
Subject Reduction of Logic Programs as

Proof-Theoretic Property

Pierre Deransart∗ and Jan–Georg Smaus†

February 6, 2002

Abstract

We consider prescriptive type systems for logic programs (as in Gödel
or Mercury). In such systems, the typing is static, but it guarantees an
operational property: if a program is “well-typed”, then all derivations
starting in a “well-typed” query are again “well-typed”. This property
has been called subject reduction. We show that this property can also be
phrased as a property of the proof-theoretic semantics of logic programs,
thus abstracting from the usual operational (top-down) semantics. This
proof-theoretic view leads us to questioning a condition which is usually
considered necessary for subject reduction, namely the head condition. It
states that the head of each clause must have a type which is a variant
(and not a proper instance) of the declared type. We study more general
conditions, thus reestablishing a certain symmetry between heads and
body atoms. The underlying idea is that in a derivation, terms should only
be unified if their types are unifiable. We discuss possible implications of
our results.

1 Introduction

Prescriptive types are used in logic programming (and other paradigms) to
restrict the underlying syntax so that only “meaningful” expressions are al-
lowed. This allows for many programming errors to be detected by the com-
piler. Moreover, it ensures that once a program has passed the compiler, the
types of arguments of predicates can be ignored at runtime, since it is guaran-
teed that they will be of correct type. This has been turned into the famous
slogan [Mil78, MO84]

Well-typed programs cannot go wrong.

Adopting the terminology from the theory of the λ-calculus [Tho91], this prop-
erty of a typed program is called subject reduction. For the simply typed λ-
calculus, subject reduction states that the type of a λ-term is invariant under
reduction. Translated to logic programming, this means that resolving a “well-
typed” query with a “well-typed” clause will always result in a “well-typed”

∗INRIA-Rocquencourt, BP105, 78153 Le Chesnay Cedex, France,
pierre.deransart@inria.fr

†Institut für Informatik, Universität Freiburg, 79110 Freiburg, Germany,
smaus@informatik.uni-freiburg.de

1

query, and so the successive queries obtained during a derivation are all “well-
typed”.

From this observation, it is clear that subject reduction is a property of the
operational semantics of a logic program, i.e., SLD resolution [Llo87]. In this
article, we show that it is also a property of the proof-theoretic semantics based
on derivation trees. More precisely, we show that using “well-typed” clauses,
only “well-typed” derivation trees can be constructed. We might turn this into
the new slogan

Well-typed programs are not wrong.

The type system we consider here is a system with parametric polymorphism.
In such a system, predicates etc. can have a type that contains “variables” (we
use the term parameters). For example, a predicate of type list(U) can be
applied to an argument of type list(int) or list(string) and so forth.

The head condition, also called definitional genericity [LR91], is a condition
on the program (clauses) [HT92]. It is usually considered to be crucial for
subject reduction, and one might have the impression that it is a necessary
condition. It states that the types of the arguments of a clause head must
be a variant1 (and not a proper instance) of the declared type of the head
predicate. Our proof-theoretic view of subject reduction leads us to questioning
this distinction between “definitional” occurrences (clause heads) and “applied”
occurrences (body atoms) of a predicate. The second objective of this article is
thus to look for more general conditions. We argue that conditions for subject
reduction should be based on type unifiability, meaning that the types of terms
that might be unified in a derivation are themselves unifiable. In particular,
we will present a decidable condition for subject reduction which reestablishes a
certain symmetry between the different occurrences. Thus the class of programs
for which subject reduction is guaranteed is enlarged.

This article is organised as follows. Section 2 contains some preliminar-
ies. Section 3 introduces our proof-theoretic notion of subject reduction, shows
that it is equivalent to the usual operational one, and that it is undecidable.
Section 4 gives sufficient conditions for subject reduction, and in particular, a
generalisation of the head condition. Section 5 is a discussion of our results.

This article is based on an earlier conference paper [DS01]. The present ar-
ticle contains the proofs and a more extended discussion, e.g. some comparisons
with functional programming. Concerning the technical content, the results on
undecidability are new.

2 Preliminaries

We assume familiarity with the standard concepts of logic programming [Llo87].
To simplify the notation, a vector such as o1, . . . , om is often denoted by ō. The
restriction of a substitution θ to the variables in a syntactic object o is denoted
as θ�o, and analogously for type substitutions (see Subsec. 2.2). The relation
symbol of an atom a is denoted by Rel(a).

When we refer to a clause in a program, we usually mean a copy of this clause
whose variables are renamed apart from variables occurring in other objects in

1A variant is obtained by renaming the type parameters in a type.

2

the context. A query is a sequence of atoms. A query Q′ is derived from a
query Q, denoted Q ; Q′, if Q = a1, . . . , am, and h← B is a clause (in a pro-
gram usually clear from the context) such that h and some ak are unifiable with
MGU θ, and Q′ = (a1, . . . , ak−1, B, ak+1, . . . , am)θ. A derivation Q ;∗ Q′ is
defined in the usual way. Given a program P , the immediate consequence
operator TP is defined by TP (M) = {hθ | h← a1, . . . , am ∈ P, a1θ, . . . , amθ ∈
M}. Note that unlike in similar definitions in the literature, θ is not constrained
to be grounding or most general or anything of the like.

2.1 Derivation Trees

A key element of this work is the proof-theoretic semantics of logic programs
based on derivation trees [DM93]. We recall some important notions and basic
results.

Definition 2.1 An instance name of a clause C is a pair of the form 〈C, θ〉,
where θ is a substitution.

Definition 2.2 Let P be a program. A derivation tree for P is a labelled
ordered tree [DM93] such that:

1. Each leaf node is labelled by ⊥ or an instance name 〈C, θ〉 of a clause2 in
P ; each non-leaf node is labelled by an instance name 〈C, θ〉 of a clause in
P .

2. If a node is labelled by 〈h← a1, . . . , am, θ〉, where m ≥ 0, then this node
has m children, and for i ∈ {1, . . . ,m}, the ith child is labelled either by
⊥, or 〈h′ ← B, θ′〉 where h′θ′ = aiθ.

Nodes labelled ⊥ are incomplete, all other nodes are complete. A derivation
tree containing only complete nodes is a proof tree.

To define the semantics of logic programs, it is useful to associate an atom
with each node in a derivation tree in the following way.

Definition 2.3 Let T be a derivation tree. For each node n in T , the node
atom of n, denoted atom(n), is defined as follows: If n is labelled 〈h ← B, θ〉,
then hθ is the node atom of n; if n is labelled ⊥, and n is the ith child of its
parent labelled 〈h← a1, . . . , am, θ〉, then aiθ is the node atom of n. If n is the
root of T then atom(n) is the head of T , denoted head(T).

Derivation trees are obtained by grafting instances of clauses of a program.
To describe this construction in a general way, we define the following concept.

Definition 2.4 Let P be a program. A skeleton for P is a labelled ordered
tree such that:

1. Each leaf node is labelled by ⊥ or a clause in P , and each non-leaf node
is labelled by a clause in P .

2. If a node is labelled by h← a1, . . . , am, where m ≥ 0, then this node has
m children, and for i ∈ {1, . . . ,m}, the ith child is labelled either by ⊥,
or h′ ← B where Rel(h′) = Rel(ai).

2Recall that C is renamed apart from any other clause in the same tree.

3

h(X)← q(X), p(X).
q([]).
p(X)← r(X).

⊥

〈q([]), ∅〉 〈p(X′)← r(X′), {x′/[]}〉
�� @@

〈h(X)← q(X), p(X), {x/[]}〉

⊥

q([]) p(X′)← r(X′)
�� @@

h(X)← q(X), p(X)

Figure 1: A program, a derivation tree and its skeleton

The skeleton of a tree T , denoted Sk(T), is the skeleton obtained from T
by replacing each label 〈C, θ〉 with C. Conversely, we say that T is a derivation
tree based on Sk(T).

Definition 2.5 Let S be a skeleton. We define

Eq(S) = {ai = h′ | there exist complete nodes n, n′ in S such that
• n′ is the ith child of n,
• n is labelled h← a1, . . . , am,
• n′ is labelled h′ ← B}

Abusing notation, we frequently identify the set of equations with the conjunc-
tion or sequence of all equations contained in it. If Eq(S) has a unifier then we
call S a proper skeleton.

Proposition 2.6 [DM93, Prop. 2.1] Let S be a skeleton. A derivation tree
based on S exists if and only if S is proper.

Theorem 2.7 [DM93, Thm. 2.1] Let S be a skeleton and θ an MGU of Eq(S).
Let D(S) be the tree obtained from S by replacing each node label C with the
pair 〈C, θ�C〉. Then D(S) is a most general derivation tree based on S (i.e., any
other derivation tree based on S is an instance of D(S)).

Example 2.8 Figure 1 shows a program, one of its derivation trees, and the
skeleton of the derivation tree.

To model derivations for a program P and a query Q, we assume that P
contains an additional clause go← Q, where go is a new predicate symbol.

We recall the following straightforward correspondences between derivations,
the TP -semantics and derivation trees.

Proposition 2.9 Let P be a program. Then

1. a ∈ lfp(TP) if and only if a = head(T) for some proof tree T for P ,

2. Q ;∗ Q′ if and only if Q′ is the sequence of node atoms of incomplete
nodes of a most general derivation tree for P ∪ {go ← Q} with head go,
visited left to right.

2.2 Typed Logic Programming

We assume a type system for logic programs with parametric polymorphism
but without subtyping, as realised in the languages Gödel [HL94] and Mer-
cury [SHC96].

4

Table 1: Rules defining a typed language

(Var) {x : τ, . . .} ` x : τ

(Func) Γ`t1:τ1Θ ··· Γ`tm:τmΘ
Γ`fτ1...τm→τ (t1,...,tm):τΘ Θ is a type substitution

(Atom) Γ`t1:τ1Θ ··· Γ`tm:τmΘ
Γ`pτ1...τm(t1,...,tm) Atom Θ is a type substitution

(Query) Γ`A1 Atom ··· Γ`Am Atom
Γ`A1,...,Am Query

(Clause)
Γ`A Atom Γ`Q Query

Γ`A←Q Clause

(Program) `C1 Clause ··· `Cm Clause
`{C1,...,Cm} Program

(Queryset)
`Q1 Query ··· `Qm Query
`{Q1,...,Qm} Queryset

The set of types T is given by the term structure based on a finite set
of constructors K, where with each K ∈ K an arity m ≥ 0 is associated (by
writing K/m), and a denumerable set U of parameters. A type substitution
is an idempotent mapping from parameters to types which is the identity almost
everywhere. The set of parameters in a syntactic object o is denoted by pars(o).

We assume a denumerable set V of variables. The set of variables in a
syntactic object o is denoted by vars(o). A variable typing is a mapping from
a finite subset of V to T , written as {x1 : τ1, . . . , xm : τm}.

We assume a finite set F (resp. P) of function (resp. predicate) symbols,
each with an arity and a declared type associated with it, such that: for each
f ∈ F , the declared type has the form (τ1, . . . , τm, τ), where m is the arity
of f , (τ1, . . . , τm) ∈ T m, and τ satisfies the transparency condition3 [HT92]:
pars(τ1, . . . , τm) ⊆ pars(τ); for each p ∈ P, the declared type has the form
(τ1, . . . , τm), where m is the arity of p and (τ1, . . . , τm) ∈ T m. We often indicate
the declared types by writing fτ1...τm→τ and pτ1...τm , however we assume that
the parameters in τ1, . . . , τm, τ are fresh for each occurrence of f or p. We
assume that there is a special predicate symbol =u,u where u ∈ U .

Throughout this article, we assume K, F , and P arbitrary but fixed. The
typed language, i.e. a language of terms, atoms etc. based on K, F , and P,
is defined by the rules in Table 1. All objects are defined relative to a variable
typing Γ. In rules (Program) and (Queryset), it is tacitly assumed that the
clauses, resp. queries, are variable-disjoint. This justifies using the notation
` . . . for “there exists Γ such that Γ ` . . .”. The expressions below the line are

called type judgements.
Formally, a proof of a type judgement is a tree where the nodes are labelled

with judgements and the edges are labelled with rules (e.g. see Fig. 2) [Tho91].
From the form of the rules, it is clear that in order to prove any type judgement,
we must, for each occurrence of a term t in the judgement, prove a judgement

3We shall discuss this condition after Lemma 2.16.

5

...
...... Γ ` t̄1 : τ̄1 . . . Γ ` t̄m : τ̄m

Γ ` t̄ : τ̄ Γ ` p1(t̄1) Atom Γ ` pm(t̄m) Atom
Γ ` p(t̄) Atom Γ ` p1(t̄1), . . . , pm(t̄m) Query

Γ ` p(t̄)← p1(t̄1), . . . , pm(t̄m) Clause

Figure 2: Proving a type judgement

. . . ` t : τ for some τ . We now define the most general such τ . It exists and can
be computed by type inferencing algorithms [Bei95].

Definition 2.10 Consider a judgement Γ ` p(t̄) ← p1(t̄1), . . . , pm(t̄m) Clause,
and a proof of this judgement containing judgements Γ ` t̄ : τ̄ , Γ ` t̄1 : τ̄1, . . . ,
Γ ` t̄m : τ̄m (see Fig. 2) such that (τ̄ , τ̄1, . . . , τ̄m) is most general wrt. all such
proofs for all possible choices of Γ. We call (τ̄ , τ̄1, . . . , τ̄m) the most general
type of p(t̄)← p1(t̄1), . . . , pm(t̄m).

Example 2.11 Consider function nil→list(U) and clause C ≡ p ← X = nil.
For Γ = {X : list(V)}, the judgement Γ ` C Clause can be proven us-
ing the judgements Γ ` X : list(V) and Γ ` nil : list(V), and the vector
(list(V), list(V)) is most general wrt. all such proofs and all choices of Γ.
Thus ((), (list(V), list(V))) is the most general type of C.

For several purposes, it is useful to consider programs obtained from usual
typed programs by replacing each term by its (most general) type. This is based
on the previous definition.

Definition 2.12 Given a clause C = p(t̄) ← p1(t̄1), . . . , pm(t̄m) with most
general type (τ̄ , τ̄1, . . . , τ̄m), we call p(τ̄)← p1(τ̄1), . . . , pm(τ̄m) the type clause
corresponding to C. Given a program P , the type program corresponding
to P is obtained by replacing each clause with the corresponding type clause.

The following is a standard concept for typed logic programming.

Definition 2.13 If Γ ` x1 = t1, . . . , xm = tm Query where x1, . . . , xm are dis-
tinct variables and for each i ∈ {1, . . . ,m}, ti is a term distinct from xi, then
({x1/t1, . . . , xm/tm},Γ) is a typed (term) substitution.

We shall need three fundamental lemmas introduced in [HT92].4

Lemma 2.14 [HT92, Lemma 1.2.8] Let Γ ⊆ Γ′ be variable typings and Θ a
type substitution. If Γ ` t : σ, then Γ′Θ ` t : σΘ. Moreover, if Γ ` A Atom
then Γ′Θ ` A Atom, and likewise for queries and clauses.

Proof: The proof is by structural induction. For the base case, suppose Γ ` x :
σ where x ∈ V. Then x : σ ∈ Γ′ and hence x : σΘ ∈ Γ′Θ. Thus Γ′Θ ` x : σΘ.

4Note that some results in [HT92] have been shown to be faulty (Lemmas 1.1.7, 1.1.10
and 1.2.7), although we believe that these mistakes only affect type systems which include
subtyping.

6

Now consider Γ ` fτ1...τm→τ (t1, . . . , tm) : σ where the inductive hypothesis
holds for t1, . . . , tm. By Rule (Func), there exists a type substitution Θ′ such
that σ = τΘ′ and Γ ` ti : τiΘ′ for each i ∈ {1, . . . ,m}. By the inductive
hypothesis, Γ′Θ ` ti : τiΘ′Θ for each i ∈ {1, . . . ,m}, and hence by Rule (Func),
Γ′Θ ` fτ1...τm→τ (t1, . . . , tm) : τΘ′Θ.

The rest of the proof is now trivial. �

Lemma 2.15 [HT92, Lemma 1.4.2] Let (θ, Γ) be a typed substitution. If
Γ ` t : σ then Γ ` tθ : σ. Moreover, if Γ ` A Atom then Γ ` Aθ Atom, and
likewise for queries and clauses.

Proof: The proof is by structural induction. For the base case, suppose Γ `
x : σ where x ∈ V. If xθ = x, there is nothing to show. If x/t ∈ θ, then by
definition of a typed substitution, Γ ` t : σ.

Now consider Γ ` fτ1...τm→τ (t1, . . . , tm) : σ where the inductive hypothesis
holds for t1, . . . , tm. By Rule (Func), there exists a type substitution Θ′ such
that σ = τΘ′, and Γ ` ti : τiΘ′ for each i ∈ {1, . . . ,m}. By the inductive
hypothesis, Γ ` tiθ : τiΘ′ for each i ∈ {1, . . . ,m}, and hence by Rule (Func),
Γ ` fτ1...τm→τ (t1, . . . , tm)θ : τΘ′.

The rest of the proof is now trivial. �

Lemma 2.16 [HT92, Thm. 1.4.1] Let E be a set (conjunction) of equations
such that for some variable typing Γ, we have Γ ` E Query . Suppose θ is an
MGU of E. Then (θ, Γ) is a typed substitution.

Proof: We show that the result is true when θ is computed using the well-known
Martelli-Montanari algorithm [MM82] which works by transforming a set of
equations into a set of the form required in the definition of a typed substitution.
Let E0 = E. Only the following two transformations are considered here. The
others are trivial.

1. If x = t ∈ Ek and x does not occur in t, then replace all occurrences of x
in all other equations in E with t, to obtain Ek+1.

2. If f(t1, . . . , tm) = f(s1, . . . , sm) ∈ Ek, then replace this equation with
t1 = s1, . . . , tm = sm, to obtain Ek+1.

We show that if Γ ` Ek Query and Ek+1 is obtained by either of the above
transformations, then Γ ` Ek+1 Query . For (1), this follows from Lemma 2.15.

For (2), suppose Γ ` Ek Query and f(t1, . . . , tm) = f(s1, . . . , sm) ∈ Ek

where f = fτ1...τm→τ . By Rule (Query), we must have Γ ` f(t1, . . . , tm) =u,u

f(s1, . . . , sm) Atom, and hence by Rule (Atom), Γ ` f(t1, . . . , tm) : uΘ and
Γ ` f(s1, . . . , sm) : uΘ for some type substitution Θ. On the other hand,
by Rule (Func), uΘ = τΘt and uΘ = τΘs for some type substitutions Θs

and Θt, and moreover for each i ∈ {1, . . . ,m}, we have Γ ` ti : τiΘt and
Γ ` si : τiΘs. Since pars(τi) ⊆ pars(τ), it follows that τiΘt = τiΘs. Therefore
Γ ` ti = si Atom, and so Γ ` Ek+1 Query . �

Note how in the above proof, the transparency condition is essential to ensure
that subarguments in corresponding positions have identical types, so that each
variable can only become instantiated to a term of its own type. Hill gives
examples explaining this [Hil93]. The condition was ignored in [MO84].

7

From the point of view of functional programming, the transparency con-
dition may seem very restrictive: for example, it would be ludicrous to forbid
a function that computes the length of a list, which would naturally have the
type list(U) → int and hence violate the transparency condition. However,
one must bear in mind that in logic programming, the word “function” has a
meaning different from that of functional programming. A function in logic
programming is sometimes called term constructor in functional programming,
and a term in logic programming is sometimes called constructor term or data
term.

In logic programming, unification of terms and thus instantiation of logical
variables is at the heart of the computation mechanism, and as we have seen
in the proof above, it is crucial that terms that are unified have the same type.
This is comparable in functional programming to the matching of an argument
pattern in a function definition against the actual arguments of a function call.
For example, length could be defined in Miranda [Tho95] as

fun length [] = 0
| length (x::xs) = 1 + length (xs)

Note that a pattern such as (x :: xs) is required to be a constructor term, and
that for term constructors, transparency is required. Thus the matter is not so
different in functional programming after all.

Nevertheless, it has been observed that the transparency condition can
be quite restrictive, in particular in the context of meta-programming [Hil93,
HL89].

3 Subject Reduction for Derivation Trees

We first define subject reduction as a property of derivation trees and show
that it is equivalent to the usual operational notion. We then show that subject
reduction is undecidable.

3.1 Proof-Theoretic and Operational Subject Reduction

Subject reduction is a well-understood concept, yet it has to be defined formally
for each system. We now provide two fundamental definitions.

Definition 3.1 Let ` P Program and ` Q Queryset . We say P has (proof-
theoretic) subject reduction wrt. Q if for every Q ∈ Q, for every most
general derivation tree T for P ∪{go← Q} with head go, there exists a variable
typing Γ such that for each node atom a of T , Γ ` a Atom.

P has operational subject reduction wrt. Q if for every Q ∈ Q, for
every derivation Q ;∗ Q′ of P , we have ` Q′ Query .

The reference to Q is omitted if Q = {Q | ` Q Query}. The following
theorem states a certain equivalence between the two notions.

Theorem 3.2 Let ` P Program and ` Q Queryset . If P has subject
reduction wrt. Q, then P has operational subject reduction wrt. Q. If P has
operational subject reduction, then P has subject reduction.

8

Proof: The first statement is a straightforward consequence of Prop. 2.9 (2).
For the second statement, assume Γ ` Q Query , let ξ = Q ;∗ Q′, and T be

the derivation tree for P ∪ {go← Q} corresponding to ξ (by Prop. 2.9 (2)).
By hypothesis, there exists a variable typing Γ′ such that for each incomplete

node n of T , we have Γ′ ` atom(n) Atom. To show that this also holds for
complete nodes, we transform ξ into a derivation which “records the entire
tree T”. This is done as follows: Let P̃ be the program obtained from P by
replacing each clause h← B with h← B,B. Let us call the atoms in the second
occurrence of B unresolvable. Clearly ` h← B,B Clause for each such clause.

By induction on the length of derivations, one can show that P̃ has oper-
ational subject reduction. For a single derivation step, this follows from the
operational subject reduction of P .

Now let ξ̃ = go ; Q̃′ be the derivation for P̃ ∪ {go ← Q,Q} using in
each step the clause corresponding to the clause used in ξ for that step, and
resolving only the resolvable atoms. First note that since P̃ has operational
subject reduction, there exists a variable typing Γ′ such that Γ′ ` Q̃′ Query .
Moreover, since the unresolvable atoms are not resolved in ξ̃, it follows that
Q̃′ contains exactly the non-root node atoms of T . This however shows that
for each node atom a of T , we have Γ′ ` a Atom. Since the choice of Q was
arbitrary, P has subject reduction. �

The following example shows that in the second statement of the above
theorem, it is crucial that P has operational subject reduction wrt. all queries.

Example 3.3 Let K = {int/0, list/1}, F = {0→int, 1→int, . . . , nil→list(U),
consU,list(U)→list(U)}, and P = {plist(int), rlist(U)}. Throughout the article, we
will use the usual (e.g., Prolog) list notation [|]. Let P be

p(X) <- r(X). r([X]) <- r(X).

For each derivation p(X) ;∗ Q′, we have Q′ = p(Y) or Q′ = r(Y) for some Y ∈ V,
and so {Y : list(int)} ` p(Y) Query or {Y : list(U)} ` r(Y) Query . Therefore
P has operational subject reduction wrt. {p(X)}. Yet the derivation trees for P
have heads p(Y), p([Y]), p([[Y]]) etc., and 6` p([[Y]]) Query .

3.2 Undecidability of Subject Reduction

We show that it is undecidable whether a program has subject reduction. Note
that the question of decidability arises because we assume a standard type sys-
tem for logic programs except that we do not initially impose the head condition.
We do not believe that the question has been studied in this form before. Usu-
ally, a particular type system will be designed taking several considerations into
account, and one of them is that the system should have subject reduction,
which has to be proven in each particular case.

To show undecidability, we encode a Turing machine (TM) as a typed pro-
gram in such a way that the TM terminates if and only if the program does not
have subject reduction. This construction combines two programs.

The first encodes the TM itself and has two essential properties:

• The TM terminates iff the program has a complete proper skeleton;

• the program trivially has subject reduction.

9

The second program has the following two essential properties:

• All its skeletons are trivially proper;

• a skeleton for the program is “well-typed” if and only if the skeleton is not
complete.

By combining the two programs, we obtain a program which has a complete
skeleton, and hence does not have subject reduction, if and only if the TM
terminates. Thereby it follows that if subject reduction was decidable, then the
halting problem for the TM would be decidable. We now give the details.

Recall that a TM is a tuple (K, Σ, δ, s) where

• K is of a finite set of states not containing the halt state h,

• Σ is an alphabet containing the blank symbol # but not containing the
symbols L and R,

• the transition function δ is a function from (K × Σ) to (K ∪ {h})× (Σ ∪
{L,R}),

• s ∈ K is the initial state.

Here L,R stand for left, right move, respectively. A configuration is a member
of

(K ∪ {h})× Σ∗ × Σ× (Σ∗ · (Σ \ {#}) ∪ {ε}).

Note that we only consider computations starting with an empty tape, but it is
well-known that this is no loss of generality as far as decidability is concerned.
See [LP81] for further details.

To encode a TM M as a typed program PM , we define K = {symbol/0,
list/1} and F ⊃ {σ→symbol | σ ∈ Σ ∪ {L,R}} in addition to the usual list
functions. Moreover, we define P = {qlist(symbol),symbol,list(symbol) | q ∈ K∪{h}}.
A configuration of the TM is encoded as an atom q(l, σ, r), where q is the state,
l is a list representing the part of the tape to the left of the head, σ is the symbol
under the head, and r is a list representing the part of the tape to the right of
the head. The list l represents the symbols on the tape in reverse order, so that
the head of l represents the square next to the head, as for r.

The program clauses model the transition function δ as shown in Table 2.
The asymmetry between the cases for L and R is due to the fact that the tape
is open-ended only to the right.

The following proposition states the essential properties of PM . The first
statement follows immediately from the construction. The second can be seen
in some straightforward ad-hoc way.

Proposition 3.4 Let M be a Turing machine and PM be the program as de-
fined above. M halts when started in configuration (s, ε, #, ε) if and only if PM

has a complete derivation tree whose skeleton has head s([],#, []).
Moreover, PM has subject reduction wrt. {s([],#, [])}.

We now construct the second program P ′. Let K = {colour, shape}, F =
{red→colour, square→shape}, P = {scolour, qU, hU}, and the clauses be as follows

s(X) <- q(X). q(X) <- q(X). q(X) <- h(X). h(square).

10

Table 2: The modelling of δ as a logic program

For each q, σ such that δ(q, σ) = (q′, σ′)
with σ′ ∈ Σ: q(L, σ, R)← q′(L, σ′, R).

For each q, σ such that δ(q, σ) = (q′, L): q([S|L], σ, R)← q′(L, S, [σ|R]).
For each q, σ such that δ(q, σ) = (q′,R): q(L, σ, [S|R])← q′([σ|L], S, R).

q(L, σ, [])← q′([σ|L],#, []).

For the halt state: h(L, S, R).

In P ′, a derivation tree becomes ill-typed as soon as one adds the leaf
h(square), since this forces the head to be s(square). This is stated in the
following proposition.

Proposition 3.5 Let T be a most general derivation tree for P ′ whose skeleton
has head s(X). Then T is complete if and only if there does not exist a variable
typing Γ such that for each node atom a of T , we have Γ ` a Atom.

Moreover, any skeleton for P ′ is proper.

We now combine the two programs to a program P+
M in a straightforward

way. We associate s in P ′ with s in PM , q in P ′ with any predicate q in PM

such that q ∈ K \ {s}, and h in P ′ with h in PM . For the combined program,
we define K and F simply to be the union of the respective sets above, and

P = {slist(symbol),symbol,list(symbol),colour} ∪
{qlist(symbol),symbol,list(symbol),U | q ∈ (K \ {s}) ∪ {h}}

The program clauses are obtained from the non-fact clauses in Table 2 by adding
X (assuming this is a fresh variable) as last argument to each atom. Moreover,
the fact clause is replaced with h(L, S, R, square).

Any skeleton in PM corresponds in an obvious way to a skeleton in P+
M .

Theorem 3.6 It is undecidable whether a program P has subject reduction for
a set of queries Q.

Proof: Assume that it is decidable whether a program P has subject reduction
for a set of queries Q. Consider a TM M and the corresponding program P+

M

as defined above. By Propositions 3.4 and 3.5, the following three statements
are equivalent:

• M halts when started in configuration (s, ε, #, ε);

• P+
M has a complete derivation tree whose skeleton has head s([],#, [], X);

• P+
M does not have subject reduction wrt. {s([],#, [], X)}.

By the assumption that subject reduction is decidable, it thus follows that the
halting problem for M is decidable, which is a contradiction. �

11

4 Type Unifiability

In this section, we argue that the unifiability of types is the key to ensuring
subject reduction.

Recall Def. 2.12. By obvious analogy, we can treat type clauses and pro-
grams like ordinary clauses and programs. We call type skeleton (resp., type
derivation tree, type equation set) a skeleton (resp., derivation tree, equa-
tion set) that is obtained from a type program.

In particular, given a skeleton S for a program P , the type skeleton cor-
responding to S is obtained by replacing each node label Cn in S with the
type clause corresponding to Cn.5 Clearly, this type skeleton is a skeleton of
the type program corresponding to P .

4.1 Weak Type Unifiability

Definition 4.1 Let ` P Program and ` Q Queryset . We say that P has
weak type unifiability wrt. Q if for each proper skeleton S of P ∪{go← Q}
with head go, where Q ∈ Q, the type skeleton corresponding to S is proper.

Weak type unifiability is a sufficient condition for subject reduction.

Theorem 4.2 Let ` P Program and ` Q Queryset . If P has weak type
unifiability wrt. Q, then P has subject reduction wrt. Q.

Proof: Let S be an arbitrary proper skeleton for P ∪ {go ← Q} with head
go, where Q ∈ Q, and let TS be the corresponding type skeleton. Let θ =
MGU(Eq(S)) and Θ = MGU(Eq(TS)). For each node n in S, labelled p(t̄)←
p1(t̄1), . . . , pm(t̄m) in S and p(τ̄) ← p1(τ̄1), . . . , pm(τ̄m) in TS, let Γn be the
variable typing such that Γn ` (t̄, t̄1, . . . , t̄m) : (τ̄ , τ̄1, . . . , τ̄m). Let

Γ =
⋃
n∈S

ΓnΘ.

Since the variables are renamed apart for each node label, Γ is a variable typing.
Consider a pair of nodes n, n′ in S such that n′ is a child of n, and the

equation p(s̄) = p(s̄′) ∈ Eq(S) corresponding to this pair (see Def. 2.5). Con-
sider also the equation p(σ̄) = p(σ̄′) ∈ Eq(TS) corresponding to the pair n, n′

in TS. Note that Γn ` s̄ : σ̄ and Γn′ ` s̄′ : σ̄′. By Lemma 2.14, Γ ` s̄ : σ̄Θ
and Γ ` s̄′ : σ̄′Θ. Moreover, since Θ = MGU(Eq(TS)), we have σ̄Θ = σ̄′Θ.
Therefore Γ ` s̄ = s̄′ Atom. Since the same reasoning applies for any equation
in Eq(S), by Lemma 2.16, (θ, Γ) is a typed substitution.

Consider a node n′′ in S with node atom a. Since Γn′′ ` a Atom, by
Lemma 2.14, Γ ` a Atom. and by Lemma 2.15, Γ ` aθ Atom. Therefore P has
subject reduction wrt. Q. �

Example 4.3 Figure 3 shows a proper skeleton and the corresponding non-
proper type skeleton for the program in Ex. 3.3.

In contrast, let K and F be as in Ex. 3.3, and P = {applist(U),list(U),list(U),
rlist(int)}. Let P be the program shown in Fig. 4. The corresponding type

5Recall that the variables/parameters are renamed apart for each node label in the (type)
skeleton.

12

r([X′′′])← r(X′′′)

r([X′′])← r(X′′)

p(X′)← r(X′)

go← p(X)

r(list(U′′′))← r(U′′′)

r(list(U′′))← r(U′′)

p(list(int))← r(list(int))

go← p(list(int))

Figure 3: A skeleton and the corresponding non-proper type skeleton for Ex. 3.3

app([],Ys,Ys). %app(list(U),list(U),list(U)).
app([X|Xs],Ys,[X|Zs]) <- %app(list(U),list(U),list(U)) <-
app(Xs,Ys,Zs). % app(list(U),list(U),list(U)).

r([1]). %r(list(int)).

go <- %go <-
app(Xs,[],Zs), % app(list(int),list(int),list(int)),
r(Xs). % r(list(int))

Figure 4: A program used to illustrate proper type skeletons

clauses are given as comments. Figure 5 shows a skeleton S and the correspond-
ing type skeleton TS for P . A solution of Eq(TS) is obtained by instantiating
all parameters with int.

The next example shows that weak type unifiability is not a necessary con-
dition for subject reduction.

Example 4.4 Let K = {int/0, char/0, list/1, c/1}, F = {1→int, . . . ,
′a′→char,

. . . , nil→list(U), consU,list(U)→list(U), flist(U),list(int),list(char)→c(U)}, P =
{pc(U)}, P = {p(f(X, X, [])).}, Q = p(f(Y, [], Y)). Then the only skeleton of
P ∪ {go ← Q} is proper, the corresponding type skeleton is not proper, and
yet P has subject reduction wrt. {Q}, as shown in Fig. 6.

The above example exhibits a interesting phenomenon. One would expect
that instantiating a term constrains its possible types. This is not generally
true. For Γ = {X : list(int), Y : list(char)}, we have Γ ` f(X, X, []) : c(char)
and Γ ` f(Y, [], Y) : c(int). The types of the terms are not even unifiable, but
for their common instance we have Γ ` f([], [], []) : c(U). The point is that
multiple variable occurrences must all have the same type, whereas in f([], [], []),
the occurrences of [] are independent. We wonder if this phenomenon has been
observed before.

As with our discussion of the transparency condition, a small digression to
functional programming is in order here. What becomes apparent in the above
example is that in our type system, only declared function and predicate symbols
(which would be called constants in functional programming terminology) can be
used polymorphically, whereas variables must always be used monomorphically.
This is in contrast to an expression like let X = [] in f(X, X, X) in functional

13

app([], Ys′′, Ys′′)

app([X′|Xs′], Ys′, [X′|Zs′])←
app(Xs′, Ys′, Zs′) r([1])

�� @@

go← app(Xs, [], Zs) , r(Xs)

app(list(U′′)3)

app(list(U′)3)←
app(list(U′)3) r(list(int))

�� @@

go← app(list(int)3) , r(list(int))

Figure 5: A skeleton and the corresponding proper type skeleton for Ex. 4.3

p(f(X, X, []))

go← p(f(Y, [], Y))

p(c(int))

go← p(c(char))

Figure 6: Subject reduction in spite of a non-proper type skeleton

programming, where we assume f to be typed as in the above example. In this
expression, X is used with three different type instances.

The contrast is again due to the central role that instantiation of logical
variables plays in logic programming. Subject reduction relies on the fact that
the well-typing of objects is stable under instantiation of types and terms, as
formalised in Lemmas 2.14 and 2.15. We cannot allow the term f(X, X, X) since
generally, instances of it will not be well-typed, with the only exception of
f([], [], []), where we use the polymorphic constant [].

We now give an example of a program that has weak type unifiability for
an appropriate set of queries. The example is interesting because it falls out of
any conditions for subject reduction we shall present later.

Example 4.5 It has been observed that higher-order constructs in logic pro-
gramming create difficulties for typing. Consider a generic applystring,U,U predi-
cate where the first argument is the name of an ordering predicate and the other
arguments are elements that the ordering predicate is applied to. Such a pred-
icate could be useful to define a generic sorting predicate, where the ordering
relation is passed as argument. The definition of apply may include clauses like

apply("int_order",X,Y) <- less(X,Y).
apply("char_order",X,Y) <- alph(X,Y).

where lessint,int is the “<”-relation and alphchar,char is the alphabetical order.
This program has weak type unifiability wrt. Q = {apply("int order", x, y) |
x, y integers} ∪ {apply("char order", x, y) | x, y characters}.

The lesson learnt from such an example is not new but we shall briefly sum-
marise it here: The example is very simple and even if one looks at it in a slightly
bigger context (e.g. defining a sorting predicate as mentioned), it is possible to
see in a simple ad-hoc way that such a program has weak type unifiability and
hence subject reduction for an appropriate set of queries. However, one also
sees that subject reduction depends critically on the actual values that argu-
ments take (here, the value of the first argument of apply order). In general,
establishing subject reduction in such cases must be extremely difficult, and we
conjecture that it is undecidable.

However, we have no proof of the undecidability of weak type unifiability.

14

4.2 Strong Type Unifiability

We now define a stronger notion of type unifiability where the condition of
“term unifiability” is discarded. It is based on a property of a particular class
of programs studied previously by Bouquard [Bou92].

Definition 4.6 Let P be a program and Q be a set of queries. We say that
P has the full success property wrt. Q if each skeleton S of P ∪ {go← Q}
with head go, where Q ∈ Q, is proper.

Definition 4.7 Let ` P Program and ` Q Queryset , and P ∗, Q∗ be the
corresponding type program and set of type queries6. We say that P has strong
type unifiability wrt. Q if P ∗ has the full success property wrt. Q∗.

Clearly, strong type unifiability implies weak type unifiability.
Arguably, strong type unifiability is in the spirit of prescriptive typing, since

subject reduction should be independent of the unifiability of terms, i.e., success
or failure of the computation. Therefore, we believe that the efforts concerning
proofs of subject reduction should focus on establishing this property. However
this view has been challenged in the context of higher-order logic program-
ming [NP92].

We now show that strong type unifiability is undecidable, just as subject
reduction itself. This is based on two facts:

• it is undecidable whether a program has the full success property;

• type programs (Def. 2.12) are not a restricted class of programs. Hence,
the undecidability for general programs applies also to type programs.

Theorem 4.8 It is undecidable whether a program has strong type unifiability.

Proof: The first point (it is undecidable whether a program has the full success
property) was already conjectured in [Bou92]. A result from [DLP+96] solves the
conjecture. There it is shown that the halting problem is undecidable even for a
logic program with one goal of the form← p(r) and one (recursive) clause of the
form p(s) ← p(t). Such a program does not halt if and only if all its skeletons
are proper, which is shown as follows: if it does not halt, it has an infinite proper
skeleton, obtained by grafting infinitely many copies of the clause p(s) ← p(t).
But any skeleton for the program is necessarily a sub-skeleton of this infinite
skeleton and hence also proper. Conversely, if all skeletons for the program
are proper, then this holds in particular for the infinite skeleton obtained by
grafting infinitely many copies of the clause p(s) ← p(t). By definition, all
skeletons being proper is equivalent to the full success property. Hence the full
success property is also undecidable.

We now address the second point. We show that type programs are, syn-
tactically speaking, not a restricted class of programs. Any program could be
a type program. This implies that any problem undecidable for arbitrary pro-
grams must remain undecidable for type programs. To this end we show how
an arbitrary (a priori untyped) logic program P can be typed in such a way
that the corresponding type program P ∗ is isomorphic to P .

6Defined in obvious analogy to a type clause, Def. 2.12.

15

fgs1(I,Y) <-

fs1(I,Y,I).

fs1(I,f(X),J) <-

fs1(I-1,X,J).

fs1(0,X,J) <-

gs1(J,X).

gs1(J,g(X)) <-

gs1(J-1,X).

gs1(0,c).

fgs2(I,Y) <-

fs2(I,Y,I).

fs2(I,f(X),J) <-

fs2(I-1,X,J).

fs2(0,X,J) <-

gs2(J,X,c).

gs2(J,X,Y) <-

gs2(J-1,X,g(Y)).

gs2(0,X,X).

fgs3(I,X) <-

fgs3_aux(I,c,X).

fgs3_aux(I,X,f(Y)) <-

fgs3_aux(I-1,g(X),Y).

fgs3_aux(0,X,X).

Figure 7: Three potential solutions for Ex. 4.9

Let F (resp., P) be the set of function (resp., predicate) symbols occurring
in P , and V a denumerable set of variables including the variables occurring
in P . We define the type language in such a way that each term is essentially
identical to its type, except that we use ˜ to mark types. Thus we define K =
{f̃/m | f/m ∈ F}. Further, we declare the type of each f/m ∈ F to be
u1, . . . um → f̃(u1, . . . um), and the type of each p/m ∈ P to be pu1,...um . Note
that this type language respects the transparency condition. Finally, let U =
{x̃ | x ∈ V}. Let us denote by t̃ the syntactic object obtained from t by marking
each symbol in t with .̃ It is easy to see that in the thus defined language,
` t : t̃, i.e., terms are essentially (except for the ˜ markers) identical to their

types, and the type program P ∗ corresponding to P is “identical” to P . �

We now give an example where we can show subject reduction based on
strong type unifiability. It is a programming task for which we present three
solutions. The example is interesting because two of those solutions fall out of
the scope of decidable conditions for subject reduction we shall present later.

Example 4.9 Let K = {t/1, int/0} and

F = {−1→int, 0→int, . . . , c→t(U), gU→t(U), ft(t(U))→t(U)}.

For all i ≥ 0, we have ` gi(c) : ti+1(U) and ` fi(gi(c)) : t(U). This means
that the set {σ | ∃s, t. s is subterm of t, ` s : σ, ` t : t(U)} is infinite, or in
words, there are infinitely many types that a subterm of a term of type t(U) can
have. This property of the type t(U) is very unusual. In [SHK00], a condition
is considered (the Reflexive Condition) which rules out this situation.

Now consider the predicate fgs/2 specified as fgs(i, fi(gi(c))) (i ∈ IN).
Figure 7 presents three potential definitions of this predicate. The declared
types of the predicates are given by P = {fgs1int,t(U), gs1int,t(U), fgs2int,t(U),
fgs3int,t(U), fs1int,t(U),int, fs2int,t(U),int, gs2int,t(U),t(V), fgs3 auxint,t(U),t(U)}.

All three programs have subject reduction wrt. Q = {fgsj(i, Y) | i ∈ int}
where j = 1, 2, 3 as applicable. In fact, all three programs have strong type
unifiability wrt. Q. For example the type programs for the first and third
solution are shown in Fig 8.

For the above example, one can easily show strong type unifiability in an ad-
hoc way. In general however, finding decidable sufficient conditions for strong
type unifiability with low complexity is not a trivial question, although the head

16

fgs1(int,t(U)) <-

fs1(int,t(U),int).

fs1(int,t(U),int) <-

fs1(int,t(t(U)),int).

fs1(int,t(U),int) <-

gs1(int,t(U)).

gs1(int,t(t(U))) <-

gs1(int,t(U)).

gs1(int,t(U)).

fgs3(int,t(U)) <-

fgs3_aux(int,t(U),t(U)).

fgs3_aux(int,t(U),t(U)) <-

fgs3_aux(int,t(t(U)),t(t(U))).

fgs3_aux(int,t(U),t(U)).

Figure 8: Two type programs for Ex. 4.9

condition is one such condition. In [Bou92, DM93] some guidelines based on
NSTO (not subject to occur check) tests may be used to find some decidable
condition. It shows in particular that there are tests of subject reduction for
the above programs. This will not be developed further here. It seems clear
however by these studies that the complexity of such tests will remain quite
high (at least exponential). In the rest of this section we will consider conditions
that are formulated at the clause level, i.e. they can be verified for each clause
independently.

4.3 The Head Condition

The head condition is the standard way [HT92] of ensuring strong type unifia-
bility.

Definition 4.10 A clause C = pτ̄ (t̄) ← B fulfils the head condition if its
most general type has the form (τ̄ , . . .).

Note that by the typing rules in Table 1, clearly the most general type of
C must be (τ̄ , . . .)Θ for some type substitution Θ. Now the head condition
states that the type of the head arguments must be the declared type of the
predicate, or in other words, Θ�τ̄= ∅. It has been shown previously that typed
programs fulfilling the head condition have operational subject reduction [HT92,
Thm. 1.4.7]. By Thm. 3.2, this means that they have subject reduction.

Consider again Ex. 4.9. Only the third solution fulfils the head condition (see
Fig. 8). The other two versions do not. For this example, the head condition
is a real restriction. It prevents a solution using the most obvious algorithm,
which is certainly a drawback of any type system. We suspected initially that it
would be impossible to write a program fulfilling the specification of fgs without
violating the head condition.

Note that the third solution uses polymorphic recursion, a concept previ-
ously discussed for functional programming [KTU93]: In the recursive clause for
fgs3 aux, the arguments of the recursive call have type (int, t(t(U)), t(t(U))),
while the arguments of the clause head have type (int, t(U), t(U)). If we wrote
a function corresponding to fgs3_aux in Miranda, Haskell or ML, the type
checker could not infer its type, since it assumes that recursion is monomor-
phic, i.e., the type of a recursive call is identical to the type of the “head”. In
Miranda or Haskell, this problem can be overcome by providing a type decla-
ration, while in ML, the function will definitely be rejected. This limitation of

17

the ML type system, or alternatively, the ML type checker, has been studied by
Kahrs [Kah96]. Example 4.9 suggests that there is a certain symmetry between
polymorphic recursion and violations of the head condition.

4.4 A Generalisation: Semi-generic Programs

To reason about the existence of a solution for the equation set of a type skeleton,
we give a sufficient condition for unifiability of a finite set of term equations.

Proposition 4.11 Let E = {l1 = r1, . . . , lm = rm} be a set of oriented equa-
tions. E is unifiable if

1. if i 6= j, then ri and rj have no variable in common, and

2. there exists a partial order→ on the equations such that if ri and lj share
a variable, then i 6= j and li = ri → lj = rj , and

3. for all i ∈ {1, . . . ,m}, li is an instance of ri.

Proof: Without loss of generality, assume that the equations in E are indexed
in a way that is compatible with →, i.e., li = ri → lj = rj implies i ≤ j. The
proof is by induction on m. We have to strengthen the inductive hypothesis:
we claim that there is a unifier θ of E whose domain contains only variables
occurring in some ri, i.e., θ = θ�r1,...,rm . Moreover, θ is relevant, i.e., it does not
contain any variables not contained in E.

The base case m = 0 is trivial.
Now suppose that the hypothesis holds for E = {l1 = r1, . . . , lm = rm},

where the unifier of E is θ. Consider a further equation lm+1 = rm+1 such that
E ∪ {lm+1 = rm+1} meets the assumptions of the statement.

By conditions 1 and 2, rm+1 and E have no variable in common, and hence
by the inductive hypothesis that θ is relevant, we have rm+1θ = rm+1. By
condition 2, rm+1 and lm+1 have no variable in common, and again by the
inductive hypothesis, rm+1 and lm+1θ have no variable in common. This and
condition 3 implies that lm+1θ is an instance of rm+1, and so there is a (minimal)
substitution θ′ such that rm+1θ

′ = lm+1θ.
By a simple argument about the independence of θ and θ′, it follows that

θθ′ is a unifier of E ∪ {lm+1 = rm+1}, and θθ′ = θθ′�r1,...,rm,rm+1 , and θθ′ does
not contain any variables not contained in E ∪ {lm+1 = rm+1}. �

In fact, the head condition ensures that Eq(TS) meets the above conditions
for any type skeleton TS . The equations in Eq(TS) have the form p(τ̄a) = p(τ̄h),
where τ̄a is the type of an atom and τ̄h is the type of a head. Taking into account
that the type clauses used for constructing the equations are renamed apart, all
the head types (r.h.s.) have no parameter in common, the graph of → is a tree
isomorphic to TS , and, by the head condition, τ̄a is an instance of τ̄h.

We now show that by decomposing each equation p(τ̄a) = p(τ̄h), one can
refine this condition.

In the head condition, all arguments of a predicate in clause head position
are “generic” (i.e. their type is the declared type). One might say that all argu-
ments are “head-generic”. It is thus possible to generalise the head condition by
partitioning the arguments of each predicate into those which stay head-generic
and those which one requires to be generic for body atoms. The latter ones

18

will be called body-generic. If we place the head-generic arguments of a clause
head and the body-generic arguments of a clause body on the right hand sides
of the equations associated with a type skeleton, then Condition 3 in Prop. 4.11
is met.

The other two conditions can be obtained in various ways, more or less
complex to verify (an analysis of the analogous problem of NSTO can be found
in [DM93]). Taking into account the renaming of type clauses, a relation between
two equations (as in Prop. 4.11) amounts to a shared parameter between a
generic argument (r.h.s.) and a non-generic argument (l.h.s.) of a clause. We
propose here a condition on the clauses which implies that the equations of any
skeleton can be ordered.

In the following, an atom written as p(h̄, b̄) means: h̄ and b̄ are the vectors of
terms filling the head-generic and body-generic positions of p, respectively. The
notation p(χ̄, β̄), where χ̄ and β̄ are type vectors, is defined analogously. When
denoting a type clause, it is convenient to use one letter, say τ , for “generic”
positions (head-generic in the head or body-generic in the body) and another,
say σ, for “non-generic” positions.

Definition 4.12 Let ` C Clause such that the type clause corresponding to
C is p(τ̄0, σ̄m+1)← p1(σ̄1, τ̄1), . . . , pm(σ̄m, τ̄m). We call C semi-generic if

1. for all i, j ∈ {0, . . . ,m}, i 6= j, pars(τi) ∩ pars(τj) = ∅,

2. for all j ∈ {1, . . . ,m}, pars(σ̄j) ∩
⋃

j≤i≤m pars(τ̄i) = ∅,

3. for all i ∈ {0, . . . ,m}, the vector τi is the declared type of the body-generic
positions of pi.

A query Q is semi-generic if the clause go← Q is semi-generic. A program
is semi-generic if each of its clauses is semi-generic.

Technically, semi-genericity resembles nicely-modedness, where head-generic
corresponds to input, and body-generic corresponds to output. Among other
things, nicely-modedness has been used to show that programs are free from
unification [AE93]. Semi-genericity serves a similar purpose here. However, the
analogy should be treated with care. First, there are slight technical differ-
ences, which we do not want to elaborate. More importantly, one should not
expect that for a given program, the head-generic (resp., body-generic) argu-
ments coincide with the ones one would intuitively consider to be input (resp.,
output).

Note also that a typed program which fulfils the head condition is semi-
generic, where all argument positions are head-generic.

The following theorem states subject reduction for semi-generic programs. It
is based on the fact that semi-genericity implies strong type unifiability, thereby
weak type unifiability, and hence subject reduction.

Theorem 4.13 Every semi-generic program P has subject reduction wrt. the
set of semi-generic queries.

Proof: Let Q be a semi-generic query and TS a type skeleton corresponding
to a skeleton for P ∪ {go ← Q} with head go. We will order the equations in
Eq(TS) in such a way that Prop. 4.11 is applicable.

19

. . . p (σ̄, τ̄) . . .

p(τ̄0,σ̄m+1)←
?

...
...............
............
..........
..........
.........
........

- p1 (τ̄ ′1, σ̄
′
1)

p1 (σ̄1,τ̄1).........
..........
...........
...............

..

..
..........
...

...

-

?
6

- . . .

pi (τ̄ ′i , σ̄
′
i)

pi (σ̄i, τ̄i).........
..........
...........
...............

....................

..
..........
...

...

?
6

- . . .

pm(τ̄ ′m,σ̄′m)

pm(σ̄m,τ̄m).........
..........
...........
...............

....................

..
..........
...

.................................

?
6

1...
...

..
...

...

�

..
..........
...

6

Figure 9: Illustrating the proof of Thm. 4.13

In particular, we show how the clauses originating from one particular clause
can be ordered. Consider a node n labelled C = p(τ̄0, σ̄m+1) ← p1(σ̄1, τ̄1), . . . ,
pm(σ̄m, τ̄m). To simplify the notation, we assume that n is not the root and
that all children of n are complete. Otherwise, the reasoning applies a fortiori.

For each i ∈ {1, . . . ,m}, let the ith child of n be labelled pi(τ̄ ′i , σ̄
′
i) ← . . .,

and assume that n is the kth child of its parent, whose node label has p(σ̄, τ̄)
as kth body atom.

The equations in Eq(TS) that might share parameters with C are

p(σ̄, τ̄) = p(τ̄0, σ̄m+1), p1(σ̄1, τ̄1) = p1(τ̄ ′1, σ̄
′
1), . . . , pm(σ̄m, τ̄m) = pm(τ̄ ′m, σ̄′m).

We decompose, orient and order these equations as follows:

σ̄ = τ̄0 → σ̄1 = τ̄ ′1 → σ̄′1 = τ̄1 → . . .→ σ̄m = τ̄ ′m → σ̄′m = τ̄m → σ̄m+1 = τ̄ (∗)

This is illustrated in Fig. 9. Since TS is a tree, it is clearly possible to decompose,
orient and order all equations in Eq(TS) in such a way that for each clause, (∗)
holds. We interpret → as a partial order on equations in the obvious way. Let
Eq′ be the obtained equation system, which is clearly equivalent to Eq(TS).

We show that Eq′ fulfils the conditions of Prop. 4.11 (where types are re-
garded as terms in the obvious way). By Def. 4.12 (1) and the renaming of
parameters for each node, Eq′ fulfils condition 1. By Def. 4.12 (2), if τ̄i and
σ̄j (using the notations as above) share a parameter, then i < j, and thus

= τ̄i → σ̄j = . Hence Eq′ fulfils condition 2. By Def. 4.12 (3), Eq′ fulfils
condition 3.

Thus Eq(TS) has a solution, so TS is proper, and so P has strong type
unifiability wrt. Q. Since strong type unifiability implies weak type unifiability,
by Thm. 4.2, P has subject reduction wrt. the set of semi-generic queries. �

The following example shows that our condition extends the class of pro-
grams that have subject reduction.

Example 4.14 Suppose K and F define lists as usual (see Ex. 3.3). Let P =
{pU,V, qU,V} and assume that for p, q, the first argument is head-generic and the
second argument is body-generic. Consider the following program.

p(X,[Y]) <- %p(U,list(V)) <-
q([X],Z), q([Z],Y). % q(list(U),W), q(list(W),V).

q(X,[X]). %q(U,list(U)).

This program is semi-generic. E.g. in the first type clause the types in generic
positions are U, W, V; all generic arguments have the declared type (condition 3);

20

q(U′, list(U′)) q(U′′, list(U′′))
�� @@

p(U, list(V))← q(list(U), W), q(list(W), V)

Figure 10: A type skeleton for a semi-generic program

they do not share a parameter (condition 1); no generic argument in the body
shares a parameter with a non-generic position to the left of it (condition 2). A
type skeleton is shown in Fig. 10.

As another example, suppose now that K and F define list and integers, and
consider the predicate r/2 specified as r(1, []), r(2, [[]]), r(3, [[[]]]) Its obvious
definition would be

r(1,[]).
r(J,[X]) <- r(J-1,X).

One can see that this program must violate the head condition no matter
what the declared type of r is. However, assuming declared type (int, list(U))
and letting the second argument be body-generic, the program is semi-generic.

One can argue that in the second example, there is an intermingling of the
typing and the computation, which contradicts the spirit of prescriptive typing.
This intermingling means that the type of the second argument depends on the
value of the first. However, r is in perfect analogy to gs1 in Ex. 4.9. Here at
least the specification of fgs cannot be accused of such intermingling.

In fact, Ex. 4.9 seems to be a promising candidate for an example which
shows the interest in the class of semi-generically typed programs. But un-
fortunately, the first two programs, which violate the head condition, are not
semi-generic. We explain this for the first program. The second position of
gs1 must be body-generic because of the second clause for gs1. This implies
that the second position of fs1 must also be body-generic because of the second
clause for fs1 (otherwise there would be two generic positions with a common
parameter). That however is unacceptable for the first clause of fs1 (X has type
t(t(U)), instance of t(U)).

The fact that in the above program, the head condition is violated no matter
what the declared type is raises the question of type inference already mentioned
in Sec. 4.3 [Tiu90]. In analogy to functional programming languages such as
ML, one could envisage that the types of the predicate symbols could be inferred
automatically, rather than declared by the user [LR91] (nota bene: the predicate
symbols, not the function symbols!). We do not address this question here, but
note that while it may seem that having user-declared types naturally goes
together with types being prescriptive, this is not necessarily so. In functional
programming languages, it is common that types are inferred automatically and
yet prescriptive.

21

Program Class Decidability

Typed programs
∪ (Ex. 3.3)

Subject reduction undecidable
∪ (Ex. 4.4)

Weak type unifiability ?
∪ (Ex. 4.5)

Strong type unifiability undecidable
∪ (Ex. 4.9)

Semi-generic decidable
∪ (Ex. 4.14)

Head condition decidable

Table 3: Hierarchy of classes of programs with subject reduction

5 Discussion

5.1 Summary of the results

We introduced fives classes of typed logic programs with subject reduction,
where each class is properly included in the subsequent classes: programs which
satisfy the head condition, semi-generic programs, programs with strong type
unifiability, with weak type unifiability, programs with subject reduction. This
is summarised in Table 3, where we refer to examples showing that each inclusion
is proper.

We established (un)decidability results for all the classes except weak type
unifiability. We conjecture this class is also undecidable. A proof should proba-
bly be based on a careful analysis of the relation between term and corresponding
type unification. In spite of being undecidable and only a sufficient condition
for subject reduction, we believe that strong type unifiability is the right ba-
sis for searching for decidable conditions for subject reduction. It expresses a
condition for subject reduction that is independent of failure and success of the
computation, which is the view one usually takes in prescriptive typing.

5.2 What is the Use of the Head Condition?

The above results shed new light on the head condition. They allow us to view
it as just one particularly simple condition guaranteeing strong type unifiability
and consequently subject reduction and “well-typing” of the result, and hence
a certain correctness of the program. This raises the question whether by gen-
eralising the condition, we have significantly enlarged the class of “well-typed”
programs.

However, the head condition is also sometimes viewed as a condition inherent
in the type system, or more specifically, an essential characteristic of generic
polymorphism, as opposed to ad-hoc polymorphism. Generic polymorphism
means that predicates are defined on an infinite number of types and that the
definition is independent of a particular instance of the parameters. Ad-hoc
polymorphism, often called overloading [Mil78], means, e.g., to use the same

22

symbol + for integer addition, matrix addition and list concatenation. Ad-hoc
polymorphism is in fact forbidden by the head condition.

One way of reconciling ad-hoc polymorphism with the head condition is to
enrich the type system so that types can be passed as parameters, and the defini-
tion of a predicate depends on these parameters [LR96]. Under such conditions,
the head condition is regarded as natural.

So as a second, more general question, we discuss the legitimacy of the head
condition briefly, since the answer justifies the interest in our first question.

In favour of the head condition, one could argue (1) that a program typed
in this way does not compute types, but only propagates them; (2) that it
allows for separate compilation since an imported predicate can be compiled
without consulting its definition; and (3) that it disallows certain “unclean”
programs [O’K90].

In reality, these points are not, strictly speaking, fundamental arguments
in favour of the head condition. Our generalisation does not necessarily imply
a confusion between computation and typing (even if the result type does not
depend on the result of a computation, it may be an instance of the declared
type). Moreover, if the type declarations of the predicates are accompanied
by declarations of the head- and body-generic arguments, separate compilation
remains possible. Finally, Hanus [Han92] does not consider the head condi-
tion to be particularly natural, arguing that it is an important feature of logic
programming that it allows for lemma generation.

We thus believe that the first question is, after all, relevant, but so far, we
have not been able to identify a “useful”, non-contrived, example which clearly
shows the interest in the class of semi-generic programs.

5.3 Conclusion

In this article we redefined the notion of subject reduction by using derivation
trees, leading to a proof-theoretic view of typing in logic programming. We
showed that this new notion is equivalent to the operational one (Thm. 3.2).
We also showed that subject reduction is undecidable (Thm. 3.6).

We have argued that the key to subject reduction lies in ensuring that types
of unified terms are unifiable. Formally, unifiability of types was based on type
skeletons, obtained from skeletons by replacing terms by their types. We have
defined weak type unifiability, meaning that any type skeleton corresponding to
a proper skeleton is proper, and strong type unifiability, meaning that any type
skeleton, regardless of whether it corresponds to a proper skeleton, is proper.
We have shown that strong type unifiability is undecidable, too.

Our approach has several potential applications:

• It facilitates studying the semantics of typed programs by simplifying its
formulation in comparison to other works (e.g. [LR91]). Lifting the no-
tions of derivation tree and skeleton on the level of types can help formu-
late proof-theoretic and operational semantics, just as this has been done
for untyped logic programming with the classical trees [BGLM94, DM93,
FLMP89].

• The approach may enhance program analysis based on abstract interpre-
tation. Proper type skeletons could also be modelled by fixpoint opera-
tors [CLMV99, CC77, GDL95]. Abstract interpretation for prescriptively

23

typed programs has been studied by [RB01, SHK00], and it has been
pointed out that the head condition is essential for ensuring that the ab-
stract semantics of a program is finite, which is crucial for the termination
of an analysis. It would be interesting to investigate the impact of more
general conditions.

• This “proof-theoretic” approach to typing could also be applied for syn-
thesis of typed programs. In [TDD97], the authors propose the automatic
generation of lemmas, using synthesis techniques based on resolution. It is
interesting to observe that the generated lemmas meet the head condition,
which our approach seems to be able to justify and even generalise.

• The approach may help in combining prescriptive and descriptive ap-
proaches to typing. The latter are usually based on partial correctness
properties. Descriptive type systems satisfy certain type-correctness cri-
teria [DM98], but subject reduction is difficult to consider in such sys-
tems. Our approach is a step towards potential combinations of different
approaches.

We have presented a condition for strong type unifiability which refines the
head condition (Thm. 4.13). Several observations arise from this:

• Def. 4.12 is decidable. If the partitioning of the arguments is given, it
can be verified in polynomial time. Otherwise, finding a partitioning is
exponential in the number of argument positions.

• The refinement has a cost: subject reduction does not hold for arbitrary
(typed) queries. The head condition, by its name, only restricts the clause
heads, whereas our generalisation also restricts the queries, and hence the
ways in which a program can be used.

• As we have seen, the proposed refinement may not be sufficient. Several
approaches can be used to introduce further refinements based on abstract
interpretation or on properties of sets of equations. Since any sufficient
condition for strong type unifiability contains at least an NSTO condition,
one could also benefit from the refinements proposed for the NSTO check
[DM93]. Such further refined conditions should, in particular, be fulfilled
by all solutions of Ex. 4.9.

We have also studied operational subject reduction for type systems with
subtyping [SFD00]. As future work, we want to integrate that work with the
proof-theoretic view of subject reduction of this article. Also, we want to de-
sign more refined tests for strong type unifiability, and we want to study the
relationship between the head condition and polymorphic recursion.

Acknowledgements

We thank François Fages and Erik Poll for interesting discussions, Michael
Hanus for the idea of Ex. 4.5, and the anonymous referees for their valuable
comments. The second author was supported by an ERCIM fellowship.

24

References

[AE93] K. R. Apt and S. Etalle. On the unification free Prolog programs. In
A. Borzyszkowski and S. Sokolowski, editors, Proceedings of the Conference
on Mathematical Foundations of Computer Science, volume 711 of LNCS,
pages 1–19. Springer-Verlag, 1993.

[Bei95] C. Beierle. Type inferencing for polymorphic order-sorted logic programs.
In L. Sterling, editor, Proceedings of the Twelfth International Conference
on Logic Programming, pages 765–779. MIT Press, 1995.

[BGLM94] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics
approach: theory and applications. Journal of Logic Programming,
19/20:149–197, 1994.

[Bou92] J.-L. Bouquard. Etude des rapports entre Grammaires Attribuées et Pro-
grammation en Logique: application au test d’occurrence et à l’analyse
statique. PhD thesis, University of Orléans, 1992. in French.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proceedings of the 4th Symposium on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

[CLMV99] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis.
Journal of Logic Programming, 39(1–3):43–93, 1999.

[DLP+96] P. Devienne, P. Lebègue, A. Parrain, J.-C. Routier, and J. Würtz. Small-
est Horn clause programs. Journal of Logic Programming, 27(3):227–267,
1996.

[DM93] P. Deransart and J. Ma luszyński. A Grammatical View of Logic Program-
ming. MIT Press, 1993.

[DM98] P. Deransart and J. Ma luszyński. Towards soft typing for CLP. In
F. Fages, editor, JICSLP’98 Post-Conference Workshop on Types for Con-
straint Logic Programming. École Normale Supérieure, 1998. Available at
http://discipl.inria.fr/TCLP98/.

[DS01] P. Deransart and J.-G. Smaus. Well-typed logic programs are not wrong.
In H. Kuchen and K. Ueda, editors, Proceedings of the 5th International
Symposium on Functional and Logic Programming, volume 2024 of LNCS,
pages 280–295. Springer-Verlag, 2001.

[FLMP89] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative model-
ing of the operational behavior of logic languages. Theoretical Computer
Science, 69(3):289–318, 1989.

[GDL95] R. Giacobazzi, S. K. Debray, and G. Levi. Generalized semantics and
abstract interpretation for constraint logic programs. Journal of Logic
Programming, 25(3):191–247, 1995.

[Han92] M. Hanus. Logic Programming with Type Specifications, chapter 3, pages
91–140. 1992. In [Pfe92].

[Hil93] P. M. Hill. The completion of typed logic programs and SLDNF-resolution.
In A. Voronkov, editor, Proceedings of the Fourth International Conference
on Logic Programming and Automated Reasoning, volume 698 of LNCS,
pages 182–193. Springer-Verlag, 1993.

[HL89] P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In H. Abramson
and M. H. Rogers, editors, Proceedings of the 1988 International Workshop
on Meta-Programming in Logic, pages 23–51. MIT Press, 1989.

25

[HL94] P. M. Hill and J. W. Lloyd. The Gödel Programming Language. MIT
Press, 1994.

[HT92] P. M. Hill and R. W. Topor. A Semantics for Typed Logic Programs,
chapter 1, pages 1–61. 1992. In [Pfe92].

[Kah96] S. Kahrs. Limits of ML-definability. In H. Kuchen and S. D. Swierstra,
editors, Proceedings of the 8th Symposium on Programming Language Im-
plementations and Logic Programming, volume 1140 of LNCS, pages 17–31.
Springer-Verlag, 1996.

[KTU93] A. J. Kfoury, J. Tiuryn, and P. Urzyczyn. Type reconstruction in the
presence of polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):290–311, 1993. Title wrongly given in table
of contents: Type recursion in the presence of polymorphic recursion.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

[LP81] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computa-
tion. Prentice-Hall, 1981.

[LR91] T. K. Lakshman and U. S. Reddy. Typed Prolog: A semantic reconstruc-
tion of the Mycroft-O’Keefe type system. In V. Saraswat and K. Ueda,
editors, Proceedings of the 1991 International Symposium on Logic Pro-
gramming, pages 202–217. MIT Press, 1991.

[LR96] P. Louvet and O. Ridoux. Parametric polymorphism for Typed Prolog
and λProlog. In H. Kuchen and S. D. Swierstra, editors, Proceedings of
the 8th Symposium on Programming Language Implementations and Logic
Programming, volume 1140 of LNCS, pages 47–61. Springer-Verlag, 1996.

[Mil78] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17(3):348–375, 1978.

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4:258–282, 1982.

[MO84] A. Mycroft and R. O’Keefe. A polymorphic type system for Prolog. Arti-
ficial Intelligence, 23:295–307, 1984.

[NP92] G. Nadathur and F. Pfenning. Types in Higher-Order Logic Programming,
chapter 9, pages 245–283. 1992. In [Pfe92].

[O’K90] R. A. O’Keefe. The Craft of Prolog. MIT Press, 1990.

[Pfe92] F. Pfenning, editor. Types in Logic Programming. MIT Press, 1992.

[RB01] O. Ridoux and P. Boizumault. Typed static analysis: Application to the
groundness analysis of typed prolog. Journal of Functional and Logic Pro-
gramming, 2001(4), 2001.

[SFD00] J.-G. Smaus, F. Fages, and P. Deransart. Using modes to ensure subject
reduction for typed logic programs with subtyping. In S. Kapoor and
S. Prasad, editors, Proceedings of the 20th Conference on the Foundations
of Software Technology and Theoretical Computer Science, volume 1974 of
LNCS, pages 214–226. Springer-Verlag, 2000.

[SHC96] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of
Mercury, an efficient purely declarative logic programming language. Jour-
nal of Logic Programming, 29(1–3):17–64, 1996.

[SHK00] J.-G. Smaus, P. M. Hill, and A. M. King. Mode analysis domains for typed
logic programs. In A. Bossi, editor, Proceedings of the 9th International
Workshop on Logic-based Program Synthesis and Transformation, volume
1817 of LNCS, pages 83–102, 2000. Long version appeared as Report
2000.06, University of Leeds.

26

[TDD97] P. Tarau, K. De Bosschere, and B. Demoen. On Delphi lemmas and other
memoing techniques for deterministic logic programs. Journal of Logic
Programming, 30(2):145–163, 1997.

[Tho91] S. Thompson. Type Theory and Functional Programming. Addison-Wesley,
1991.

[Tho95] S. Thompson. Miranda: The Craft of Functional Programming. Addison-
Wesley, 1995.

[Tiu90] J. Tiuryn. Type inference problems: A survey. In B. Rovan, editor, Math-
ematical Foundations of Computer Science, volume 452 of LNCS, pages
105–120. Springer-Verlag, 1990.

27

