). Curry: an Integrated Functional Logic Language, ver-
sion 0.7.1. Technical report, Universität Kiel, June 2000. Available at
http://www.informatik.uni-kiel.de/curry/.

[14] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-theoretic
Reconstruction of the Operational Semantics of Logic Programs. Infor-
mation and Computation, 102(1):86–113, 1993.

[15] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel-LEAF:
A Logic plus Functional Language. Journal of Computer and System
Science, 42(2):139–185, 1991.

[16] J.A. Goguen and J. Meseguer. Models and Equality for Logical Pro-
gramming. In Proc. Int. Joint Conference on Theory and Practice of
Software Development (TAPSOFT’87), volume 250 of LNCS, pages 1–
22. Springer-Verlag, 1987.

[17] W. Goldfarb. The Undecidibility of the Second-Order Unification Prob-
lem. Theoretical Computer Science, 13:225–230, 1981.

[18] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An Approach to Declarative Programming
Based on a Rewriting Logic. Journal of Logic Programming, 40(1):47–
87, 1999.

[19] J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-
Artalejo. A Higher Order Rewriting Logic for Functional Logic Pro-
gramming. In Proc. Int. Conf. on Logic Programming (ICLP’97), The
MIT Press, pages 153–167, 1997.

[20] J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-
Artalejo. Semantics and Types in Functional Logic Programming. In
Proc. 4th Fuji International Symposium on Functional and Logic Pro-
gramming (FLOPS’99), volume 1722 of LNCS, pages 1–20. Springer-
Verlag, 1999.

63

[21] C.A. Gunter and D. Scott. Semantic Domains. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6, pages
633–674. Elsevier and The MIT Press, 1990.

[22] M. Hanus. Horn Clause Programs with Polymorphic Types: Semantics
and Resolution. In Proc. Int. Joint Conf. on Theory and Practice of
Software Development (TAPSOFT’89), volume 352 of LNCS, pages 225–
240. Springer-Verlag, 1989.

[23] M. Hanus. Polymorphic Higher-Order Programming in Prolog. In Proc.
Int. Conf. on Logic Programming (ICLP’89), The MIT Press, pages
382–397, 1989.

[24] M. Hanus. A Functional and Logic Language with Polymorphic Types.
In Proc. Int. Symp. on Design and Implementation of Symbolic Compu-
tation Systems, volume 429 of LNCS, pages 215–224. Springer-Verlag,
1990.

[25] M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional
Trees. Journal of Functional Programming, 9(1):33–75, 1999.

[26] S. Hölldobler. Foundations of Equational Logic Programming. LNCS.
Springer-Verlag, 1989.

[27] M.T. Hortalá-González and E. Ullán. An Abstract Machine Based Sys-
tem for a Lazy Narrowing Calculus. In Proc. 5th Fuji International
Symposium on Functional and Logic Programming (FLOPS’2001), vol-
ume 2024 of LNCS, pages 216–232. Springer-Verlag, 2001.

[28] J. Jaffar, J.L. Lassez, and M.J. Maher. A Theory of Complete Logic Pro-
grams with Equality. Journal of Logic Programming, 1:211–223, 1984.

[29] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type Reconstruction in the
Presence of Polymorphic Recursion. ACM Transactions on Program-
ming Languages and Systems, 15(2):290–311, 1993.

[30] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 2, pages 2–116. Oxford University Press, 1992.

64

[31] K. Kwon, G. Nadathur, and D.S. Wilson. Implementing Polymor-
phic Typing in a Logic Programming Language. Computer Languages,
20(1):25–42, 1994.

[32] F.J. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm
Declarative System. In Proc. 10th Int. Conf. on Rewriting Techniques
and Applications (RTA’99), volume 1631 of LNCS, pages 244–247.
Springer-Verlag, 1999. Available at http://titan.sip.ucm.es/toy/.

[33] M. Marin, T. Ida, and T. Suzuki. On Reducing the Search Space of
Higher-Order Lazy Narrowing. In Proc. 4th Fuji International Sympo-
sium on Functional and Logic Programming (FLOPS’99), volume 1722
of LNCS, pages 319–334. Springer-Verlag, 1999.

[34] G. Meyer. Dimensions of Typing in Logic Programming. In Adden-
dum to the tutorial Types in Logic Programming. Int. Conf. on Logic
Programming (ICLP’97), 1997.

[35] R. Milner. A Theory of Type Polymorphism in Programming. Journal
of Computer and Systems Sciences, 17:348–375, 1978.

[36] J.M. Molina-Bravo and E. Pimentel. Modularity in Functional-Logic
Programming. In Proc. Int. Conf. on Logic Programming (ICLP’97),
The MIT Press, pages 183–197, 1997.

[37] B. Möller. On the Algebraic Specification of Infinite Objects - Ordered
and Continuous Models of Algebraic Types. Acta Informatica, 22:537–
578, 1985.

[38] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Programming
with Functions and Predicates: The Language BABEL. Journal of Logic
Programming, 12:191–223, 1992.

[39] A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog.
Artificial Intelligence, 23:295–307, 1984.

[40] G. Nadathur and D. Miller. An Overview of λ-Prolog. In Proc. Int. Conf.
on Logic Programming (ICLP’88), The MIT Press, pages 810–827, 1988.

[41] G. Nadathur and F. Pfenning. The Type System of a Higher-Order
Logic Programming Language. In F. Pfenning, editor, Types in Logic
Programming, pages 245–283. The MIT Press, 1992.

65

[42] K. Nakahara, A. Middeldorp, and T. Ida. A Complete Narrowing Cal-
culus for Higher-Order Functional Logic Programming. In Proc. Int.
Symp. on Programming Language Implementation and Logic Program-
ming (PLILP’95), volume 982 of LNCS, pages 97–114. Springer-Verlag,
1995.

[43] J. Peterson and K. Hammond (eds.). Report on the Programming Lan-
guage Haskell 98: A Non-strict, Purely Functional Language. Technical
report, February 1999.

[44] C. Prehofer. Higher-Order Narrowing. In Proc. IEEE Symp. on Logic in
Computer Science (LICS’94), IEEE Comp. Soc. Press, pages 507–516,
1994.

[45] C. Prehofer. A Call-by-Need Strategy for Higher-Order Functional Logic
Programming. In Proc. Int. Logic Programming Symp. (ILPS’95), The
MIT Press, pages 147–161, 1995.

[46] C. Prehofer. Solving Higher Order Equations: From Logic to Program-
ming. Birkhäuser Verlag, 1998.

[47] M. Rodŕıguez-Artalejo. Functional and Constraint Logic Programming.
In H. Comon, C. Marché, and R. Trainen, editors, Constraints in
Computational Logics, volume 2002 of LNCS, pages 202–270. Springer-
Verlag, 2001.

[48] T. Suzuki, K. Nakagawa, and T. Ida. Higher-Order Lazy Narrowing
Calculus: A Computation Model for a Higher-Order Functional Logic
Language. In Proc. Int. Conf. on Algebraic and Logic Programming
(ALP’97), volume 1298 of LNCS, pages 99–113. Springer-Verlag, 1997.

[49] D.H.D. Warren. Higher-Order Extensions to Prolog: are they needed?
In D. Michie J.E. Hayes and Y.H. Yao, editors, Machine Intelligence,
volume 10, pages 441–454. Edinburg Univ. Press, 1982.

66

6 Appendix: Proofs

6.1 Proofs of Results from Subsection 2.2

Proof of Theorem 1: We prove items 1 and 2 simultaneously, by struc-
tural induction over e.

Case X ∈ DVar: Assume T (X) = τ . Applying VR we get TR(T, X) =
(Xτ , ∅). Then:

1. For every σt ∈ TSol(∅), Tσt �WT X :: τσt, due to VR.

2. Assume T ≤ T ′ such that T ′ �WT X :: τ ′. Then T ′(X) = τ ′, and T ′ =
Tσt for some σt. This σt surely satisfies σt ∈ TSol(∅) and Xτσt = Xτ ′

.

Case h ∈ DC ∪ FS: Consider a fresh variant (h :: τ) ∈var Σ of h’s principal
type declaration. Applying ID we get TR(T, h) = (hτ , ∅). Then:

1. For every σt ∈ TSol(∅), Tσt �WT h :: τσt, due to ID.

2. Assume T ≤ T ′ such that T ′ �WT h :: τ ′. Then τ ≤ τ ′, and we
can choose σt such that T ′ = Tσt, τ ′ = τσt. This σt surely satisfies
σt ∈ TSol(∅) and hτσt = hτ ′

.

Case (e e1): Assume TR(T, e) = (eτ , E) and TR(T, e1) = (eτ1
1 , E1) with

tvar(E) ∩ tvar(E1) ⊆ ran(T). Applying AP we obtain TR(T, (e e1)) =
((eτ1→γ eτ1

1)γ, E ∪ E1 ∪ {τ ≈ τ1 → γ}), where γ is a fresh type variable not
occurring in T , E, E1. Then:

1. Assume σt ∈ TSol(E ∪ E1 ∪ {τ ≈ τ1 → γ}). By induction hypothesis
for e and e1, we get Tσt �WT e :: τσt and Tσt �WT e1 :: τ1σt. Moreover,
τσt = τ1σt → γσt because σt ∈ TSol(τ ≈ τ1 → γ). Hence, Tσt �WT

(e e1) :: γσt can be derived by applying AP.

2. Assume T ≤ T ′ such that T ′ �WT (e e1) :: τ ′. The last step in the
derivation must have used AP. Therefore, there must be some type
τ ′
1 such that T ′ �WT e :: τ ′

1 → τ ′ and T ′ �WT e1 :: τ ′
1. By induction

hypothesis applied to e and e1, we can assume σt ∈ TSol(E), σ1
t ∈

TSol(E1) such that Tσt = T ′, eτσt = eτ ′
1→τ ′

, Tσ1
t = T ′, eτ1

1 σ1
t = e

τ ′
1

1 .
In particular, we can conclude that σt = σ1

t [ran(T)]. Since γ is a
fresh type variable, we can define σ̂t ∈ TSub such that σ̂t � ran(T) =

67

σt � ran(T) = σ1
t � ran(T) and σ̂t(γ) = τ ′. From this construction it

follows that σ̂t ∈ TSol(E ∪ E1 ∪ {τ ≈ τ1 → γ}). In particular, we
get: τ σ̂t = τσt = τ ′

1 → τ ′ = τ1σ
1
t → γσ̂t = (τ1 → γ)σ̂t. Moreover,

eτ σ̂t = (eτ1→γ eτ1
1)γσ̂t = (eτ ′

1→τ ′
e

τ ′
1

1)τ ′
. This concludes the proof. �

Proof of Lemma 2: We reason by induction over the syntactic structure
of t. The base cases t = X (X ∈ DVar) and t = ⊥ are trivial, because the
only t′ � t are ⊥ and t itself. The remaining case is t = h tm. Due to the
assumption T �WT t :: τ , there must be types τi (1 ≤ i ≤ m) such that
(a) T �WT ei :: τi for all (1 ≤ i ≤ m) and (b) τm → τ is an instance of h’s
principal type. For t′ � t there are only two possibilities: t′ = ⊥ or t′ = ht′m,
where t′i � ti for all (1 ≤ i ≤ m). In the first case, T �WT ⊥ :: τ can be
derived by ID. In the second case, (a) and the induction hypothesis allow us
to assume (c) T �WT t′i :: τi for all (1 ≤ i ≤ m) and then T �WT h t′m :: τ
follows from (c) and (b). �

Proof of Lemma 3: We reason by structural induction over e.

Case ⊥: In this case eσd = ⊥ and T1 �WT ⊥ :: τσt follows from ID, since
(⊥ :: α) ∈var Σ⊥.

Case X ∈ DVar: T0 �WT X :: τ must be proved by applying VR. Hence,
T0(X) = τ and T1 �WT Xσd :: τσt holds by hypothesis.

Case h ∈ DC ∪ FS: In this case hσd = h and T0 �WT h :: τ must be proved
by applying ID. Then the principal type of h must be (h :: τ0) ∈var Σ such
that τ0 ≤ τ . Since τ0 ≤ τ ≤ τσt, T1 �WT h :: τσt follows from ID.

Case (e e1): T0 �WT (e e1) :: τ must be proved by applying AP, having
proved previously T0 �WT e :: τ1 → τ and T0 �WT e1 :: τ1 for some τ1. By
induction hypothesis for e and e1, we can assume T1 �WT eσd :: τ1σt →
τσt and T1 �WT e1σd :: τ1σt. Then T1 �WT (e e1)σd :: τσt follows by one
application of AP. �

Proof of Lemma 4: This follows as a simple corollary from Lemma 3, tak-
ing T as T0, Tσt as T1, and the identity data substitution idd as σd. �

Proof of Lemma 5: First, note that eτσ must be understood as the result
of replacing each type τ0 occurring in eτ by τ0σt and each variable Xτ0 occur-
ring in eτ by a type-annotated expression (Xσd)

τ0σt . This leads to a correct
type-annotated expression because of Lemmata 1 and 3. �

68

Proof of Lemma 6: We reason by structural induction over t.

Case X ∈ DVar: In this case, T1 �WT X :: τ and T2 �WT X :: τ imply
T1(X) = τ = T2(X), due to the type inference rule VR.

Case h ∈ DC ∪ FS: Since t = htm is transparent, h must be m-transparent,
and its principal type must be of the form h :: τm → τ0 with tvar(τm) ⊆
tvar(τ0). By the assumptions of the lemma and the form of the type deriva-
tion rules, there must be types τ ′

i , τ ′′
i (1 ≤ i ≤ m) such that

(a) T1 �WT ti :: τ ′
i for all (1 ≤ i ≤ m) and τ ′

m → τ ≤ τm → τ0.

(b) T2 �WT ti :: τ ′′
i for all (1 ≤ i ≤ m) and τ ′′

m → τ ≤ τm → τ0.

Since tvar(τm) ⊆ tvar(τ0), (a) and (b) imply that τ ′
i = τ ′′

i for all (1 ≤ i ≤ m).
Then, by the induction hypothesis applied to each ti, we can conclude that
T1(X) = T2(X) for all X ∈

⋃
{var(ti) | 1 ≤ i ≤ m} = var(h tm). �

Proof of Lemma 7: By the assumption of the lemma and the form of the
type inference rules, there must be types τi, τ ′

i (1 ≤ i ≤ m) such that

(a) T �WT ai :: τi for all (1 ≤ i ≤ m) and T �WT h :: τm → τ .

(b) T �WT bi :: τ ′
i for all (1 ≤ i ≤ m) and T �WT h :: τ ′

m → τ .

Consider the type environments T1 = {X1 :: τ1, . . . , Xm :: τm} and T2 =
{X1 :: τ ′

1, . . . , Xm :: τ ′
m}. Due to (a) and (b), we obtain T1 �WT h Xm :: τ

and T2 �WT h Xm :: τ . By applying Lemma 6 to T1, T2 and the transparent
pattern h Xm, we can conclude that τi = τ ′

i for all (1 ≤ i ≤ m), which
completes the proof. �

6.2 Proofs of Results from Subsection 3.1

Proof of Lemma 9: Since the given defining rule is well-typed, we can
assume: (a) T0 �WT ti :: τi for all 1 ≤ i ≤ n, (b) T0 �WT r :: τ0. By
the assumptions of the lemma, we also have (c) T �WT tiσd :: τiσt for all
1 ≤ i ≤ n. From (a) and the Type Instantiation Lemma 4, we get (d)
T0σt �WT ti :: τiσt for all 1 ≤ i ≤ n. On the other hand, taking into
account (c) and the linearity of f tn we can build a type environment T ′

0

with dom(T ′
0) = var(f tn) and such that (e) T ′

0 �WT ti :: τiσt for all 1 ≤
i ≤ n, (f) T �WT Xσd :: T ′

0(X) for all X ∈ var(f tn). To build T ′
0, it

69

is enough to choose as T ′
0(X) the type τX inferred for Xσd as part of the

type inference ensured by (c) (for that ti in which X occurs). Note that
t1, . . . , tn are transparent patterns without variables in common. Therefore
we can apply the Transparency Lemma 6 to (d), (e) and we obtain: (g)
T ′

0(X) = (T0σt)(X) = T0(X)σt for all X ∈ var(f tn) From (g), (f) and
var(r) ⊆ var(f tn), we get: (h) T �WT Xσd :: T0(X)σt for all X ∈ var(r).
Finally, (b) and (h) allow us to apply the Well-typed Substitution Lemma 3,
which gives T �WT rσd :: τσt, as we wanted to prove. �

Proof of Theorem 2: Assume a given GORC proof Π for P �GORC e → t,
with size k ≥ 1, measured as the number of GORC inference steps. We reason
by induction over k.

In the base case, k = 1 and there are three possible cases:

Case BT: In this case Π consists of one single application of BT. Then
t = ⊥, and T �WT ⊥ :: τ follows from the type inference rule ID, since
(⊥ :: α) ∈var Σ⊥.

Case RR: If Π consists of one single application of RR, then e = t = X,
for some variable X, and the conclusion is trivial.

Case DC: In this case Π must consist of one single application of DC with
m = 0, since m > 0 would yield size greater that 1 for Π. Therefore,
e = t = h ∈ DC ∪ FS , and the conclusion is trivial again.

For the induction step, we assume k > 1 and we analyze the two possible
cases according to the GORC inference rule applied at the last step of Π:

Case DC: In this case, e → t has the form of the conclusion of the GORC-
rule DC, with m ≥ 1. The assumption T �WT e :: τ becomes T �WT hem :: τ ,
which implies the existence of types τi such that (a) T �WT ei :: τi for all
1 ≤ i ≤ m, (b) T �WT h :: τm → τ . For each 1 ≤ i ≤ m, we have
P �GORC ei → ti with a GORC proof of size less than k. By induction
hypothesis, we can assume: (c) T �WT ti :: τi for all 1 ≤ i ≤ m. From (b)
and (c), we can conclude T �WT h tm :: τ , which is the same as T �WT t :: τ .

Case OR: Now we can assume that e → t has the form of the conclusion of
the GORC-rule OR, where each premise has a GORC proof of size smaller
than k. In particular, e = f en am for some f ∈ FSn, and the assumption
T �WT e :: τ , implies the existence of types τi, µj such that: (d) T �WT ei :: τi

for all 1 ≤ i ≤ n, (e) T �WT aj :: µj for all 1 ≤ j ≤ m, (f) T �WT f :: τn →

70

µm → τ . By the induction hypothesis applied to ei → ti, we can assume: (g)
T �WT ti :: τi for all 1 ≤ i ≤ n. Due to (f) and (g), we can apply Lemma 9
to (f tn → r ⇐ C) ∈ [P]⊥, and we obtain (h) T �WT r :: µm → τ . From (e)
and (h) we can infer T �WT r am :: τ . Finally, we can apply the induction
hypothesis to r am → t to conclude T �WT t :: τ . Note that our reasoning in
this case ignores the GORC proofs for C in the premises of OR. In fact, some
of these conditions could be ill-typed. This eventuality does not contradict
the Subject Reduction Theorem. �

6.3 Proofs of Results from Subsection 3.2

Proof of Proposition 2: The four items can be proved straightforwardly,
using structural induction over τ , e or t, according to the case. A similar
result for FO CRWL can be found in [18] as Proposition 5.1. Here we limit
ourselves to give the proof of item 3, reasoning by induction of the structure
of a partial pattern t ∈ Pat⊥. There are four cases to consider:

Case t = X, X ∈ DVar: This is a base case. [[X]]Aηd = 〈ηd(X)〉, where
ηd(X) ∈ DefVal(A), if η ∈ DefVal(A).

Case t = ⊥: This is also a base case. [[⊥]]Aηd = 〈⊥〉.
Case t = c tm, c ∈ DC n, 0 ≤ m ≤ n: By induction hypothesis, we can as-
sume elements vi ∈ DA such that [[ti]]

Aηd = 〈vi〉 (1 ≤ i ≤ m). In case that
η ∈ DefVal(A) and the ti are total patterns, we can assume vi ∈ Def (DA).
By item 9 of Definition 5 and monotonicity of @A, we get

[[c tm]]Aηd = cA @A v1 @A . . . @A vm = 〈v〉

for some v ∈ DA, and v ∈ Def (DA) in the case that v1, . . . , vm ∈ Def (DA).

Case t = f tm, f ∈ FSn, 0 ≤ m < n: This case is similar to the previous
case, also using the induction hypothesis and item 9 of Definition 5. �

Proof of Proposition 3: We reason by induction on the size n (measured
as the number of inference steps) of a given derivation of the type judgement
T �WT e :: τ .

In the base case, n = 1 and there are two subcases:

Case VT: In this case e is a variable X and T �WT X :: τ is proved by one
single VR step. Then [[X]]Aηd = 〈ηd(X)〉 ⊆ EA([[τ]]Aηt), since η is well-typed
w.r.t. T .

71

Case ID: In this case e = h ∈ DC ∪ FS with principal type declaration
(h :: τ0) ∈var Σ⊥. Note that h = ⊥ is possible here. Necessarily, T �WT h :: τ
has been proved by one single ID step, and τ = τ0σt for some σt ∈ TSub.
By the Substitution Lemma 10, [[τ]]Aηt = [[τ0]]

Aησt. On the other hand,
[[h]]Aηd equals hA if h ∈ FS 0 and 〈hA〉 otherwise. In both cases, [[h]]Aηd ⊆
EA([[τ0]]

Aησt) because A is a well-typed algebra.

For the induction step, we consider a derivation of T �WT (e e1) :: τ in
n steps, n > 1. The last step must use AP, and there must be shorter
derivations proving T �WT e :: τ1 → τ and T �WT e1 :: τ1 for some type
τ1. By induction hypothesis, we can assume: (a) [[e]]Aηd ⊆ EA([[τ1 → τ]]Aηt)
and [[e1]]

Aηd ⊆ EA([[τ1]]
Aηt). Since A is a well-typed algebra, we know that:

(b) u @A u1 ⊆ EA([[τ]]Aηt) for all u ∈ EA([[τ1 → τ]]Aηt), u1 ∈ EA([[τ1]]
Aηt).

On the other hand, we also have: (c) [[(e e1)]]
Aηd = [[e]]Aηd @A [[e1]]

Aηd =⋃
{u @A u1 | u ∈ [[e]]Aηd, u1 ∈ [[e1]]

Aηd}. From (a), (b), (c) it follows that
[[(e e1)]]

Aηd ⊆ EA([[τ]]Aηt), as we wanted to prove. �

Proof of Lemma 11: To prove item 1 we have to check that all the tech-
nical conditions stated in the Definitions 5, 6 are fulfilled. The crucial points
are the following ones:

1(a) @MP (T) must be monotonic mapping returning cones as values. This
follows from items 2 and 3 of Lemma 8. The key fact is that, for patterns
ti, t

′
i ∈ Pat⊥ such that ti � t′i, one gets:

{t ∈ Pat⊥ | P �GORC f tm → t} ⊆ {t ∈ Pat⊥ | P �GORC f t′m → t}

where both sets are cones.

1(b) For every τ ∈ Type, the set EMP (T)(τ) = {t ∈ Pat⊥ | T �WT t :: τ}
must be a cone. Indeed, T �WT ⊥ :: τ holds because of the type inferring
rule ID. Moreover, assuming T �WT t′ :: τ and t � t′, T �WT t :: τ follows
from Lemma 2.

1(c) For every f ∈ FS 0, the set fMP(T) = {t ∈ Pat⊥ | P �GORC f → t}
must be a cone. This is true because of item 2 from Lemma 8.

To prove item 2, let us assume that P is a well-typed program. Considering
item 4 of the Proposition 2, as well as the construction of MP(T), proving
that MP(T) is well-typed reduces to check the following conditions:

2(a) T �WT c :: τσt, for every c :: τ ∈ DC n, σt ∈ TSub.

72

2(b) T �WT f :: τσt, for every f :: τ ∈ FSn, σt ∈ TSub.

2(c) For every (f :: τn → τ0) ∈ FSn, n ≥ 0, for every ti, t
′
i ∈ Pat⊥, for

every σt ∈ TSub: T �WT ti :: τiσt (1 ≤ i ≤ n) and P �GORC f tn → t =⇒
T �WT t :: τ0σt.

Indeed, 2(a) and 2(b) follows from the type inference rule ID. On the other
hand, the assumptions in 2(c) imply T �WT f tn :: τ0σt, which allows to de-
duce T �WT t :: τ0σt by an application of the Subject Reduction Theorem 2.
�

Proof of Lemma 12: We start by showing that item 2 is an easy conse-
quence of item 1. The statement ϕ can be either e → t or a � b. In the first
case, we have:

(MP(T), σd) � e → t ⇐⇒ [[t]]MP (T)σd ⊆ [[e]]MP (T)σd ⇐⇒
tσd ∈ [[e]]MP (T)σd ⇐⇒ P �GORC eσd → tσd

where the first equivalence is justified by Definition 8, the second equivalence
is true because of item 4 in Proposition 2 and the third equivalence holds by
item 1 of the present lemma.

In the case ϕ = a � b we reason as follows: (MP(T), σd) � a � b ⇐⇒
there is a total pattern t ∈ [[a]]MP (T)σd∩ [[b]]MP (T)σd ⇐⇒ there is a pattern
t ∈ Pat such that P �GORC aσd → t and P �GORC bσd → t ⇐⇒ P �GORC

aσd � bσd, where the first equivalence is justified by Definition 8, the second
equivalence is true by item 1 of this lemma, and the third equivalence is
justified by the GORC rule JN.

In order to prove item 1, we observe that (∗) [[eσd]]
MP (T)id = [[e]]MP (T)idσd =

[[e]]MP (T)σd, where the first identity holds because of the Substitution Lemma

10 and the second identity is true because [[σd(X)]]MP (T)id = 〈σd(X)〉. We

will show that every e ∈ Exp⊥ verifies (∗∗) [[e]]MP (T)id = {t ∈ Pat⊥ | P �GORC

e → t} Note that item 1 follows from (∗), (∗∗) (with e replaced by eσd

in (∗∗)). To simplify the notation in the rest of this proof, we abbreviate

“[[e]]MP (T)id” as “[[e]]P” and “P �GORC e → t” as “e →P t”. We give separate
proofs for the two inclusions: (A) [[e]]P ⊆ {t ∈ Pat⊥ | e →P t} and (B)
{t ∈ Pat⊥ | e →P t} ⊆ [[e]]P .

Proof of (A) Due to the construction of MP(T) and the recursive definition

of expression evaluation, the true facts of the form “t ∈ [[e]]P” are exactly

73

those that can be derived in finitely many steps by means of the following
rules:

(D1) ⊥ ∈ [[e]]P , for all e ∈ Exp⊥.

(D2) X ∈ [[X]]P , for all X ∈ DVar.

(D3) ti ∈ [[ei]]
P (1 ≤ i ≤ m) =⇒ h tm ∈ [[h em]]P , for all rigid and passive

expressions h em.

(D4) ti ∈ [[ei]]
P (1 ≤ i ≤ n), u ∈ [[f tn]]P , t ∈ [[u am]]P =⇒ t ∈ [[f en am]]P ,

for all rigid and active expressions f en am.

Assume that “t ∈ [[e]]P” has been derived in k steps by means of the rules
(D1)–(D4) above. We use induction over k to show that e →P t.

In the base case k = 1, t ∈ [[e]]P has been derived by one single application
of (D1), (D2) or (D3) with m = 0. In all these cases, e →P t is trivial.

For the inductive case, k > 1, the last step in the derivation of t ∈ [[e]]P must
correspond to rule (D3) with m > 0, or to rule (D4). In the (D3) subcase,
we get e = h em and t = h tm where ei →P ti (1 ≤ i ≤ m) can be assumed by
induction hypothesis. Therefore, e →P t follows by the GORC rule DC. In
the (D4) subcase e = f enam, and by induction hypothesis we obtain ei →P ti
(1 ≤ i ≤ n) and u am →P t, where u ∈ [[f tn]]P . By construction of MP(T),
u ∈ [[f tn]]P implies f tn →P u. By Proposition 1, GORC is equivalent to
BRC, where reduction is transitive and preserved by contexts. Therefore, we
can combine the reductions ei →P ti (1 ≤ i ≤ n); f tn →P u; u am →P t to
obtain:

f en am →P f tn am →P u am →P t

which proves f en am →P t, as desired

Proof of (B) We assume that e →P t has been established be means of a

GORC proof of size k, and we use induction over k to show t ∈ [[e]]P .

The base case, k = 1, corresponds to a GORC proof consisting of one single
application of BT, RR or DC with m = 0. In all these situations, t ∈ [[e]]P

is obvious.

For the inductive case, k > 1, we distinguish two subcases, according to the
inference rule used at the last step of the given GORC proof.

74

Case DC with m > 1: We have e = h em, t = h tm, and ti ∈ [[ei]]
P (1 ≤ i ≤

m) can be assumed by induction hypothesis. Then h tm ∈ [[h em)]]P follows
by construction of MP(T).

Case OR: We have a rule instance (f tn → r ⇐ C) ∈ [P]⊥ such that (a)
ei →P ti (1 ≤ i ≤ n), (b) P �GORC C, (c) r am →P t. By induction
hypothesis applied to (a), (c), we get ti ∈ [[ei]]

P (1 ≤ i ≤ n) and t ∈ [[r am]]P .
These facts, together with the monotonicity of the apply operation in any
algebra and the definition of expression evaluation, imply the following: (d)
t ∈ [[r am]]P and [[f tn am]]P ⊆ [[f en am]]P . By (d), it is enough to show that
[[r am]]P ⊆ [[f tn am]]P , which in turn follows from [[r]]P ⊆ [[f tn]]P . To show
this, let us assume u ∈ [[r]]P . Because of the inclusion (A) (already proved
above) we obtain: (e) r →P u. Moreover, due to item 1 from Lemma 8, we
also have (f) ti →P ti (1 ≤ i ≤ n). Now, f tn →P u follows from (f), (b),
(e) and the GORC rule OR. Due to the construction of MP(T), f tn →P u
implies u ∈ [[f tn]]P , which completes the proof of [[r]]P ⊆ [[f tn]]P and the
Lemma. �

Proof of Theorem 3: In order to prove MP(T) � P, we consider any
defining rule (f tn → r ⇐ C T) ∈ P and any data substitution σd ∈
DSub⊥ (which is the same as a data valuation over MP(T)). Assume that
(MP(T), σd) � C. By item 2 from Lemma 12, this means that P �GORC Cσd.

We have to check [[r]]MP (T)σd ⊆ [[f tn]]MP (T)σd. By item 1 from Lemma 12,
this amounts to show:

{t ∈ Pat⊥ | P �GORC rσd → t} ⊆ {t ∈ Pat⊥ | P �GORC (f tn)σd → t}

This is true, because for any t ∈ Pat⊥ such that P �GORC rσd → t, we can
derive P �GORC (f tn)σd → t in one OR step, using P �GORC Cσd (which
we are assuming) and P �GORC tiσd → tiσd (which is true by item 1 from
Lemma 8). Next, we show the equivalence of the items in the Theorem’s
statement by proving three implications.

1 =⇒ 2: Let us fix any model A � P and any totally defined valuation
η ∈ DefVal(A). We assume P �GORC ϕ with some proof Π of size k, and we
reason by induction over k to prove (A, η) � ϕ.

In the base case, k = 1, ϕ must be either e → ⊥ or X → X or h → h, and
(A, η) � ϕ is trivially true.

In the inductive case, k > 1, we must consider three subcases.

75

(a) The proof Π ends with a DC step. Then ϕ = h em → h tm, and by
induction hypothesis applied to the premises of the DC inference, we get
(A, η) � ei → ti, which amounts to [[ti]]

Aη ⊆ [[ei]]
Aη, for all 1 ≤ i ≤ n,

[[h tm]]Aη ⊆ [[h em]]Aη is easy to check, using the definition of expression
evaluation. Therefore, (A, η) � h em → h tm.

(b) The proof Π ends with an OR step. Then ϕ = f en am → t, and by
induction hypothesis applied to the premises of the OR inference, we get
(b1) (A, η) � ei → ti, i.e. [[ti]]

Aη ⊆ [[ei]]
Aη, (1 ≤ i ≤ n), (b2) (A, η) � C,

(b3) (A, η) � r am → t, i.e. [[t]]Aη ⊆ [[r am]]Aη where (f tn → r ⇐ C) ∈ [P]⊥
is the instance of P-rule used in the OR step. Since A is a model of P, A
satisfies all the rewrite rules in P. Due to Lemma 10, A satisfies also all
the instances of rules in P, in particular, (f tn → r ⇐ C). Then, from (b2)
we can infer (b4) (A, η) � f tn → r, i.e. [[r]]Aη ⊆ [[f tn]]Aη. Considering the
definition of expression evaluation, it is easy to see that (b3), (b4) and (b1)
can be applied successively, leading to the inclusions:

[[t]]Aη ⊆ [[r am]]Aη ⊆ [[f tn am]]Aη ⊆ [[f en am]]Aη

This entails [[t]]Aη ⊆ [[f en am]]Aη, i.e. (A, η) � f en am → t.

(c) The proof Π ends with a JN step. Then ϕ = a � b, and by induction
hypothesis applied to the premises of the JN inference, we get a total pattern
t ∈ Pat such that [[t]]Aη ⊆ [[a]]Aη and [[t]]Aη ⊆ [[b]]Aη. Since η is totally
defined, we can assume [[t]]Aη = 〈v〉, for some v ∈ Def (DA), by item 3 of
Proposition 2. Then there exists a totally defined element v ∈ ([[a]]Aη∩[[b]]Aη),
which means (A, η) � a � b.

2 =⇒ 3: This implication holds because MP(T) � P, as we have proved
already, and id is a totally defined valuation.

3 =⇒ 1: This follows from item 2 of Lemma 12, taking the identity substi-
tution id as σd. �

6.4 Proofs of Results from Subsection 4.1

Proof of Lemma 13:
(a) =⇒ (b): Assume that G is well-typed, and take T ′ = T̂ . By the Type

Reconstruction Theorem 1, T̂ �WT (P, C, Sd) :: bool.

(b) =⇒ (c): This follows from the form of the type inference rules and the
principal types of the “operations” (→), (�), (≈) and (,).

76

(c) =⇒ (a): Assume T ≤ T ′ for which (c1), (c2) and (c3) holds. Then it
is easy to see that T ′ �WT (P, C, Sd) :: bool. Then, the Type Reconstruction
Theorem 1 ensures TR(T, (P, C, Sd)) = ((−)τ , E)) and σt ∈ TSol(E) such
that Tσt = T ′ and τσt = bool. In particular, G is well-typed because
TSol(E) �= ∅. �

Proof of Lemma 14:
Item 1: To show the inclusion, let us assume (R, θ) ∈ WTSol(Ĝ). Then
θd ∈ Sol(G) and also: (a) dom(R) ⊆ ran(θd) \ dom(T̂), (b) θt ∈ TSol(Ŝt),
(c) (T̂ θt ∪ R) �WT Xθd :: T̂ (X)θt, for all X ∈ dom(T̂). To show (R, θ) ∈
WTSol(G) we need: (a′) dom(R) ⊆ ran(θd)\dom(T), (b′) θt ∈ TSol(St), (c′)
(Tθt∪R) �WT Xθd :: T (X)θt, for all X ∈ dom(T). By construction of Ĝ from
G, we have T̂ = T σ̂t, where σ̂t = mgu(St, E). Then (a) ⇐⇒ (a′) and (b) =⇒
(b′). Moreover, (b) also implies θt = σ̂tθt, which entails T̂ θt = T σ̂tθt = Tθt

and also T̂ (X)θt = T (X)σ̂tθt = T (X)θt for all X ∈ dom(T) = dom(T̂). This
being the case, (c) ⇐⇒ (c′).

To show that the opposite inclusion can fail, consider G �= Ĝ given as
follows:

G = ∅ [X|Xs] � [Y|Ys] ∅ ∅ {X :: α, Xs :: [β], Y :: α,

Ys :: [β]}
Ĝ = ∅ [X|Xs] � [Y|Ys] ∅ β ≈ α {X, Y :: α; Xs, Ys :: [α]}

Then, with the substitutions θt = {α �→ nat, β �→ bool} and θd = {X �→ z,
Xs �→ [true], Y �→ z, Ys �→ [true]} we get (∅, θ) ∈ WTSol(G) \WTSol(Ĝ).

Item 2: Assume (a � b) ∈ C. Since G is well-typed and Ĝ = G, there must
be some τ ∈ Type such that (a) T �WT a :: τ and T �WT b :: τ . On the other
hand, since (R, θ) ∈ WTSol(G), we have (b) (Tθt ∪ R) �WT Xθd :: T (X)θt,
for all X ∈ var(a)∪ var(b). Now, (a), (b) match the hypothesis of Lemma 3
(with T as T0 and Tθt ∪R as T1) and we can conclude (Tθt ∪R) �WT aθd ::
τθt and (Tθt ∪ R) �WT bθd :: τθt. An analogous reasoning can be made for
(e → t) ∈ P and (X ≈ t) ∈ Sd.

To show that the result can fail if G �= Ĝ, consider G, Ĝ and θ as in
the previous item. Then (∅, θ) ∈ WTSol(G), but Tθt = {X, Y :: nat; Xs, Ys ::
[bool]} ��WT ([X|Xs] � [Y|Ys])θd = [z|true] � [z|true]. �

77

6.5 Proofs of Results from Subsection 4.2

Proof of Theorem 4: We rely on some basic facts from computability the-
ory, which can be found in textbooks such as [8]. In particular, we recall the
following well-known, undecidable problem K: given a natural number n,
tell if ϕn(n)↓ holds. Here, the notation ϕn(n)↓ means that the computable
function ϕn with index n eventually halts when given n itself as argument.

Using the type nat and the constructors z, s from Example 2, it is possible
to write a well-typed simple program P including defining rules for a function
halt :: nat→ nat such that, for all n ∈ N, one has:

• If ϕn(n) halts in k steps, the evaluation of halt (sn z) w.r.t. P computes
the result sk z.

• If ϕn(n) does not halt, the evaluation of halt (sn z) w.r.t. P does not
terminate, but computes the potentially infinite result s(s(s(s(s

In the two items above, the notation sn z refers to the natural representation
of n ∈ N using the data constructors z and s. Building the program P so that
halt behaves as described is possible, because simple CRWL programs are
powerful enough to simulate Turing machines (or any other Turing-complete
computation model). We omit the tedious proof of this claim, that would
follow well-known techniques from computability theory.

To continue with our proof, let us assume that program P is expanded
to include the defining rules for the functions tail and second, as given in
Example 2, as well as the following defining rules for four new functions:

oh, fefo :: nat → (α → α)
oh N → fefo (halt N) ⇐ ∅ {N :: nat}
fefo z → snd (tail [true]) ⇐ ∅ ∅
fefo (s N) → fefo N ⇐ ∅ {N :: nat}

ah, fefa :: nat → (α → α)
ah N → fefa (halt N) ⇐ ∅ {N :: nat}
fefa z → snd (tail [z]) ⇐ ∅ ∅
fefa (s N) → fefa N ⇐ ∅ {N :: nat}

Finally, let Gn be the simple goal ∅ oh (sn z) � ah (sn z) ∅ ∅ ∅.
Due to the behaviour of the function halt w.r.t. program P, the following
equivalences hold for any natural number n: ϕn(n)↓ ⇐⇒ ∃k ∈ N such

78

that ϕn(n) halts in k steps ⇐⇒ solving Gn w.r.t. P using CLNC eventually
leads to an opaque decomposition step.

In fact, in case that ϕn(n)↓, solving Gn eventually leads to solving the goal
snd (tail [true]) � snd (tail [z]), which needs opaque decomposition;
and in the case that ϕn(n)↓ does not halt, solving Gn gives rise to a non-
terminating CLNC computation without opaque decompositions. With this
we have shown that K can be reduced to the simple restriction of ODP,
which is thus undecidable. �

6.6 Proofs of Results from Subsection 4.3

Proof of Lemma 15: Assume TR(T, Sd) = (−, E). Since Ĝ is the type
closure of G, we know that: (a) σ̂t = mgu(St, E), (b) T̂ = T σ̂t. By Def-
inition 12, (∅, (σ̂t, σd)) is a well-typed solution of G and Ĝ iff the following
four conditions are satisfied: (c) σ̂t ∈ TSol(St), (d) T σ̂t �WT Xσd :: τ σ̂t, for
all (X :: τ) ∈ T , (c′) σ̂t ∈ TSol(Ŝt), (d′) T σ̂tσ̂t �WT Xσd :: τ σ̂tσ̂t, for all
(X :: τ) ∈ T . Note that (d′) can be stated like this because of (b). Moreover,
(c) holds because of (a), (c′) holds because Ŝt is the set of equations in solved
form representing σ̂t, and (d), (d′) are equivalent because σ̂t is idempotent.
In order to prove (d) we distinguish two cases:

X /∈ dom(σd): Then Xσd = X and (d) holds because of the type inference
rule VR.

X ∈ dom(σd): Then Xσd = t for some t such that (X ≈ t) ∈ Sd. Because
of Lemma 13, T σ̂t �WT t :: (T σ̂t)(X). Since t = Xσd and (T σ̂t)(X) =
T (X)σ̂t = τ σ̂t, (d) is proved. �

Proof of Lemma 16: To prove the lemma, we consider the CLNC trans-
formation rules one by one. In each case, we assume that G and G′ are exactly
as they appear in the presentation of the CLNC given in Subsection 4.2.

G′ is admissible: For each CLNC rule, we can prove the preservation of the
admissibility conditions LN, EX, NC and SL as in the first-order case [18].

In the sequel, we will use the notation T1 � T2 � . . .�Tk to express the union
of k ≥ 2 type environments with pairwise disjoint domains.

Rules for the Unsolved Part

(ID) (a) Because of (R, θ) ∈ WTSol(G′) we know:

79

1. θd ∈ Sol(Sdρd, X ≈ h V m) with ρd = {X �→ h V m}.

2. dom(R) ⊆ (ran(θd) \ dom((V m :: τm, T̂)σ′
t).

3. P �GORC (P ap � bp, C)ρdθd.

4. θt ∈ TSol(S ′
t) with σ′

t = mgu(Ŝt, τ ≈ τ ′), where (h :: τm → τ) ∈var Σ
and T̂ (X) = τ ′.

5. ((V m :: τm, T̂)σ′
tθt ∪ R) �WT Y θd :: ((V m :: τm, T̂)σ′

t)(Y)θt must hold,
for all Y ∈ dom((V m :: τm, T̂)σ′

t).

Therefore, it holds that:

(D) ρdθd = θd by 1.

(T) σ′
tθt = θt and σ̂tσ

′
t = σ′

t by 4.

(E) Since the variables of {V m :: τm} are fresh, dom((V m :: τm, T̂)σ′
t) =

{V m} � dom(T). Moreover, (T) implies that T̂ σ′
t = Tσ′

t, T̂ σ′
tθt = Tθt

and (V m :: τm, T̂)σ′
tθt = {V m :: τmθt} � Tθt.

Now we prove that ({V m :: τmθt} ∪ R, θ) ∈ WTSol(G):

• θd ∈ Sol(Sd), by 1 and (D).

• dom({V m :: τmθt} ∪R) ⊆ (ran(θd) \ dom(T)), by (E) and 2.

• P �GORC (P X ap � X bp, C)θd: By 3 and (D), for i ∈ {1, . . . , p}
P �GORC (ai � bi)θd, then P �GORC (h V m ap � h V m bp)θd. Since
Xθd = Xρdθd = (h V m)θd, we obtain that P �GORC (X ap � X bp)θd.

• θt ∈ TSol(St), because 4 implies θt ∈ TSol(S ′
t) ⊆ TSol(Ŝt) ⊆ TSol(St).

• (Tθt ∪ {V m :: τmθt} ∪ R) �WT Y θd :: T (Y)θt for all Y ∈ dom(T) ⊆
dom((V m :: τm, T̂)σ′

t), by (E) and 5.

(b) To obtain that G′ is also well-typed, we only need to prove:

[1] (V m :: τm, T̂)σ′
t �WT (X ≈ h V m) :: bool: Because of (V m :: τm, T̂)

�WT X :: τ ′, (V m :: τm, T̂) �WT h V m :: τ and Lemma 4, (V m ::
τm, T̂)σ′

t �WT X :: τ ′σ′
t and (V m :: τm, T̂)σ′

t �WT h V m :: τσ′
t. More-

over, τσ′
t = τ ′σ′

t by 4.

80

[2] (V m :: τm, T̂)σ′
t �WT (P, C, Sd)ρd :: bool: This follows from T̂ �WT

(P, C, Sd) :: bool by applying Lemma 3 with T0 = T̂ , T1 = (V m ::
τm, T̂)σ′

t, σt = σ′
t, σd = ρd. This is possible by [1].

[3] For i ∈ {1, . . . , p} (V m :: τm, T̂)σ′
t �WT (ai � bi)ρd :: bool: Since G is

well-typed, T̂ �WT (X ap � X bp) :: bool. Thanks to [1], we can apply

Lemma 3 with T0 = T̂ , T1 = (V m :: τm, T̂)σ′
t, σt = σ′

t, σd = ρd and
we obtain (V m :: τm, T̂)σ′

t �WT (X ap � X bp)ρd :: bool, which can be

rewritten as (V m :: τm, T̂)σ′
t �WT (h V m ap � h V m bp)ρd :: bool. Since

we are assuming a transparent step, h must be (m + p)-transparent.
Then, we can apply Lemma 7 to obtain types µi, i ∈ {1, . . . , p} such
that (V m :: τm, T̂)σ′

t �WT aiρd :: µi :: biρd.

(DC1) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sd).

2. dom(R) ⊆ (ran(θd) \ dom(T)).

3. P �GORC (P am � bm, C)θd.

4. θt ∈ TSol(St).

5. (Tθt ∪R) �WT Y θd :: T (Y)θt must hold, for all Y ∈ dom(T).

(R, θ) ∈ WTSol(G): P �GORC (P h am � h bm, C)θd follows easily from 3.
Moreover, St, Sd and T are not modified.

(b) G well-typed implies, in particular, that T̂ �WT (P, C, Sd) :: bool and
T̂ �WT (ham � hbm) :: bool. Therefore, G′ is well-typed, if we can prove that
T̂ �WT (ai � bi) :: bool, for i ∈ {1, . . . , m}. Since T̂ �WT (h am � h bm) ::
bool and we are assuming a transparent step, h must be m-transparent. By
Lemma 7, there exist types τi for all i ∈ {1, . . . , m} such that T̂ �WT ai ::
τi :: bi, which implies T̂ �WT (ai � bi) :: bool.

(BD) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sdρd, X ≈ s) with ρd = {X �→ s}.

2. dom(R) ⊆ (ran(θd) \ dom(T̂ σ′
t).

3. P �GORC (P ak � bk, C)ρdθd.

81

4. θt ∈ TSol(S ′
t), σ′

t = mgu(Ŝt, τ ≈ τ ′) with PA(T̂ , s bk) = (sτ ′−)−,
T̂ (X) = τ .

5. (T̂ σ′
tθt ∪R) �WT Y θd :: (T̂ σ′

t)(Y)θt must hold, for all Y ∈ dom(T̂ σ′
t).

Therefore, it holds that:

(D) ρdθd = θd by 1.

(T) σ′
tθt = θt and σ̂tσ

′
t = σ′

t by 4.

(E) T̂ σ′
t = Tσ′

t and T̂ σ′
tθt = Tθt using (T).

Now we prove that (R, θ) ∈ WTSol(G):

• θd ∈ Sol(Sd), by 1 and (D).

• dom(R) ⊆ ran(θd) \ dom(T), by (E) and 2.

• P �GORC (P X ak � s bk, C)θd: By 3 and (D), for i ∈ {1, . . . , k}
P �GORC (ai � bi)θd, then P �GORC (s ak � s bk)θd. Since Xθd =
Xρdθd = sθd, we obtain that P �GORC (X ak � s bk)θd.

• θt ∈ TSol(St), because 4 implies TSol(S ′
t) ⊆ TSol(Ŝt) ⊆ TSol(St).

• (Tθt ∪ R) �WT Y θd :: T (Y)θt for all Y ∈ dom(T), because of (E) and
5.

(b) To obtain that G′ is also well-typed, we only need to prove:

[1] T̂ σ′
t �WT (X ≈ s) :: bool: Because of T̂ �WT X :: τ , T̂ �WT s :: τ ′

and Lemma 4, T̂ σ′
t �WT X :: τσ′

t and T̂ σ′
t �WT s :: τ ′σ′

t. Moreover,
τσ′

t = τ ′σ′
t by 4.

[2] T̂ σ′
t �WT (P, C, Sd)ρd :: bool: This follows from T̂ �WT (P, C, Sd) ::

bool by applying the Lemma 3 with T0 = T̂ , T1 = T̂ σ′
t, σt = σ′

t,
σd = ρd. This is possible by [1].

[3] For i ∈ {1, . . . , k}, T̂ σ′
t �WT (ai � bi)ρd :: bool: Since G is well-typed,

T̂ �WT (X ak � s bk) :: bool. Applying Lemma 3 as in [2], we can
deduce T̂ σ′

t �WT (X ak � s bk)ρd :: bool, which can be rewritten as
T̂ σ′

t �WT (sak � sbk)ρd :: bool, where s must have the form htm due to
the assumptions of (BD). Since we are assuming a transparent step, h
must be (m + k)-transparent. Then, we can apply Lemma 7 to obtain
types τi, i ∈ {1, . . . , k} such that T̂ σ′

t �WT aiρd :: τi :: biρd.

82

(IM) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sdρd, X ≈ h V m) with ρd = {X �→ h V m}.

2. dom(R) ⊆ ran(θd) \ dom((V m :: τm, T̂)σ′
t).

3. P �GORC (P V m ak � em bk, C)ρdθd.

4. θt ∈ TSol(S ′
t), with σ′

t = mgu(Ŝt, τ ≈ τ ′), where (h :: τm → τ) ∈var Σ
and T̂ (X) = τ ′.

5. ((V m :: τm, T̂)σ′
tθt ∪ R) �WT Y θd :: ((V m :: τm, T̂)σ′

t)(Y)θt must hold,
for all Y ∈ dom((V m :: τm, T̂)σ′

t).

Therefore, it holds that:

(D) ρdθd = θd by 1.

(T) σ′
tθt = θt and σ̂tσ

′
t = σ′

t by 4.

(E) Since the variables of {V m :: τm} are fresh, dom((V m :: τm, T̂)σ′
t) =

{V m} � dom(T). Moreover, (T) implies that T̂ σ′
t = Tσ′

t, T̂ σ′
tθt = Tθt

and (V m :: τm, T̂)σ′
tθt = {V m :: τmθt} � Tθt.

Now we prove that ({V m :: τmθt} ∪ R, θ) ∈ WTSol(G):

• θd ∈ Sol(Sd), by 1 and (D).

• dom({V m :: τmθt} ∪R) ⊆ ran(θd) \ dom(T), by (E) and 2.

• P �GORC (P X ak � h em bk, C)θd: By 3 and (D), for i ∈ {1, . . . , k}
P �GORC (ai � bi)θd; for j ∈ {1, . . . , m} P �GORC (Vj � ej)θd, then
P �GORC (h V m ak � h em bk)θd. Since Xθd = Xρdθd = (h V m)θd, we
obtain that P �GORC (X ak � h em bk)θd.

• θt ∈ TSol(St), because 4 implies TSol(S ′
t) ⊆ TSol(Ŝt) ⊆ TSol(St).

• (Tθt ∪ {V m :: τmθt} ∪ R) �WT Y θd :: T (Y)θt for all Y ∈ dom(T) ⊆
dom((V m :: τm, T̂)σ′

t), by (E) and 5.

(b) To obtain that G′ is also well-typed, we only need to prove:

83

[1] (V m :: τm, T̂)σ′
t �WT (X ≈ h V m) :: bool: Because of (V m :: τm, T̂)

�WT X :: τ ′, (V m :: τm, T̂) �WT h V m :: τ and Lemma 4, (V m ::
τm, T̂)σ′

t �WT X :: τ ′σ′
t and (V m :: τm, T̂)σ′

t �WT h V m :: τσ′
t. More-

over, τσ′
t = τ ′σ′

t by 4.

[2] (V m :: τm, T̂)σ′
t �WT (P, C, Sd)ρd :: bool: Analogous to [2] of rule (BD).

[3] For i ∈ {1, . . . , k} (V m :: τm, T̂)σ′
t �WT (ai � bi)ρd :: bool and

for j ∈ {1, . . . , m} (V m :: τm, T̂)σ′
t �WT (Vj � ej)ρd :: bool: Since G is

well-typed, T̂ �WT (Xak � hembk) :: bool. Thanks to [1], we can apply
Lemma 3 with T0 = T̂ , T1 = (V m :: τm, T̂)σ′

t, σt = σ′
t, σd = ρd and we

obtain (V m :: τm, T̂)σ′
t �WT (X ak � h em bk)ρd :: bool, which can be

rewritten as (V m :: τm, T̂)σ′
t �WT (h V m ak � h em bk)ρd :: bool. Since

we are assuming a transparent step, h must be (m + k)-transparent.
Then, we can apply Lemma 7 to obtain types µi, i ∈ {1, . . . , k} and
νj, j ∈ {1, . . . , m} such that (V m :: τm, T̂)σ′

t �WT aiρd :: µi :: biρd and

(V m :: τm, T̂)σ′
t �WT Vjρd :: νj :: ejρd. Moreover, Vjρd = Vj, for all

j ∈ {1, . . . , m}.

(NR1) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sd).

2. dom(R) ⊆ ran(θd) \ dom(T ∪ T ′) and (f tn → r ⇐ C ′ T ′) ∈var P.

3. P �GORC (en → tn, P C ′, rak � b, C)θd.

4. θt ∈ TSol(St).

5. ((T ∪ T ′)θt ∪ R) �WT Y θd :: (T ∪ T ′)(Y)θt must hold, for all Y ∈
dom(T ∪ T ′).

Since all the variables in T ′ are fresh, it holds that:

(E) T ∪ T ′ = T � T ′ and (T ∪ T ′)θt = (Tθt � T ′θt).

Now we prove that (T ′θt ∪ R, θ) ∈ WTSol(G). Since St and Sd are not
modified, we only need to prove that:

• dom(T ′θt ∪ R) ⊆ (ran(θd) \ dom(T)), by (E) and 2.

84

• (Tθt ∪ T ′θt ∪ R) = ((T ∪ T ′)θt ∪ R) �WT Y θd :: T (Y)θt for all Y ∈
dom(T) ⊆ dom(T ∪ T ′), by (E) and 5.

• P �GORC (P f en ak � b, C)θd. P �GORC Pθd and P �GORC Cθd are
obvious by 3. Moreover, 3 also implies that (a): P �GORC (ei → ti)θd,
(b): P �GORC C ′θd and (c): P �GORC (r ak � b)θd ⇐⇒ There exists a
total pattern t such that (d): P �GORC (r ak)θd → t and (e): P �GORC

bθd → t. With (a), (b) and (d) we obtain that P �GORC (fenak)θd → t,
this fact and (e) implies that P �GORC (f en ak � b)θd.

(b) (f tn → r ⇐ C ′ T ′) ∈var P implies that T ′ �WT ti :: τi, for i ∈
{1, . . . , n}, T ′ �WT r :: τ , T ′ �WT C ′ :: bool and T ′ �WT f :: τn → τ . To
prove that G′ is also well-typed, we apply Lemma 13(b), finding λt ∈ TSub
such that (T ′λt, T̂) �WT G′.

[1] Independently of the choice of λt, (T ′λt, T̂) �WT (P, C, C ′, Sd) :: bool
follows from Lemma 4, because G and (f tn → r ⇐ C ′ T ′) are
well-typed.

[2] We still have to deal with the rest of G′, namely ei → ti, for i ∈
{1, . . . , n} and r ak � b. Because T̂ �WT G, we know that T̂ �WT

(f en ak � b) :: bool, and there must exist types νi, µj , µ such that

T̂ �WT ei :: νi, for i ∈ {1, . . . , n}, T̂ �WT aj :: µj, for j ∈ {1, . . . , k},
T̂ �WT b :: µ and (νn → µk → µ) ≥ τn → τ . We choose λt ∈ TSub
such that (τn → τ)λt = (νn → µk → µ). Therefore, νi = τiλt, for i ∈
{1, . . . , n}, and τλt = (µk → µ). Due to Lemma 4, (T ′λt, T̂) �WT ti ::
τiλt = νi, and hence (T ′λt, T̂) �WT (ei → ti) :: bool, for i ∈ {1, . . . , n}.
Also because of Lemma 4, (T ′λt, T̂) �WT r :: τλt = (µk → µ), which
implies (T ′λt, T̂) �WT r ak :: µ :: b and hence (T ′λt, T̂) �WT (r ak � b) ::
bool.

(GN) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sdρd, X ≈ f tp), with ρd = {X �→ f tp}.

2. dom(R) ⊆ ran(θd) \ dom((T̂ ∪ T ′)σ′
t) and (f tp sq → r ⇐ C ′ T ′) ∈var

P.

3. P �GORC (eq → sq, P C ′, r ak � b, C)ρdθd.

85

4. θt ∈ TSol(S ′
t) with σ′

t = mgu(Ŝt, τ ′ ≈ τ q → τ) where τ ′ = T̂ (X) and
(f :: τ p → λq → τ) ∈var Σ.

5. ((T̂ ∪ T ′)σ′
tθt ∪ R) �WT Y θd :: (T̂ ∪ T ′)(Y)σ′

tθt must hold, for all
Y ∈ dom((T̂ ∪ T ′)σ′

t).

Therefore, it holds that:

(D) ρdθd = θd by 1.

(T) σ′
tθt = θt and σ̂tσ

′
t = σ′

t by 4.

(E) Since all the variables in T ′ are fresh, T̂ ∪ T ′ = T � T ′. Moreover, (T)
implies that (T̂ ∪ T ′)σ′

t = (T ∪ T ′)σ′
t and (T̂ ∪ T ′)σ′

tθt = (Tθt ∪ T ′θt).

Now we prove that (T ′θt ∪ R, θ) ∈ WTSol(G):

• θd ∈ Sol(Sd), by 1 and (D).

• dom(T ′θt ∪ R) ⊆ (ran(θd) \ dom(T)), by (E) and 2.

• P �GORC (P X eq ak � b, C)θd: By 3 and (D), we have (a): P �GORC

C ′θd, (b): P �GORC (ej → sj)θd, for j ∈ {1, . . . , q}, and (c): P �GORC

(rak � b)θd ⇐⇒ There exists a total pattern t such that (d): P �GORC

(r ak)θd → t and (e): P �GORC bθd → t. By (a), (b), (d) and Xθd =
Xρdθd = (f tp)θd, we have that P �GORC (X eq ak)θd → t. Therefore,
by (e) we conclude that P �GORC (X eq ak � b)θd.

• θt ∈ TSol(St), because 4 implies TSol(S ′
t) ⊆ TSol(Ŝt) ⊆ TSol(St).

• (Tθt ∪T ′θt ∪R) �WT Y θd :: T (Y)θt for all Y ∈ dom(T) ⊆ dom(T̂ ∪T ′),
because (E) and 5.

(b) Since (f tp sq → r ⇐ C ′ T ′) ∈var P is a fresh variant of a well-typed
f-rule and (f :: τ p → λq → τ) ∈var Σ, we have that for l ∈ {1, . . . , p}:
T ′ �WT tl :: τl; for j ∈ {1, . . . , q}: T ′ �WT sj :: λj; T ′ �WT r :: τ and
T ′ �WT C ′ :: bool. To obtain that G′ is also well-typed, we need to prove:

[1] (T ′, T̂)σ′
t �WT (X ≈ f tp) :: bool: Because of T̂ �WT X :: τ ′ and T ′

�WT f tp :: (λq → τ) and Lemma 4, (T ′, T̂)σ′
t �WT X :: τ ′σ′

t and

(T ′, T̂)σ′
t �WT f tp :: (λq → τ)σ′

t. Moreover, τ ′σ′
t = (λq → τ)σ′

t by 4.

86

[2] (T ′, T̂)σ′
t �WT (P, C ′, C, Sd)ρd :: bool: This follows by Lemma 3 from

(T ′, T̂) �WT (P, C, C ′, Sd) :: bool, which can be applied because of [1].

[3] Because T̂ �WT G, we know that T̂ �WT (X eq ak � b) :: bool, and

there must exist types νi, µj, µ such that T̂ �WT ei :: νi, for i ∈
{1, . . . , q}, T̂ �WT aj :: µj, for j ∈ {1, . . . , k}, T̂ �WT b :: µ and

(νq → µk → µ) = T̂ (X) = τ ′. By 4, τ ′σ′
t = (λq → τ)σ′

t, i.e., (νq →
µk → µ)σ′

t = (λq → τ)σ′
t. Therefore, νiσ

′
t = λiσ

′
t, for i ∈ {1, . . . , q},

and τσ′
t = (µk → µ)σ′

t. Using Lemma 3 (which can be applied thanks
to [1]) we get (T ′, T̂)σ′

t �WT eiρd :: νiσ
′
t, (T ′, T̂)σ′

t �WT siρd :: λiσ
′
t for

i ∈ {1, . . . , q}. Since νiσ
′
t = λiσ

′
t, we obtain (T ′, T̂)σ′

t �WT (ei → si)ρd ::
bool. Applying again Lemma 3, we get now (T ′, T̂)σ′

t �WT ajρd :: µjσ
′
t,

(T ′, T̂)σ′
t �WT bρd :: µσ′

t and (T ′, T̂)σ′
t �WT rρd :: τσ′

t = (µk → µ)σ′
t.

Hence (T ′, T̂)σ′
t �WT (r ak � b)ρd :: bool.

(GD) (a) Because of (R, θ) ∈ WTSol(G′) we know:

1. θd ∈ Sol(Sdρd, X ≈ h V m−p, Y ≈ h W m−q) where ρd = {X �→ h V m−p,
Y �→ h W m−q}.

2. dom(R) ⊆ ran(θd) \ dom(({V m−p :: τ ′
m−p} ∪ {W m−q :: τ ′′

m−q} ∪ T̂)σ′
t).

3. P �GORC (P V m−p ap � Wm−q bq, C)ρdθd.

4. θt ∈ TSol(S ′
t) with σ′

t = mgu(Ŝt, τ ′ ≈ λ′
p → τ ′

0, τ ′′ ≈ λ′′
q → τ ′′

0),
where τ ′ = T (X), τ ′′ = T (Y), (h :: τ ′

m−p → λ′
p → τ ′

0) ∈var Σ and
(h :: τ ′′

m−q → λ′′
q → τ ′′

0) ∈var Σ.

5. (T1σ
′
tθt ∪ R) �WT Zθd :: T1(Z)σ′

tθt must hold, for all Z ∈ dom(T1σ
′
t),

where T1 := {V m−p :: τ ′
m−p} ∪ {Wm−q :: τ ′′

m−q} ∪ T̂ .

Therefore, it holds that:

(D) ρdθd = θd by 1.

(T) σ′
tθt = θt and σ̂tσ

′
t = σ′

t by 4.

(E) Since the variables of {V m−p :: τ ′
m−p} ∪ {Wm−q :: τ ′′

m−q} are fresh,
dom(T1) = {V m−p} � {W m−q} � dom(T). Moreover, by (T), T1θt =

{V m−p :: τ ′
m−pθt} � {Wm−q :: τ ′′

m−qθt} � Tθt and T̂ σ′
t = Tσ′

t.

87

We prove that ({V m−p :: τ ′
m−pθt}∪{W m−q :: τ ′′

m−qθt}∪R, θ) ∈ WTSol(G):

• θd ∈ Sol(Sd), by 1 and (D).

• dom({V m−p :: τ ′
m−pθt}∪{W m−q :: τ ′′

m−qθt}∪R) ⊆ (ran(θd)\dom(T)),
by (E) and 2.

• P �GORC (P X ap � Y bq, C)θd: P �GORC (hV m−p ap � hW m−q bq)θd

because of 3 and (D), but Xθd = Xρdθd = (h V m−p)θd and Y θd =
Y ρdθd = (h W m−q)θd, therefore P �GORC (X ap � Y bq)θd.

• θt ∈ TSol(St), because 4 implies TSol(S ′
t) ⊆ TSol(Ŝt) ⊆ TSol(St).

• Since (Tθt∪{V m−p :: τ ′
m−pθt} ∪ {W m−q :: τ ′′

m−qθt}∪R) = (T1θt∪R),
then (T1θt ∪ R) �WT Zθd :: T (Z)θt for all Z ∈ dom(T) ⊆ dom(T1),
because of (E) and 5.

(b) Let us assume p ≥ q; the case p ≤ q is symmetrical. To show that G′ is
well-typed, we prove [1], [2], [3] and [4].

[1] T1σ
′
t �WT (X ≈ h V m−p) :: bool: Using T1 �WT h V m−p :: (λ′

p → τ ′
0),

T1 �WT X :: τ ′ and Lemma 4, we obtain T1σ
′
t �WT X :: τ ′σ′

t and
T1σ

′
t �WT h V m−p :: (λ′

p → τ ′
0)σ

′
t. Moreover, τ ′σ′

t = (λ′
p → τ ′

0)σ
′
t by 4.

[2] T1σ
′
t �WT (Y ≈ h W m−q) :: bool: The proof is similar to [1], using the

facts T1σ
′
t �WT Y :: τ ′′σ′

t and T1σ
′
t �WT h W m−q :: (λ′′

q → τ ′′
0)σ′

t and
τ ′′σ′

t = (λ′′
q → τ ′′

0)σ′
t.

[3] T1σ
′
t �WT (P, C, Sd)ρd :: bool: This follows from T1 �WT (P, C, Sd) ::

bool, by Lemma 3, which can be applied because of [1], [2].

[4] T1σ
′
t �WT (V m−p ap � W m−q bq)ρd :: bool: We show this by proving

three things:

(a) T1σ
′
t �WT (Vj � Wj)ρd :: bool, j ∈ {1, . . . , (m− p)}.

(b) T1σ
′
t �WT (ai � Wm−p+i)ρd :: bool, i ∈ {1, . . . , (p− q)}.

(c) T1σ
′
t �WT (ap−q+k � bk)ρd :: bool, k ∈ {1, . . . , q}.

Proof of (a), (b), (c): Since G is well-typed, T1 �WT (X ap � Y bq) ::
bool. Using Lemma 3 (which is applicable because of [1], [2]) we obtain
T1σ

′
t �WT (X ap � Y bq)ρd :: bool, which can be rewritten as T1σ

′
t �WT

88

(hV m−pap � hW m−qbq)ρd :: bool. Since we are assuming a transparent
CLNC step, h must be m-transparent. Then, we can apply Lemma 7
to obtain types νj , for j ∈ {1, . . . , (m− p)}, µi, for i ∈ {1, . . . , (p− q)}
and λk, for k ∈ {1, . . . , q} such that T1σ

′
t �WT Vj ρd :: νj :: Wjρd,

T1σ
′
t �WT aiρd :: µi :: Wm−p+iρd and T1σ

′
t �WT ap−q+kρd :: λk :: bkρd.

(CF1), (CY) Analogously to [18], it is easy to prove that Sol(G) = ∅
whenever these rules are applicable.

Rules for the Delayed Part

We prove only the correctness of (EL). For the other rules in this part, the
proofs of related rules in the solved part can be easily adapted.

(EL) (a) It is clear that (R, θ′) ∈ WTSol(G), where θ′t = θt, Xθ′d = ⊥ and
Y θ′d = Y θd for all variables Y �= X. Note that Xθ′d = ⊥ is allowed because
X is a produced variable in G. Being produced, X is also existential, and
then (R, θ′) ∈ WTSol(G) implies (R, θ) ∈ex WTSol(G).

(b) If G is well-typed then G′ is also well-typed. �

Proof of Lemma 17: We organize our reasoning in two stages. First, we
use the fact that M is a witness of (R, θ) ∈ TASol(Ĝ) to find a CLNC rule
TR which acts as a candidate to transform G into G′ as required by the
lemma. This part of the proof ignores types and is performed by a case
analysis. For each candidate rule TR, the second stage of our reasoning uses
the type information present in M to show that TR can be actually applied
to G (which may involve dynamic type checking) and to build a smaller
type-annotated M′ �M witnessing (R′, θ′) ∈ TASol(Ĝ′), for some suitable
(R′, θ′) ≈ex (R, θ). In each case, θ′ and M′ must be built explicitly, but
the construction of R′ and the reasoning which proves G′ well-typed can be
left implicit. This is because the type annotation within M′ implies well-
typedness of G′, and R′ can be defined as the set of all type assumptions
X :: τ such that Xτ occurs in M′, but X �∈ dom(T̂’θ′t ∪ R).

In what follows, items 1, 2, etc. enumerate the cases in our main case
distinction. Subcases are indicated by a similar notation, as 1.2, 1.2.1,
etc. When performing the second stages of our reasoning for each particular
CLNC rule TR, we will assume that G and G′ are written with exactly the
same notation used in the presentation of CLNC in Subsection 4.2. In several

89

cases, we will leave out proof details which are easy to complete, or similar
to the reasonings already performed for some other cases.

Let us now start our case analysis. By the One-step Soundness Lemma 16,
we can ignore the failure rules, because G is solvable. Moreover, we can
assume that the (P C) part of G is nor empty, because G is not solved.

1 Assume that G satisfies the condition:

There is some (a � b) ∈ C such that neither
a nor b are headed by a produced variable.

I

Choose one such a � b and continue the case analysis as follows:

1.1 a, b are both rigid and passive expressions. In this case TR is DC1,
a = h am, b = h bm. The principal type annotation of Ĝ must include

hτm→τ aτm
m � hτ ′

m→τ b
τ ′

m

m . The witness M must include a type-annotated
GORC-proof

Π0 = (Π � h(τm→τ)θt amθτmθt

d → tτ
′′

&

Π′ � h(τ ′
m→τ)θt bmθτ ′

mθt
d → tτ

′′
)+(JN)

where

• tτ
′′

= hτ ′′
m→τ ′′

t
τ ′′

m

m

• τ ′′
m → τ ′′ = (τm → τ)θt = (τ ′

m → τ)θt

• Π = (. . . & Πi � aiθ
τiθt

d → t
τ ′′
i

i & . . .)+(DC)

• Π′ = (. . . & Π′
i � biθ

τ ′
iθt

d → t
τ ′′
i

i & . . .)+(DC)

Clearly, DC1 can be applied to G. Moreover, considering the type-annotated

GORC-proofs Π′′
i = (Πi & Π′

i)+(JN) � aiθ
τ ′′
i

d � biθ
τ ′′
i

d (1 ≤ i ≤ m) and

M′ =def (M\ {{Π0}}) � {{Π′′
1, . . . , Π

′′
m}}, we see that (R′, θ) ∈ TASol(Ĝ′)

with type-annotated witness M′ �M.

1.2 a is a flexible expression, while b is a rigid and passive expression. Due
to I, the variable X occurring as the head of a is not produced. Moreover,
Xθd must be a rigid pattern. We distinguish three different subcases:

1.2.1 a = X ak, aθd = h tm akθd is rigid and passive, b = h sm bk, and
s = h sm is a pattern. In this case TR is BD. The principal type annotation

90

of Ĝ must include Xνk→ν aνk
k � (hµ′

m→ν′
k→ν s

µ′
m

m)ν′
k→ν b

ν′
k

k . The witness M
must include a type-annotated GORC-proof

Π0 = (Π � Xθ
(νk→ν)θt

d akθ
νkθt

d → tν
′′

& Π′ �

(h(µ′
m→ν′

k→ν)θt smθ
µ′

mθt

d)(ν′
k→ν)θt bkθ

ν′
kθt

d → tν
′′
)+(JN)

where

• tν
′′

= hµ′′
m→ν′′

k→ν′′
t
µ′′

m

m uν′′
k

k

• (a) ν ′′
k → ν ′′ = (νk → ν)θt = (ν ′

k → ν)θt

• Π = (. . . & Πj � ajθ
ν′′

j

d → u
ν′′

j

j & . . .)+(DC)

• Π′ = (. . . & Π′
j � bjθ

ν′′
j

d → u
ν′′

j

j & . . .)+(DC)

In particular, (a) shows that θt unifies the types attached to X and s in the
principal type annotation of Ĝ. Since θt is also solution of Ŝt, the dynamic
type checking condition of BD succeeds and BD can actually be applied to
transform G into G′. Reasoning as in Lemma 16, θt = σ′

tθt and θd = ρdθd.
Taking these identities into account, it is clear thatM′�M built as indicated
below is a type-annotated witness of (R′, θ) ∈ TASol(Ĝ′): M′ =def (M \
{{Π0}}) � {{Π′′

1, . . . , Π
′′
k}} where Π′′

j = (Πj & Π′
j)+(JN) � ajθ

ν′′
j

d � bjθ
ν′′

j

d .

1.2.2 a = X ak, aθd = h tm akθd is rigid and passive, b = h em bk, and h em

is not a pattern. In this case TR is IM. The principal type annotation of Ĝ

must include Xνk→ν aνk
k � (hµ′

m→ν′
k→ν e

µ′
m

m)ν′
k→ν b

ν′
k

k . The witness M must
include a type-annotated GORC-proof

Π0 = (Π � hµ′′
m→(νk→ν)θt t

µ′′
m

m akθ
νkθt

d → tν
′′

&

Π′ � h(µ′
m→ν′

k→ν)θt emθ
µ′

mθt

d bkθ
ν′

kθt

d → tν
′′
)+(JN)

where

• tν
′′

= hµ′′
m→ν′′

k→ν′′
t
µ′′

m

m uν′′
k

k

• (a) µ′′
m → ν ′′

k → ν ′′ = µ′′
m → (νk → ν)θt = (µ′

m → ν ′
k → ν)θt

• Π = (. . . & ∆i � t
µ′′

i
i → t

µ′′
i

i . . . & . . .Πj � ajθ
ν′′

j

d → u
ν′′

j

j & . . .)+(DC)

91

• Π′ = (. . . & ∆′
i � eiθ

µ′′
i

d → t
µ′′

i
i . . . & . . .Π′

j � bjθ
ν′′

j

d → u
ν′′

j

j &
. . .)+(DC)

In particular, the existence of these proofs implies the condition X /∈
svar(h em) needed for the application of IM. Moreover, the type µ′

m →
ν ′

k → ν must be an instance of the type τm → τ taken as a fresh variant of
h’s principal type in the formulation of IM. Therefore, we can choose some
ρt ∈ TSub such that (b) µ′

m → ν ′
k → ν = (τm → τ)ρt. Consider now the

substitution θ′ = (θ′t, θ
′
d) such that

• θ′t = ρt[tvar(τm → τ)] and θ′t = θt[\tvar(τm → τ)].

• V mθ′d = tm and θ′d = θd[\V m].

Note that θ′ ≈ex θ. Moreover, (a) and (b) imply that θ′t is a unifier of
νk → ν (i.e. the type τ ′ of X in T̂) and τ . Moreover, θ′t is a solution of Ŝt,
because θ′t = θt[tvar(Ŝt)]. Therefore, the dynamic type checking condition of
IM succeeds and IM can be used to transform G into G′. Finally, consider
M′�M built as M′ =def (M\{{Π0}})�{{∆′′

1, . . . , ∆
′′
m, Π′′

1, . . . , Π
′′
k}} where

• ∆′′
i = (∆i & ∆′

i)+(JN) � Viθ
µ′′

i
d � eiθ

µ′′
i

d

• Π′′
i = (Πi & Π′

i)+(JN) � ajθ
ν′′

j

d � bjθ
ν′′

j

d

Taking into account the construction of θ′ it is easy to check that M′ is a
type-annotated witness of (R′, θ′) ∈ TASol(Ĝ′).

1.2.3 aθd is rigid and active. In this case Xθd = f t′p for some f ∈ FSn

with p < n. Taking q = n − p > 0, we can assume a = X eq ak and
aθd = f t′peqθdakθd. Let us choose GN as TR. The principal type annotation

of Ĝ must include (a) Xνq→εk→ε e
νq
q aεk

k � bε. In the formulation of GN, we

find τ ′ = T̂ (X) and a fresh variant f :: τ p → λq → τ of f ’s principal type.
Therefore, τ ′ = νq → εk → ε. Moreover, the witness M must include a
type-annotated GORC-proof of (a) using some type-annotated instance of
some fresh variant (f tp sq → r ⇐ C ′ T ′) of a rule of P. Let ω = (ωt, ωd)
be the substitution which builds the instance of this rule used in the witness.
Then, M will include the following type-annotated GORC-proof

Π0 = (Π � f τpωt→(νq→εk→ε)θt t′
τpωt

q eqθ
νqθt

d akθ
εkθt

d → tεθt &

Π′ � bθεθt
d → tεθt)+(JN)

92

where t �= ⊥ is some pattern, and

Π = (. . . & ∆i � t′i
τiωt → tiω

τiωt

d . . . & . . .Πj � ejθ
νjθt

d → sjω
λjωt

d &

. . . & M0 � C ′ωbool
d & Π′′ � rωτωt

d akθ
εkθt

d → tεθt)+(OR)

Since the previous proofs are type-annotated, the following type identities
must hold: (b) λqωt = νqθt, (c) τωt = (εk → ε)θt. Consider now the substi-
tution θ′ = (θ′t, θ

′
d) such that

• θ′t = ωt[dom(ωt)] and θ′t = θt[\dom(ωt)].

• θ′d = ωd[dom(ωd)] and θ′d = θd[\dom(ωd)].

By construction, θ′ ≈ex θ. Because of (b) and (c) θ′t is a unifier of νq →
εk → ε and λq → τ . Moreover, θ′t = θt[tvar(Ŝt)] implies θ′t ∈ TSol(Ŝt).
Therefore, the dynamic type checking condition of GN succeeds and GN
can be used to transform G into G′. To finish this case, we need a type-
annotated M′ � M witnessing (R′, θ′) ∈ TASol(Ĝ′). Taking into account
the construction of θ′, it is easy to check that the following M′ does the job:
M′ =def (M\ {{Π0}}) � M0 � {{Π1, . . . , Πq, Π

′′′}} where Π′′′ = (Π′′ & Π′)
+(JN) � rωτωt

d akθ
εkθt

d � bθεθt

d .

1.3 Both a and b are flexible expressions. In this case we distinguish four
subcases.

1.3.1 a = X ap and b = X bq where aθd (and thus bθd) is a rigid and passive.
This case can be handled by taking ID as TR.

1.3.2 a and b are two different variables, say X and Y . This case can be
handled by choosing TR as BD, with k = 0 and s = Y . In this simple
situation, BD needs no dynamic type checking.

1.3.3 a = X ap and b = Y bq where X and Y are different variables and aθd,
bθd are both rigid and passive. Without loss of generality, we can assume
p ≥ q. The witness must include a GORC proof of (a � b)θd. This is possible
only if Xθd and Y θd are patterns of the forms htm−p and hsm−q, respectively.
Moreover, since p ≥ q implies m−p ≤ m−q, the sequence tm−p must coincide
with the m − p first patterns in the sequence sm−q. Moreover, the GORC
proof of (a � b)θd must end with a JN inference with two premises of the
form aθd → h tm−p up and bθd → h sm−q vq (where h tm−p up and h sm−q vq

are identical patterns), each of them proved by a DC inference. Taking all

93

these ideas into account, this case can be completed by choosing GD as TR
and exploiting the type information included in M. We omit the detailed
reasoning, which would be somewhat similar to that of case 1.2.2.

1.3.4 aθd is rigid and active. Let X be the variable occurring as the head
of a. As in case 1.2.3, Xθd must be a pattern f t′p for some f ∈ FSn

with p < n. Taking q = n − p > 0, we can assume a = X eq ak and
aθd = f t′p eqθd akθd. Note that the assumption “b rigid and passive” in case
1.2.3 has been actually not used in our proof for this case. Therefore, the
same proof can be reused to complete the present case, choosing GN as TR.

1.4 a is rigid and active expression. In this case, we can assume a = f en ak

for some f ∈ FSn with k ≥ 0. The GORC proof of (a � b)θd included in
M must involved an OR-inference using some type-annotated instance of a
freshly renamed program rule Rl : (f tn → r ⇐ C ′ T ′) ∈var P, build with
a well-typed substitution ω = (ωt, ωd). More precisely, the principal type
annotation of Ĝ must include f νn→εk→ε eνn

n aεk
k � bε while M must include a

type-annotated GORC-proof

Π0 = (Π � f (νn→εk→ε)θt enθνnθt
d akθ

εkθt

d → tεθt & Π′ � bθεθt
d → tεθt)

+(JN)

where t �= ⊥ is some pattern, and

Π = (. . . & Πi � eiθ
νiθt

d → tiω
τiωt

d & . . . & M0 � C ′ωbool
d &

Π′′ � rωτωt

d akθ
εkθt

d → tεθt)+(OR)

Note that Π must be built using the ω instance of the principal type anno-
tation of Rl, which we assume to be (f τn→τ t

τn

n → rτ ⇐ C ′bool). Since Π0

is a type-annotated proof, the type identity (τn → τ)ωt = (νn → εk → ε)θt

must hold. The rest of this case can be completed by choosing NR1 as TR.
The proof details are similar to those of case 1.2.3, but easier. In particular,
no dynamic type checking is needed.

2 Now we assume that G satisfies the condition ¬I ∧ II, where

There is some (e → t) ∈ P such that t /∈ DVar. II

Note that ¬I can be rewritten as:

For all (a � b) ∈ C, either a or b is headed by
a produced variable.

¬I

94

Choose any (e → t) ∈ P such that t is not a variable, and continue the case
analysis as follows:

2.1 e is a rigid and passive expression. Note that e and t must have the
forms h en and h tn, respectively. Otherwise, (e → t)θd could have no GORC
proof. The rest of this case can be completed by taking DC2 as TR, by a
reasoning similar to that of case 1.1.

2.2 e is a rigid and active expression. This case can be proved using NR2
as TR. Note that NR2 can be applied because t is not a variable. The proof
details are similar to those of case 1.4.

2.3 e is flexible, but eθd is rigid and passive. In this case we can assume
(e → t) = (X ek → htm sk) and Xθd = ht′m. Since θd is a solution of (e → t),
we can also assume h t′m � h tmθd. To continue our reasoning, we choose
OB as TR. The principal type annotation of Ĝ must include

Xνk→ν eνk
k → hµm→ν′

k→ν t
µm
m sν′

k
k

and M must include a type-annotated GORC-proof

Π0 = (. . . & ∆i � t′i
µ′

i → tiθ
µiθt

d . . . & . . .Πj � ejθ
νjθt

d → sjθ
ν′

jθt

d & . . .)

+(DC) � (hµ′
m→(νk→ν)θt t′

µ′
m

m ekθ
νkθt

d → h(µm→ν′
k→ν)θt tmθ

µmθt

d skθ
ν′

kθt

d)

In the formulation of OB we find τ ′ = T̂ (X) and h :: τm → τ as fresh variant
of h’s principal type. Since the type annotations in Π0 must be consistent,
the following type identities must hold for some ρt ∈ TSub:

(a) µ′
m → (νk → ν)θt = (µm → ν ′

k → ν)θt.

(b) µm → ν ′
k → ν = (τm → τ)ρt.

Consider θ′t ∈ TSub defined so that θ′t = ρt[tvar(τm → τ)] and θ′t =
θt[\tvar(τm → τ)]. Because of (a) and (b), θ′t is a unifier of τ ′ = T̂ (X) =
νk → ν and τ . Moreover, θ′t ∈ Sol(Ŝt), because θ′t = θt[tvar(Ŝt)]. Hence,
θ′t is a solution of (Ŝt, τ ≈ τ ′), the dynamic type checking condition of OB
succeeds, and OB can be applied to transform G into G′.

We still have to build θ′ ≈ex θ such that (R′, θ′) ∈ TASol(Ĝ′) with some
type-annotated witness M′ � M. In particular, for θ′d to be a solution of
X ≈ h tm, the identity Xθ′d = h tmθ′d should hold. For θd, however, we

95

only know Xθd = h t′m � h tmθd. Therefore, we are going to define θ′d as a
modification of θd acting differently over var(h tm). Thanks to the condition
EX of admissible goals, var(h tm) consists of existential variables, which
ensures θ′d ≈ex θd.

To build θ′d, assume var(htm) = {Y1, . . . , Yp}. Since htm is linear, each Yj

has exactly one occurrence at one position in h tm. Let uj be the subpattern
which occurs at the same position in h tmθ′d and let u′

j be the subpattern

which occurs at the same position in h t′m. Note that h t′m � h tmθd implies
u′

j � uj for all 1 ≤ j ≤ p. Define θ′d ∈ DSub⊥ such that Yjθ
′
d = u′

j,

1 ≤ j ≤ p and θ′d = θd[\{Y1, . . . , Yp}]. In particular, Xθ′d = Xθd = h t′m,
because X /∈ var(h tm) due to the NC condition of admissible goals. Hence,
Xθ′d = h t′m = h tmθ′d.

Finally, regarding the witness M′ � M of (R, θ′) ∈ TASol(Ĝ′), let us
consider M′

0 =def (M\{{Π0}})�{{Π1, . . . , Πk}} which is easily seen to serve

as a type-annotated witness for the principal type annotation of Ĝ′ affected by
(θ′t, θd). By applying Lemma 8 (item 3), M′

0 can be transformed into another
witness M′ with the same structure for the principal type annotation of Ĝ′

affected by (θ′t, θ
′
d). Note that Lemma 8 says nothing about type annotations,

but this is not a problem, because M′ and M′
0 are the same, except that

certain occurrences of uj in M′
0 are replaced by occurrences of u′

j in M′,

which can inherit the type annotations of u′
j as a subpattern of h t′m.

2.4 e is flexible, but eθd is rigid and active. This case can be proved by using
OGN as TR. Note that OGN can be applied because t is not a variable.
The proof details are similar to those of case 1.2.3.

3 Now we assume that G satisfies the condition ¬I ∧ ¬II ∧ III, where ¬II
can be rewritten as:

P includes only statements (e → X) with X ∈ DVar ¬II

and

There is some (t → X) ∈ P , such that t is a pattern. III

This case is easy to prove taking IB as TR.

4 Assume now that G satisfies the condition ¬I ∧ ¬II ∧ ¬III ∧ IV, where

C �= ∅. IV

96

Because of IV and ¬I, we can choose some (a � b) ∈ C such that a is
headed by a produced variable Y . Since Y is produced and ¬II∧¬III hold,
(e → Y) ∈ P for some expression e which is not a pattern. Moreover, Y is
demanded because it occurs as the head of a in (a � b) ∈ C. We distinguish
four subcases according to the form of e and eθd.

4.1 e is rigid and passive. This case can be proved by taking IIM as TR.
The reasoning is similar to that of case 1.2.2 (with k = 0), but simpler. In
particular, no dynamic type checking is needed.

4.2 e is rigid and active. In this case we can choose NR2 as TR. Note that
NR2 can be applied because Y is demanded. The proof details are similar
to case 1.4.

4.3 e is flexible, but eθd is rigid and passive. Since e is not a pattern, we can
assume e = X eq with q > 0. Since θd is solution of eθd, Xθd and Y θd must
be patterns of the form h t′p and h t′psq, respectively, and M must include a
GORC proof of h t′peqθd → h t′psq ending with a DC step. The rest of this
case can be completed by taking OGD as TR.

4.4 e is flexible, but eθd is rigid and active. This case quite similar to case
2.4. It can be proved by using OGN as TR. Note that OGN can be applied
because Y is a demanded variable.

5 Finally, assume that G satisfies the condition ¬I ∧ ¬II ∧ ¬III ∧ ¬IV.
Since G is not solved and IV is false, C = ∅ and P �= ∅. Due to the
acyclicity condition NC of admissible goals, P must contain some statement
(e → t) such that var(t) ∩ var(e′) = ∅ for all (e′ → t′) ∈ P . Due to ¬II, t
must be a single variable X. Because of C = ∅ and the linearity condition
LN of admissible goals, X has exactly one occurrence in G. Then EL can
be applied to transform G into G′, and a type-annotated witness M′ �M
for (R, θ′) ∈ TASol(Ĝ′) can be obtained from M by removing the type-
annotated proof of (e → X)θd. �

97

