
Complete Selection Functions for a Lazy
Conditional Narrowing Calculus

Aart Middeldorp

Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan

ami@is.tsukuba.ac.jp

Taro Suzuki

Department of Computer Software
University of Aizu, Aizu-Wakamatsu 965-8580, Japan

taro@u-aizu.ac.jp

Mohamed Hamada

Department of Computer Software
University of Aizu, Aizu-Wakamatsu 965-8580, Japan

hamada@u-aizu.ac.jp

Abstract

In this paper we extend the lazy narrowing calculus lnc of Middel-
dorp, Okui, and Ida [26] to conditional rewrite systems. The resulting
lazy conditional narrowing calculus lcnc is highly non-deterministic.
We investigate for which classes of conditional rewrite systems the
completeness of lcnc is ensured. In order to improve the efficiency of
the calculus, we pay special attention to the removal of non-determinism
due to the selection of equations in goals by fixing a selection strategy.

1

1 Introduction

Narrowing (Fay [7], Hullot [19]) was originally invented as a general method
for solving unification problems in equational theories that are presented
by confluent term rewriting systems (TRSs for short). More recently, nar-
rowing was proposed as the computational mechanism of several functional-
logic programming languages (Hanus [16]) and several new completeness re-
sults concerning the completeness of various narrowing strategies and cal-
culi have been obtained in the past few years. Here completeness means
that for every solution to a given goal a solution that is at least as gen-
eral is computed by the narrowing strategy. Since narrowing is a compli-
cated operation, numerous calculi consisting of a small number of more el-
ementary inference rules that simulate narrowing have been proposed (e.g.
[8, 18, 23, 30, 17, 26, 10, 29, 22, 11]).

Completeness issues for the lazy narrowing calculus lnc—which is based
on the calculus trans of Hölldobler [18]—have been extensively studied in
[26] and [25]. In [26] Middeldorp et al. prove that lnc is strongly com-
plete whenever basic narrowing (Hullot [19]) is complete. Strong complete-
ness means that the choice of the equation in goals can be made don’t care
non-deterministic, resulting in a huge reduction of the search space as well
as easing implementations. For the completeness of basic narrowing sev-
eral sufficient conditions are known, including termination. It is also shown
in [26] that lnc is complete for arbitrary confluent TRSs and normalized
solutions with respect to the selection function Sleft that selects the leftmost
equation in every goal. (For this general class of TRSs, lnc is not strongly
complete [26, Counterexample 10].) Based on the latter result Middeldorp
and Okui [25] present restrictions on the participating TRSs and solutions
which guarantee that all non-determinism due to the choice of inference rules
of lnc is removed. The resulting deterministic calculus lncd satisfies the op-
timality property that different derivations compute incomparable solutions
for a class of TRSs that properly includes the class of TRSs for which a sim-
ilar result was obtained by Antoy et al. in the setting of needed narrowing
[1].

In this paper we extend lnc to deal with conditional TRSs (CTRSs for
short). We present three main completeness results:

• lcnc with Sleft is complete with respect to normalizable solutions
for the class of confluent but not necessarily terminating conditional

2

rewrite systems without so-called extra variables in the conditional
parts of the rewrite rules.

• lcnc is strongly complete whenever basic conditional narrowing is com-
plete. The latter is known for decreasing and confluent CTRSs with-
out extra variables in the rewrite rules (Middeldorp and Hamoen [24]),
for level-complete CTRSs with extra variables in the conditions only
(Giovannetti and Moiso [9], Middeldorp and Hamoen [24]), and for
terminating and shallow-confluent normal CTRSs with extra variables
(Werner [33]).

• lcnc is complete for the class of terminating and level-confluent con-
ditional rewrite systems without any restrictions on the distribution of
variables in the rewrite rules. Unlike the previous two results, the proof
of this last result does not provide any complete selection strategy. As a
matter of fact, the selection strategy used in the proof is not effective in
that it refers to the rewrite sequence that shows that the solution that
we want to approximate with lcnc is actually a solution. It is an open
question whether this result can be strengthened to completeness with
respect to a fixed selection function or even to strong completeness.

The first two results generalize two of the three main results of [26] to the con-
ditional case. The third result has no counterpart in the unconditional case.
We stress that without a complete selection function, in implementations we
need to backtrack over the choice of equations in goals in order to guarantee
that all solutions are enumerated. This complicates implementations and,
worse, leads to a dramatic increase in the search space, even more so since
in conditional narrowing (whether presented as a single inference rule or in
the form of a calculus like lcnc) the conditions of the applied rewrite rule
are added to the current goal after every narrowing step.

The remainder of the paper is organized as follows. In the next section
we recall some definitions pertaining to conditional rewriting and we present
the calculus lcnc. Sections 3, 4, and 5 are devoted to the proofs of our three
completeness results. We make some concluding remarks and list several open
problems in Section 6. The Appendix contains the proofs of two technical
lemmata in Section 4.

The results presented in this paper previously appeared in [14, 15, 12, 31].

3

2 Preliminaries

We assume familiarity with the basics of (conditional) term rewriting and
narrowing. Surveys can be found in [2, 4, 21, 24]. We just recall some basic
definitions in order to fix our notation and terminology.

A conditional term rewriting system (CTRS) over a signature F is a set
R of (conditional) rewrite rules of the form l→ r ⇐ c where the conditional
part c is a (possibly empty) sequence s1 ≈ t1, . . . , sn ≈ tn of equations. All
terms l, r, s1, . . . , sn, t1, . . . , tn must belong to T (F ,V) and we require that l is
not a variable. Here V denotes a countably infinite set of variables. Following
[24], CTRSs are classified according to the distribution of variables in rewrite
rules. A 1-CTRS contains no extra variables (i.e., Var(r, c) ⊆ Var(l) for all
rewrite rules l → r ⇐ c), a 2-CTRS may contain extra variables in the
conditions only (Var(r) ⊆ Var(l) for all rewrite rules l → r ⇐ c), and
a 3-CTRS may also have extra variables in the right-hand sides provided
these occur in the corresponding conditions (Var(r) ⊆ Var(l, c) for all rewrite
rules l → r ⇐ c). Extra variables enable a more natural style of writing
specifications of programs. For instance, using extra variables we can easily
write the following specification of the efficient computation of Fibonacci
numbers:

0 + y → y
s(x) + y → s(x+ y)

fib(0) → 〈0, s(0)〉
fib(s(x)) → 〈z, y + z〉 ⇐ fib(x) ≈ 〈y, z〉

However, the presence of extra variables comes with a price. For instance,
completeness results for narrowing that hold for arbitrary confluent TRSs
and 1-CTRSs typically do not carry over to 2-CTRSs and 3-CTRSs without
requiring some kind of termination assumption.

We assume that every CTRS contains the rewrite rule x ≈ x → true.
Here ≈ and true are function symbols that do not occur in the other rewrite
rules. These symbols may only occur at the root position of terms. Let R be
a CTRS. We inductively define unconditional TRSs Rn for n > 0 as follows:

R0 = {x ≈ x→ true },
Rn+1 = { lθ → rθ | l→ r ⇐ c ∈ R and cθ →∗Rn >}.

Here > stands for any sequence of trues. We define s →R t if and only if
there exists an n > 0 such that s →Rn t. We abbreviate →Rn to →n and

4

→R to → if the CTRS R can be inferred from the context. Our CTRS are
known as join CTRSs in the term rewriting literature.

A CTRS R is level-confluent (Giovannetti and Moiso [9]) if every Rn is
confluent, i.e., ∗n← · →∗n ⊆ →∗n · ∗n← for all n > 0, and shallow-confluent
if ∗

m← · →∗n ⊆ →∗n · ∗m← for all m,n > 0. Shallow-confluent CTRSs are
level-confluent but the reverse is not true. A CTRS R is level-terminating if
every Rn is terminating. Level-termination is a weaker ([24]) property than
termination. A level-complete CTRS R is both level-confluent and level-
terminating. A CTRS R over a signature F is decreasing (Dershowitz et
al. [6]) if there exists a well-founded order � on T (F ,V) with the following
three properties: � contains →R, � has the subterm property (i.e., � ⊆ �
where s � t if and only if t is proper subterm of s), and lθ � sθ, tθ for
every rewrite rule l → r ⇐ c of R, every equation s ≈ t in c, and every
substitution θ. Note that according to this definition 2-CTRSs and 3-CTRSs
are never decreasing. Decreasing CTRSs are terminating and, when there
are finitely many rewrite rules, have a decidable rewrite relation. Sufficient
syntactic conditions for level-confluence of 3-CTRSs are presented in Suzuki
et al. [32].

An equation is a term of the form s ≈ t. The constant true is also
viewed as an equation. A goal is a sequence of equations. A substitution θ is
a (R-)solution of a goal G if sθ ↔∗R tθ for every equation s ≈ t in G. This is
equivalent to validity of the equations in Gθ in all models of the underlying
conditional equational system of R (Kaplan [20]) and for confluent R to
Gθ →∗R >. We abbreviate the latter to R ` Gθ. A normalized solution
satisfies the additional property that variables are mapped to normal forms
with respect to R.

For a substitution θ and a set of variables W , we denote (W \ D(θ)) ∪
I(θ�W) by VarW (θ). Here D(θ) = {x ∈ V | θ(x) 6= x} denotes the domain
of θ, which is always assumed to be finite, and I(θ�W) =

⋃
x∈D(θ)∩W Var(xθ)

the set of variables introduced by the restriction of θ to W .
The lazy conditional narrowing calculus lcnc consists of the following

five inference rules:

[o] outermost narrowing

G′, f(s1, . . . , sn) ' t, G′′

G′, s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, c, G′′

if there exists a fresh variant f(l1, . . . , ln)→ r ⇐ c of a rewrite rule in

5

R,

[i] imitation
G′, f(s1, . . . , sn) ' x,G′′

(G′, s1 ≈ x1, . . . , sn ≈ xn, G′′)θ

if θ = {x 7→ f(x1, . . . , xn)} with x1, . . . , xn fresh variables,

[d] decomposition

G′, f(s1, . . . , sn) ≈ f(t1, . . . , tn), G′′

G′, s1 ≈ t1, . . . , sn ≈ tn, G′′
,

[v] variable elimination
G′, s ' x,G′′

(G′, G′′)θ

if x /∈ Var(s) and θ = {x 7→ s},

[t] removal of trivial equations

G′, x ≈ x,G′′

G′, G′′
.

In the rules [o], [i], and [v], s ' t stands for s ≈ t or t ≈ s. (Since the inference
rules never produce the equation true, we assume that lcnc deals only with
goals that do not contain true.) Note that the outermost narrowing rule
is applicable as soon as the root symbol of one side s of an equation equals
the root symbol of the left-hand side l of a rewrite rule. The parameter-
passing equations s1 ≈ l1, . . . , sn ≈ ln code the problem of unifying s and
l. Further note that unlike higher-order narrowing calculi (e.g. [29, 22]) we
do not permit outermost narrowing at variable positions. This makes the
task of proving completeness (much) more challenging but results in a much
smaller search space.

The only difference between lcnc and the calculus lnc of [26] is in the
outermost narrowing rule: In lcnc we add the conditional part of the applied
rewrite rule to the new goal.

6

If G and G′ are the upper and lower goal in the inference rule [α] (α ∈
{o, i, d, v, t}), we write G⇒[α] G

′. This is called an lcnc-step. The applied
rewrite rule or substitution may be supplied as subscript, that is, we write
things like G⇒[o], l→r⇐c G

′ and G⇒[i], θ G
′. A finite lcnc-derivation G1 ⇒θ1

· · · ⇒θn−1 Gn may be abbreviated to G1 ⇒∗θ Gn where θ is the composition
θ1 · · · θn−1 of the substitutions θ1, . . . , θn−1 computed along its steps. An
lcnc-refutation is an lcnc-derivation ending in the empty goal �.

Example 2.1 Consider the CTRS R for computing Fibonacci numbers from
the introduction. The goal fib(x) ≈ 〈x, x〉 admits the solution {x 7→ s(0)}
because of the following rewrite sequence:

fib(s(0)) → 〈s(0), 0 + s(0)〉 → 〈s(0), s(0)〉

In the first step the rewrite rule fib(s(x)) → 〈z, y + z〉 ⇐ fib(x) ≈ 〈y, z〉 is
applied with substitution {x 7→ 0, y 7→ 0, z 7→ s(0)}; the instantiated condition
is satisfied because of the rewrite rule fib(0)→ 〈0, s(0)〉. The following lcnc-
derivation ends in the unsolvable goal s(0) ≈ 0:

fib(x) ≈ 〈x, x〉
⇓[o], fib(0)→ 〈0, s(0)〉

x ≈ 0, 〈0, s(0)〉 ≈ 〈x, x〉
⇓[v], {x 7→ 0}

〈0, s(0)〉 ≈ 〈0, 0〉
⇓[d]

0 ≈ 0, s(0) ≈ 0

⇓[d]
s(0) ≈ 0

The underlined equations are selected in each step. Note that none of the
inference rules of lcnc are applicable to s(0) ≈ 0. In the first step of the
above derivation the rewrite rule fib(0) → 〈0, s(0)〉 is chosen. If we choose
the rule fib(s(x))→ 〈z, y+ z〉 ⇐ fib(x) ≈ 〈y, z〉 instead, lcnc is able to solve
the goal fib(x) ≈ 〈x, x〉:

fib(x) ≈ 〈x, x〉
⇓[o], fib(s(x1))→ 〈z1, y1 + z1〉 ⇐ fib(x1) ≈ 〈y1, z1〉

7

x ≈ s(x1), 〈z1, y1 + z1〉 ≈ 〈x, x〉, fib(x1) ≈ 〈y1, z1〉
⇓[d]

x ≈ s(x1), z1 ≈ x, y1 + z1 ≈ x, fib(x1) ≈ 〈y1, z1〉
⇓[v], {z1 7→ x}

x ≈ s(x1), y1 + x ≈ x, fib(x1) ≈ 〈y1, x〉
⇓[o], fib(0)→ 〈0, s(0)〉

x ≈ s(x1), y1 + x ≈ x, x1 ≈ 0, 〈0, s(0)〉 ≈ 〈y1, x〉
⇓[v], {x1 7→ 0}

x ≈ s(0), y1 + x ≈ x, 〈0, s(0)〉 ≈ 〈y1, x〉
⇓[d]

x ≈ s(0), y1 + x ≈ x, 0 ≈ y1, s(0) ≈ x

⇓[v], {y1 7→ 0}
x ≈ s(0), 0 + x ≈ x, s(0) ≈ x

⇓[v], {x 7→ s(0)}
0 + s(0) ≈ s(0), s(0) ≈ s(0)

⇓[d]
0 + s(0) ≈ s(0), 0 ≈ 0

⇓[d]
0 + s(0) ≈ s(0)

⇓[o], 0 + y2 → y2

0 ≈ 0, s(0) ≈ y2, y2 ≈ s(0)

⇓[v], {y2 7→ s(0)}
0 ≈ 0, s(0) ≈ s(0)

⇓[d]
s(0) ≈ s(0)

⇓[d]
0 ≈ 0

⇓[d]
�

8

The solution computed by this refutation is obtained by composing the substi-
tutions {z1 7→ x}, {x1 7→ 0}, {y1 7→ 0}, {x 7→ s(0)}, {y2 7→ s(0)} employed
in the ⇒[v]-steps, and restricting the resulting substitution to the variable x
in the initial goal, which yields {x 7→ s(0)}.

The following lemma states the soundness of lcnc. The routine induction
proof is omitted.

Lemma 2.2 Let R be a CTRS and G a goal. If G⇒∗θ � then θ�Var(G) is an
R-solution of G. 2

3 Leftmost Selection

This section contains our first main result, the completeness of lcnc for
arbitrary confluent 1-CTRSs with respect to normalized solutions and the
leftmost selection function Sleft. So we assume throughout this section that
the sequence G′ of equations to the left of the selected equation in the infer-
ence rules of lcnc is empty.

In Middeldorp et al. [26] the same result is proved for unconditional TRSs
by means of a complicated inductive transformation process that operates on
narrowing sequences. In the proof presented in this section we use conditional
rewrite sequences instead. The advantage of rewriting is that rewrite steps
applied to different parts of a goal or equation can be swapped at will, which
greatly facilitates a proof of completeness with respect to a particular selec-
tion strategy. In the proof below we use the variant of conditional rewriting
in which the list of instantiated conditions of the applied rewrite rule is ex-
plicitly added to the goal after every rewrite step. Formally, we use the
relation � defined as follows: G� G′ if G = G1, e, G2, e→ e′ by applying
the conditional rewrite rule l→ r ⇐ c with substitution θ (so e′ = e[rσ]p for
some position p in e and R ` cσ), and G′ = G1, e

′, cσ,G2. It is well-known
([3, 24]) that R ` G if and only if G�∗ >. We assume without loss of gen-
erality that in a rewrite proof G�∗ > always the leftmost equation different
from true is selected.

Below we define a couple of basic transformations on rewrite proofs Π: Gθ
�∗ >. In order to make the completeness proof work, we need to keep track
of a number of variables along the transformation process. Since these vari-
ables cannot be inferred from the current rewrite proof Π, together with G
and θ, we need to enrich rewrite proofs. This is the reason why we consider

9

quadruples, called states, of the form 〈G, θ,Π, X〉 where G is a goal, θ a solu-
tion of G, Π: Gθ�∗ > a rewrite proof of Gθ, and X a finite set of variables
associated to Π. Variables in X are said to be of interest and variables in
G but not in X are called intermediate. In order to avoid confusion, we
occasionally write X-intermediate or even Π-intermediate (when comparing
different states with the same X).

We require that the properties defined below are satisfied.

Definition 3.1 A state Π = 〈G, θ,Π, X〉 is called normal if θ�X is normal-
ized. We say that Π satisfies the variable condition if for every equation
s ≈ t in G = G1, s ≈ t, G2 the following three conditions hold:

VC1 all intermediate variables in s occur in G1 or all intermediate variables
in t occur in G1,

VC2 if sθ is rewritten in Π then all intermediate variables in s occur in G1,

VC3 if tθ is rewritten in Π then all intermediate variables in t occur in G1.

A normal state with the variable condition is called admissible.

Example 3.2 Consider the confluent 1-CTRS consisting of the rewrite rules

f(x, y) → g(y) ⇐ x ≈ a
a → b

g(b) → b

and the goal G = f(x, y) ≈ g(y), g(g(y)) ≈ a. We determine θ, Π, and
X such that Π = 〈G, θ,Π, X〉 is admissible. First of all, since the variable
y occurs in both sides of the leftmost equation f(x, y) ≈ g(y), it must be a
variable of interest for otherwise VC1 is violated. So y ∈ X and hence, to
satisfy normality, θ(y) should be a normal form. The only normal form that
satisfies the second equation of G is b, with associated rewrite proof

g(g(b)) ≈ a � g(b) ≈ a � b ≈ a � b ≈ b � true.

Since g(g(y)) ≈ a does not contain intermediate variables, it satisfies VC1,
VC2, and VC3. Likewise, since g(y) lacks intermediate variables, f(x, y) ≈
g(y) satisfies VC3. The only way to solve this equation is by applying the
first rewrite rule to its (instantiated) left-hand side. Hence, to satisfy VC2,

10

x cannot be an intermediate variable. Consequently, x ∈ X and thus to
conclude that Π is admissible it only remains to show that we can substitute
a normal form for x such that the equation f(x, b) ≈ g(b) is solvable. It
is easy to see that we should again take the normal form b, with associated
rewrite proof

f(b, b) ≈ g(b) � g(b) ≈ g(b), b ≈ a � true, b ≈ a

� true, b ≈ b � >.

An example of a goal without admissible states is f(x) ≈ x with respect to the
TRS consisting of the rule a → f(a). Note that f(x) ≈ x has no normalized
solutions.

Lemma 3.3 Let Π = 〈G, θ,Π, X〉 be an admissible state with G = s ≈ t,H.

1. If sθ is rewritten in Π then s is not a variable and does not include
intermediate variables.

2. If tθ is rewritten in Π then t is not a variable and does not include
intermediate variables.

Proof We prove the first statement. Suppose the left-hand side of sθ ≈ tθ
is rewritten in Π. By VC2 all intermediate variables in s should occur in
the equations to the left of s ≈ t in G. Since s ≈ t is the leftmost equation,
there cannot be intermediate variables in s. Hence, if s is a variable then
it must be a variable of interest and thus sθ is a normal form because Π is
normal. This however contradicts the assumption that sθ is rewritten in Π.
The second statement is proved in exactly the same way (with VC3 instead
of VC2). 2

In the following transformation lemmata Π denotes an admissible state
〈G, θ,Π, X〉 such that G = s ≈ t,H and, in Lemmata 3.4, 3.5, and 3.7, W
denotes a finite set of variables such that Var(G) ⊆ W . Recall our earlier
assumption that Π respects Sleft. In particular, in the first step of Π the
equation s ≈ t is selected.

Lemma 3.4 Let s = f(s1, . . . , sn) and suppose that a reduct of sθ ≈ tθ in
Π is rewritten at position 1. If l→ r ⇐ c is the employed rewrite rule in the
first such step then there exists an admissible state φ[o](Π) = 〈G′, θ′,Π′, X〉
with G′ = s ≈ l, r ≈ t, c,H such that θ′ = θ [W].

11

Proof The given rewrite proof Π is of the form

Gθ �∗ lτ ≈ t′, C,Hθ � rτ ≈ t′, cτ, C,Hθ �∗ >.

Here C are the instantiated conditions of the rewrite rules applied in the
rewrite sequence from sθ ≈ tθ to lτ ≈ t′. Without loss of generality we
assume that Var(l → r ⇐ c) ∩ (X ∪W) = ∅ and D(τ) = Var(l → r ⇐ c).
Hence the substitution θ′ = θ ∪ τ is well-defined. Since D(τ) ∩ W = ∅,
θ′ = θ [W]. We have G′θ′ = sθ ≈ lτ, rτ ≈ tθ, cτ,Hθ. The first part of Π can
be transformed into

G′θ′ �∗ lτ ≈ lτ, C1, rτ ≈ tθ, cτ,Hθ �∗ lτ ≈ lτ, C1, rτ ≈ t′, C2, cτ,Hθ
� true, C1, rτ ≈ t′, C2, cτ,Hθ.

Here C1, C2 and C consist of the same equations in possibly different order.
Hence by rearranging the steps in the remaining part of Π we obtain

true, C1, rτ ≈ t′, C2, cτ,Hθ �∗ >.

Concatenating these two derivations yields the rewrite proof Π′. It re-
mains to show that the state φ[o](Π) = 〈G′, θ′,Π′, X〉 is admissible. Since
θ′�X = θ�X ∪ τ�X = θ�X , φ[o](Π) inherits normality from Π. For the variable
condition we need some more effort. Below we make tacit use of the obser-
vation that a variable x ∈ Var(s ≈ t,H) is Π-intermediate in G if and only
if x is φ[o](Π)-intermediate in G′. First consider the equation s ≈ l. Since
sθ′ is rewritten in Π′, we obtain from Lemma 3.3(1) that s does not contain
intermediate variables. Hence VC1 and VC2 are trivially satisfied. By con-
struction, the right-hand side of sθ′ ≈ lθ′ is never rewritten in Π′. Hence
VC3 holds vacuously. Next consider the equations in r ≈ t, c. Because we
deal with CTRSs without extra variables, all variables in r and c occur in l
and hence the three variable conditions are true for the equations in c and
r ≈ t satisfies VC1 and VC2. Suppose the right-hand side of rθ′ ≈ tθ′ is
rewritten in Π′. By construction of Π′, this is only possible if the right-hand
side of sθ ≈ tθ is rewritten in Π. According to Lemma 3.3(2) t does not con-
tain intermediate variables and thus the equation r ≈ t in G′ satisfies VC3.
Finally, consider an equation s′ ≈ t′ in H = H1, s

′ ≈ t′, H2. Let V1 be the
set of intermediate variables in s′ and V2 the set of intermediate variables in
t′. Since Π is admissible, V1 ⊆ Var(s ≈ t,H1) or V2 ⊆ Var(s ≈ t,H1). Hence
also V1 ⊆ Var(s ≈ l, r ≈ t,H1) or V2 ⊆ Var(s ≈ l, r ≈ t,H1). This proves
VC1. The proof of VC2 is just as easy: If s′θ′ is rewritten in Π′ then s′θ

12

is rewritten in Π and thus all intermediate variables in s′ occur in s ≈ t,H1

and therefore also in s ≈ l, r ≈ t,H1. Finally, VC3 is proved in exactly the
same way. 2

Note that the above proof breaks down if we admit extra variables in the
conditional rewrite rules. Further note that the proof remains valid if we
would put the equation r ≈ t after the conditions c in G′.

Lemma 3.5 Let s = f(s1, . . . , sn) and t ∈ V. If root(tθ) = f then there
exists an admissible state φ[i](Π) = 〈G′, θ′,Π, X ′〉 with G′ = Gσ1 such that
σ1θ

′ = θ [W]. Here σ1 = {t 7→ f(x1, . . . , xn)} with x1, . . . , xn /∈ W .

Proof Write tθ = f(t1, . . . , tn) and define θ′ = θ ∪ {xi 7→ ti | 1 6 i 6 n}.
One easily verifies that σ1θ

′ = θ [W]. We have G′θ′ = Gσ1θ
′ = Gθ and thus

Π is a rewrite proof of G′θ′. We define X ′ = ∪x∈XVar(xσ1). Equivalently,

X ′ =

{
(X \ {t}) ∪ {x1, . . . , xn} if t ∈ X,

X otherwise.

It remains to show that φ[i](Π) is admissible. First we show that θ′�X′ is
normalized. We consider two cases. If t ∈ X then θ′�X′ = θ�X\{t} ∪ {xi 7→
ti | 1 6 i 6 n}. The substitution θ�X\{t} is normalized because θ�X is
normalized. Furthermore, since every ti is a subterm of tθ and tθ is a normal
form because Π is normal and t ∈ X, {xi 7→ ti | 1 6 i 6 n} is normalized as
well. If t /∈ X then θ′�X′ = θ�X is normalized by assumption. Next we show
that every equation in G′ satisfies the variable condition. Again we consider
two cases.

1. Suppose that t ∈ X. Then x1, . . . , xn belong to X ′ and thus the right-
hand side tσ1 = f(x1, . . . , xn) of the leftmost equation sσ1 ≈ tσ1 in G′

does not contain X ′-intermediate variables. Hence sσ1 ≈ tσ1 satisfies
VC1 and VC3. Suppose sσ1θ

′ is rewritten in Π. Then, as Π is admis-
sible, s does not contain X-intermediate variables. We have to show
that sσ1 does not contain X ′-intermediate variables. Since the vari-
ables x1, . . . , xn are of interest, it follows that every X ′-intermediate
variable in sσ1 is X-intermediate in s. Therefore sσ1 ≈ tσ1 satisfies
VC3.

Next consider an equation s′σ1 ≈ t′σ1 in Hσ1 = (H1, s
′ ≈ t′, H2)σ1.

Let V1 be the set of X ′-intermediate variables in s′σ1 and V2 the set of

13

X ′-intermediate variables in t′σ1. Since the variables x1, . . . , xn are not
X ′-intermediate and t is not X-intermediate, V1 (V2) coincides with
the set of X-intermediate variables in s′ (t′). Since Π is admissible,
V1 ⊆ Var(s ≈ t,H1) or V2 ⊆ Var(s ≈ t,H1). Because t /∈ V1 ∪ V2,
V1 ⊆ Var((s ≈ t,H1)σ1) or V2 ⊆ Var((s ≈ t,H1)σ1). This concludes
the proof of VC1. Next we prove VC2. If s′σ1θ

′ = s′θ is rewritten in
Π then V1 ⊆ Var(s ≈ t,H1) and as t /∈ V1 also V1 ⊆ Var((s ≈ t,H1)σ1).
The proof of VC3 is just as easy.

2. Suppose that t /∈ X. Then t is Π-intermediate and x1, . . . , xn are
φ[i](Π)-intermediate. First consider the equation sσ1 ≈ tσ1. Since t is
intermediate, s cannot contain intermediate variables. In particular, t
does not occur in s and therefore sσ1 = s. So sσ1 ≈ tσ1 satisfies VC1
and VC2. Since t is a variable, tσ1θ

′ = tθ cannot be rewritten in Π as
a consequence of Lemma 3.3(2) and hence VC3 is satisfied too.

Next consider an equation s′σ1 ≈ t′σ1 in Hσ1 = (H1, s
′ ≈ t′, H2)σ1. Let

V ′1 (V ′2) be the set of φ[i](Π)-intermediate variables in s′σ1 (t′σ1) and let
V1 (V2) be the set of Π-intermediate variables in s′ (t′). We have

V ′1 =

{
(V1 \ {t}) ∪ {x1, . . . , xn} if t ∈ Var(s′),

V1 otherwise,

and

V ′2 =

{
(V2 \ {t}) ∪ {x1, . . . , xn} if t ∈ Var(t′),

V2 otherwise.

Because Π is admissible, V1 ⊆ Var(s ≈ t,H1) or V2 ⊆ Var(s ≈ t,H1).
We consider the former. To conclude VC1 it is sufficient to show that
V ′1 ⊆ Var((s ≈ t,H1)σ1). We distinguish two cases. If t ∈ Var(s′) then
t ∈ V1 and thus x1, . . . , xn ∈ Var((s ≈ t,H1)σ1). Since we also have the
inclusion V1 \ {t} ⊆ Var((s ≈ t,H1)σ1), V ′1 ⊆ Var((s ≈ t,H1)σ1) holds.
If t /∈ Var(s′) then t /∈ V1 and thus V ′1 = V1 ⊆ Var((s ≈ t,H1)σ1).
This proves VC1. For VC2 we reason as follows. Suppose s′σ1θ

′ = s′θ
is rewritten in Π. This implies that V1 ⊆ Var(s ≈ t,H1) and hence
V ′1 ⊆ Var((s ≈ t,H1)σ1) by using similar arguments as before. The
proof of VC3 is again very similar.

2

14

Lemma 3.6 Let s = f(s1, . . . , sn), t = f(t1, . . . , tn), and suppose that no
reduct of sθ ≈ tθ in Π is rewritten at position 1 or 2. There exists an
admissible state φ[d](Π) = 〈G′, θ,Π′, X〉 with G′ = s1 ≈ t1, . . . , sn ≈ tn, H.

Proof The given rewrite proof Π is of the form

Gθ �∗ f(u1, . . . , un) ≈ f(u1, . . . , un), C,Hθ � true, C,Hθ �∗ >.

Here C are the instantiated conditions of the rewrite rules applied in the
rewrite sequence from sθ ≈ tθ to f(u1, . . . , un) ≈ f(u1, . . . , un). The first
part of Π can be transformed into

G′θ′ �∗ u1 ≈ u1, C1, . . . , un ≈ un, Cn, Hθ
�∗ true, C1, . . . , true, Cn, Hθ.

Here C1, . . . , Cn and C consist of the same equations in possibly different
order. Hence by rearranging the steps in the latter part of Π we obtain

true, C1, . . . , true, Cn, Hθ �∗ >.

Concatenating these two derivations yields the rewrite proof Π′ of G′θ. It
remains to show that the state φ[d](Π) = 〈G′, θ,Π′, X〉 is admissible. Since
Π has the same θ and X, normality is obvious. Because Π satisfies condition
VC1, s or t does not contain intermediate variables. Hence there are no
intermediate variables in s1, . . . , sn or in t1, . . . , tn. Consequently, the equa-
tions s1 ≈ t1, . . . , sn ≈ tn in G′ satisfy VC1. The conditions VC2 and VC3
are also easily verified. For instance, suppose that tiθ is rewritten in Π′.
Then, by construction of Π′, tθ is rewritten in Π. According to Lemma 3.3, t
does not contain intermediate variables and since ti is a subterm of t, ti also
lacks intermediate variables. By using similar arguments one easily verifies
that the equations in H satisfy the three conditions. 2

Lemma 3.7 Let t ∈ V, s 6= t, and suppose that in the first step of Π sθ ≈ tθ
is rewritten at the root position. There exists an admissible state φ[v](Π) =
〈G′, θ,Π′, X ′〉 with G′ = Hσ1 such that σ1θ = θ [W]. Here σ1 = {t 7→ s}.

Proof Since sθ ≈ tθ is rewritten to true by the rule x ≈ x → true, we
must have sθ = tθ. Hence tσ1θ = sθ = tθ. For variables y different from t we
have yσ1θ = yθ. Hence σ1θ = θ [W]. Since Var(H) ⊆ W , G′θ = Hσ1θ = Hθ

15

and thus from the tail of the rewrite proof Π: Gθ� true, Hθ�∗ > we can
extract a rewrite proof Π′ of G′θ. We define X ′ = ∪x∈XVar(xσ1). Clearly

X ′ =

{
(X \ {t}) ∪ Var(s) if t ∈ X,

X otherwise.

It remains to show that φ[v](Π) is admissible. First we show that θ�X′ is
normalized. We consider two cases. If t ∈ X then θ�X′ = θ�X\{t}∪Var(s). The
substitution θ�X\{t} is normalized because θ�X is normalized. If x ∈ Var(s)
then xθ is a subterm of sθ = tθ. Since tθ is a normal form by the normality of
Π, so is xθ. Hence θ�Var(s) is normalized as well. If t /∈ X then θ�X′ = θ�X is
normalized by assumption. Next we show that every equation in G′ satisfies
the variable condition. Let s′σ1 ≈ t′σ1 be an equation in Hσ1 = (H1, s

′ ≈
t′, H2)σ1. Let V ′1 (V ′2) be the set of X ′-intermediate variables in s′σ1 (t′σ1)
and let V1 (V2) be the set of intermediate variables in s′ (t′). We consider
two cases.

1. Suppose that t ∈ X. Then Var(s) ⊆ X ′. So the variables in Var(s)
are not X ′-intermediate and t is not X-intermediate. It follows that
V ′1 = V1 and V ′2 = V2. Since Π is admissible, V1 ⊆ Var(H1) or V2 ⊆
Var(H1). Because t /∈ V1 ∪ V2, V ′1 ⊆ Var(H1σ1) or V ′2 ⊆ Var(H1σ1).
This concludes the proof of VC1. The proofs of VC2 and VC3 also
easily follow from the identities V ′1 = V1 and V ′2 = V2 and the fact that
t /∈ V1 ∪ V2.

2. Suppose that t /∈ X. Then t is Π-intermediate and all variables in
Var(s) are φ[v](Π)-intermediate. We have

V ′1 =

{
(V1 \ {t}) ∪ Var(s) if t ∈ Var(s′),

V1 otherwise,

and

V ′2 =

{
(V2 \ {t}) ∪ Var(s) if t ∈ Var(t′),

V2 otherwise.

Because Π is admissible, V1 ⊆ Var(H1) or V2 ⊆ Var(H1). We consider
the latter. To conclude VC1 it is therefore sufficient to show that
V ′2 ⊆ Var(H1σ1). We distinguish two cases. If t ∈ Var(t′) then t ∈ V2

and thus Var(s) ⊆ Var(H1σ1). Since the inclusion V2\{t} ⊆ Var(H1σ1)

16

also holds, V ′2 ⊆ Var(H1σ1) as desired. If t /∈ Var(t′) then t /∈ V2 and
thus V ′2 = V2 ⊆ Var(H1σ1). This completes the proof of VC1. The
proofs of VC2 and VC3 are based on similar arguments and omitted.

2

Lemma 3.8 Let t ∈ V, s = t, and suppose that in the first step of Π sθ ≈ tθ
is rewritten at the root position. There exists an admissible state φ[t](Π) =
〈G′, θ,Π′, X〉 with G′ = H.

Proof The given rewrite proof Π has the form Gθ� true, Hθ�∗ >. From
the tail of Π we extract a rewrite proof Π′ of G′θ = Hθ. It is easy to show
that φ[t](Π) is admissible. 2

Lemma 3.9 There exists an admissible state φswap(Π) = 〈G′, θ,Π′, X〉 with
G′ = t ≈ s,H.

Proof The given rewrite proof Π: (s ≈ t,H)θ �∗ > is transformed into
a rewrite proof Π′ of (t ≈ s,H)θ by simply swapping the two sides of ev-
ery reduct of sθ ≈ tθ. This clearly does not affect normality and since the
variable condition is symmetric with respect the two sides of an equation it
follows that φswap(Π) is admissible. 2

We want to stress that swapping different equations (as opposed to the
two sides of a single equation as in the preceding lemma) does not preserve
the variable condition. This makes a lot of sense, since if it would preserve
the variable condition then we could prove strong completeness of lcnc but
from [26] we already know that the lnc is not strongly complete (for the
class of confluent TRSs with respect to normalized solutions).

In the proof of the main theorem below, we use induction on admissible
states with respect to the well-founded order defined below. This order is
essentially the same as the one used in the completeness proofs of [26].

Definition 3.10 The complexity |Π| of a state Π = 〈G, θ,Π, X〉 is defined
as the triple consisting of (1) the number of rewrite steps in Π at non-root
positions, (2) the multiset |MVar(G)θ|, and (3) the number of occurrences
of symbols different from ≈ and true in G. Here MVar(G) denotes the

17

multiset of variable occurrences in G, and for any multiset M = {t1, . . . , tn}
of terms, Mθ and |M | denote the multisets {t1θ, . . . , tnθ} and {|t1|, . . . , |tn|},
respectively. The well-founded order � on states is defined as follows: Π1 �
Π2 if |Π1| lex(>,>mul, >) |Π2|. Here > denotes the standard order on natural
numbers and >mul denotes the multiset extension of >, i.e., M >mul N for
finite multisets M , N if and only if there exist multisets X and Y such that
∅ 6= X ⊆ M , N = (M − X)] Y , and for every y ∈ Y there exists an
x ∈ X with x � y; with − and] denoting multiset difference and sum.
Furthermore, lex(>,>mul, >) denotes the lexicographic product of >, >mul,
and >.

From [5] we know that >mul inherits well-foundedness from >. Conse-
quently, the lexicographic product of >, >mul, and > is a well-founded order
and hence � is a well-founded order on states.

Lemma 3.11 Let Π be a state and α ∈ {o, i, d, v, t}. We have Π� φ[α](Π)
whenever the latter is defined. Moreover, |Π| = |φswap(Π)|.

Proof Basically the same as the proof of Lemma 20 in [26]. For α = o we
observe a decrease in the first component of |Π|. Here it is essential that we
work with � instead of the ordinary rewrite relation →; in this way steps
that take place in the conditional part of the applied rewrite rule are already
accounted for in |Π|. For α ∈ {i, d, v, t} the number of rewrite steps at non-
root positions remains the same. For α ∈ {i, v, t} the second component of
|Π| decreases. For α = d the second component remains the same while the
third component of |Π| decreases. 2

Theorem 3.12 Let R be a confluent CTRS without extra variables and G
a goal. For every normalized solution θ of G there exists an lcnc-refutation
G⇒∗σ � respecting Sleft such that σ 6 θ [Var(G)].

Proof Because R is confluent, Gθ admits a rewrite proof Π. Consider the
state Π = 〈G, θ,Π, X〉 with X = Var(G). By assumption θ�X is normalized.
Since all variables of G are of interest, G does not contain intermediate
variables and hence the variable condition is trivially satisfied. Therefore Π
is admissible. We use induction on the complexity of Π. In order to make the
induction work we prove σ 6 θ [W] for a finite set of variablesW that includes
Var(G). The base case is trivial since G must be the empty goal (and thus we

18

can take σ = ε, the empty substitution). For the induction step we proceed as
follows. We prove the existence of an lcnc-step Ψ1 : G⇒σ1 G

′ that respects
Sleft and an admissible state Π′ = 〈G′, θ′,Π′, X ′〉 such that σ1θ

′ = θ [W].
Let G = s ≈ t,H. We distinguish the following cases, depending on what
happens to sθ ≈ tθ in Π.

1. Suppose no reduct of sθ ≈ tθ is rewritten at position 1 or 2. We
distinguish five further cases.

(a) Suppose s, t /∈ V . We may write s = f(s1, . . . , sn) and t =
f(t1, . . . , tn). From Lemma 3.6 we obtain an admissible state
φ[d](Π) = 〈G′, θ′,Π′, X ′〉 with G′ = s1 ≈ t1, . . . , sn ≈ tn, H,
θ′ = θ, and X ′ = X. We have Ψ1 : G ⇒[d] G

′. Take σ1 = ε
and Π′ = φ[d](Π).

(b) Suppose t ∈ V and s = t. According to Lemma 3.3 no sθ and
tθ are not rewritten and hence in the first step of Π sθ ≈ tθ
is rewritten at the root position. Hence Lemma 3.8 is applicable,
yielding an admissible state φ[t](Π) = 〈G′, θ′,Π′, X ′〉 with G′ = H,
θ′ = θ, and X ′ = X. We have Ψ1 : G ⇒[t] G

′. Take σ1 = ε and
Π′ = φ[t](Π).

(c) Suppose t ∈ V , s 6= t, and a reduct of s ≈ t is rewritten at
a non-root position. From Lemma 3.3 we infer that s is not a
variable and moreover that tθ is not rewritten in Π. Hence we may
write s = f(s1, . . . , sn) and we have root(tθ) = f . Consequently,
Lemma 3.5 is applicable, yielding an admissible state φ[i](Π) =
〈G′′, θ′′,Π′′, X ′′〉 with G′′ = Gσ1, Π′′ = Π, and σ1θ

′′ = θ [W]
for the substitution σ = {t 7→ f(x1, . . . , xn)}. We have G′′ =
(f(s1, . . . , sn) ≈ f(x1, . . . , xn), H)σ1. By assumption no reduct
of sσθ′′ ≈ tσθ′′ is rewritten at position 1 or 2. Hence we can
apply Lemma 3.6. This yields an admissible state φ[d](φ[i](Π)) =
〈G′, θ′,Π′, X ′〉 with G′ = (s1 ≈ x1, . . . , sn ≈ xn, H)σ1, θ′ = θ′′, and
X ′ = X ′′. We have Ψ1 : G ⇒[i], σ1 G

′ and σ1θ
′ = σ1θ

′′ = θ [W].
Take Π′ = φ[d](φ[i](Π)).

(d) Suppose t ∈ V , s 6= t, and the first rewrite step takes place at
the root position of s ≈ t. Lemma 3.7 yields an admissible state
φ[v](Π) = 〈G′, θ′,Π′, X ′〉 with G′ = Gσ, Π′ = Π, and σ1θ

′ = θ [W]
for the substitution σ1 = {t 7→ s}. We have Ψ1 : G ⇒[v], σ1 G

′.
Take Π′ = φ[v](Π).

19

(e) In the remaining case we have t /∈ V and s ∈ V . This case reduces
to case 1(c) or 1(d) by an appeal to Lemma 3.9.

2. Suppose a reduct of sθ ≈ tθ is rewritten at position 1. Let l =
f(l1, . . . , ln) → r ⇐ c be the employed rewrite rule the first time this
happens. From Lemma 3.4 we obtain an admissible state φ[o](Π) =
〈G′′, θ′′,Π′′, X ′′〉 with G′′ = s ≈ l, r ≈ t, c,H, X ′′ = X, and θ′′ = θ [W].
According to Lemma 3.3, s cannot be a variable. Hence we may write
s = f(s1, . . . , sn). Let G′ = s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, c,H. We have
Ψ1 : G ⇒[o] G

′′. Note that Lemma 3.6 is applicable to φ[o](Π) since
by construction no reduct of sθ′′ ≈ lθ′′ is rewritten at position 1 and
2. This results in an admissible state φ[d](φ[o](Π)) = 〈G′, θ′,Π′, X ′〉
with θ′ = θ′′ and X ′ = X. Clearly θ′ = θ [W]. Take σ1 = ε and
Π′ = φ[d](φ[o](Π)).

3. Suppose a reduct of sθ ≈ tθ is rewritten at position 2. This case reduces
to the previous one by an appeal to Lemma 3.9.

In all cases we obtain Π′ from Π by applying one or two transformation steps
φ[o], φ[i], φ[d], φ[v], φ[t] together with an additional application of φswap in case
1(e) and 3. According to Lemma 3.11 Π′ has smaller complexity than Π. Let
W ′ = VarW (σ1) ∪ Var(G′). We have Var(G′) ⊆ W ′ and thus we can apply
the induction hypothesis to Π′. This yields an lcnc-refutation Ψ′ : G′ ⇒∗σ′ �
respecting Sleft such that σ′ 6 θ′ [W ′]. Define σ = σ1σ

′. From σ1θ
′ = θ [W],

σ′ 6 θ′ [W ′], and VarW (σ1) ⊆ W ′ we infer that σ 6 θ [W]. Concatenating the
lcnc-step Ψ1 and the lcnc-refutation Ψ′ yields the desired lcnc-refutation
Ψ. 2

An immediate corollary of Theorem 3.12 is the completeness of lnc for
confluent TRSs and normalized solutions with respect to leftmost selection.
We remark that the proof in [26] of this result is considerably more compli-
cated than the proof given above.

4 Strong Completeness

In this section we prove that lcnc is strongly complete whenever basic condi-
tional narrowing is complete. We obtain this result by an inductive transfor-
mation process that operates on basic conditional narrowing sequences. To

20

this end we extend the proof of Middeldorp, Okui, and Ida [26] who obtained
this result for unconditional TRSs. The structure of the proof is exactly the
same as the one in [26, Section 4]. Below we state the relevant lemmata
and we present complete proof details of some of the lemmata. The proofs
of the other lemmata are straightforward modifications of the corresponding
ones in [26]. But first we recall a number of definitions pertaining to (basic)
conditional narrowing.

The conditional narrowing calculus cnc consists of the following inference
rule:

G′, e, G′′

(G′, e[r]p, c, G′′)θ

if there exist a fresh variant l→ r ⇐ c of a rewrite
rule in R, a non-variable position p in e, and a
most general unifier θ of e|p and l.

In the above situation we write G′, e, G′′ ;θ (G′, e[r]p, c, G
′′)θ. For a cnc-

derivation Π: G ;∗
θ G′, Πθ denotes the corresponding rewrite sequence

Gθ →∗ G′. Conditional narrowing is sound: If G ;∗
θ > then θ�Var(G) is

a solution of G.
A position constraint for a goal G is a mapping that assigns to every

equation e ∈ G a subset of PosF(e). The position constraint that assigns to
every e ∈ G the set PosF(e) is denoted by Ḡ. A cnc-derivation Π:

G1 ;θ1, e1, p1, l1→r1⇐c1 · · · ;θn−1, en−1, pn−1, ln−1→rn−1⇐cn−1 Gn

is based on a position constraint B1 for G1 if pi ∈ Bi(ei) for 1 6 i 6 n − 1.
Here the position constraints B2, . . . , Bn−1 for the goals G2, . . . , Gn−1 are
inductively defined by

Bi+1(e) =

Bi(e

′) if e′ ∈ Gi \ {ei}
B(Bi(ei), pi, ri) if e′ = ei[ri]pi
PosF(e′) if e′ ∈ ci

for all 1 6 i < n − 1 and e = e′θi ∈ Gi+1, with B(Bi(ei), pi, ri) abbreviating
the set of positions

(Bi(ei) \ {q ∈ Bi(ei) | q > pi}) ∪ {piq ∈ PosF(e) | q ∈ PosF(ri)}.

We say that Π is basic if it is based on Ḡ. So in a basic cnc-derivation no
steps take place at subterms introduced by previous narrowing substitutions.
Basic cnc has a much smaller search space than cnc. We refer to Middeldorp
and Hamoen [24] for a survey of completeness results for cnc and basic cnc.

21

Definition 4.1 Let G ;θ, p, l→r⇐c G1 be a cnc-step and e an equation in G.
If e is the selected equation in this step, then e is narrowed into the equation
e[r]pθ in G1. In this case we say that e[r]pθ is the descendant of e in G1.
Otherwise, e is simply instantiated to the equation eθ in G1 and we call eθ
the descendant of e. The notion of descendant extends to cnc-derivations in
the obvious way.

Observe that in a cnc-refutation G ;∗ > every equation e ∈ G has
exactly one descendant true in >, but, unlike the unconditional case, not
every true in > descends from an equation in G.

Lemma 4.2 (12) Let δ be a variable renaming. For every cnc-refutation
Π: G ;+

θ > there exists a cnc-refutation ϕδ(Π): Gδ ;+
δ−1θ >. 2

The number between parentheses refers to the corresponding statement
in [26].

In the following five lemmata Π denotes a cnc-refutation G ;+
θ > with

G = G′, s ≈ t, G′′ such that s ≈ t is selected in the first step of Π and W
denotes a finite set of variables that includes all variables in the initial goal
G of Π. The first transformation lemma depends on the applied rewrite rule.
So in the proof we have to take its conditional part into account.

Lemma 4.3 (13) Suppose narrowing is applied to a descendant of s ≈ t in
Π at position 1. If l→ r ⇐ c is the applied rewrite rule in the first such step
then there exists a cnc-refutation ϕ[o](Π): G′, s ≈ l, r ≈ t, c, G′′ ;∗

θ1
> such

that θ1 = θ [W].

Proof Write l = f(l1, . . . , ln). The given refutation Π is of the form

G ;∗
τ1

G′1, f(u1, . . . , un) ≈ t′, G′′1 ;τ2, 1, l→r⇐c (G′1, r ≈ t′, c, G′′1)τ2

;∗
τ3
>

with τ1τ2τ3 = θ. Write G′′1 = C,G′′2 such that s ≈ t ;∗ f(u1, . . . , un) ≈
t′, C and G′′ ;∗ G′′2. So C consists of all descendants of the (instantiated)
equations that appear in the conditional parts of the applied rewrite rules in
the derivation from s ≈ t to f(u1, . . . , un) ≈ t′. The first part of Π can be
transformed into

G′, s ≈ l, r ≈ t, c, G′′ ;∗
τ1

G′1, f(u1, . . . , un) ≈ l, C1, r ≈ t′, C2, c, G
′′
2

22

where C1, C2 = C. The last part of Π can be rearranged into

(G′1, C1, r ≈ t′, C2, c, G
′′
2)τ2 ;∗

τ3
>.

Let x be a fresh variable (so x /∈ W) and define the substitution υ2 as the
(disjoint) union of τ2 and {x 7→ lτ2}. Because υ2 is a most general unifier of
f(u1, . . . , un) ≈ l and x ≈ x, the cnc-derivation Π can be transformed into
the refutation ϕ[o](Π):

G′, s ≈ l, r ≈ t, c, G′′ ;∗
τ1

G′1, f(u1, . . . , un) ≈ l, C1, r ≈ t′, C2, c, G
′′
2

;υ2 (G′1, true, C1, r ≈ t′, C2, c, G
′′
2)υ2

= (G′1, true, C1, r ≈ t′, C2, c, G
′′
2)τ2

;∗
τ3
>.

Let θ1 = τ1υ2τ3. We have θ1 = θ∪{x 7→ lτ2τ3} and because x /∈ W we obtain
θ1 = θ [W]. 2

For the tedious proof of the next lemma we refer to the appendix.

Lemma 4.4 (14) Let s = f(s1, . . . , sn) and t ∈ V. If root(tθ) = f then there
exists a cnc-refutation ϕ[i](Π): Gσ1 ;∗

θ1
> such that Π subsumes ϕ[i](Π),

Πθ = ϕ[i](Π)θ1, and σ1θ1 = θ [W]. Here σ1 = {t 7→ f(x1, . . . , xn)} with
x1, . . . , xn /∈ W . 2

Lemma 4.5 (15) Let s = f(s1, . . . , sn), t = f(t1, . . . , tn), and suppose that
narrowing is never applied to a descendant of s ≈ t in Π at position 1 or
2. There exists a cnc-refutation ϕ[d](Π): G′, s1 ≈ t1, . . . , sn ≈ tn, G

′′ ;∗
θ1
>

such that θ1 6 θ [W].

Proof The given refutation Π must be of the form

G ;∗
τ1

G′1, s
′ ≈ t′, G′′1 ;τ2, ε (G′1, true, G

′′
1)τ2 ;∗

τ3
>

with s′ = f(s′1, . . . , s
′
n), t′ = f(t′1, . . . , t

′
n), and τ1τ2τ3 = θ. Write G′′1 = C,G′′2

such that s ≈ t ;∗ true, C (and thus G′′ ;∗ G′′2). The first part of Π can
be transformed into Π1:

G′, s1 ≈ t1, . . . , sn ≈ tn, G
′′ ;∗

τ1
G′1, s

′
1 ≈ t′1, C1, . . . , s

′
n ≈ t′n, Cn, G

′′
2.

Here C1, . . . , Cn and C consists of the same equations in possibly different
order. Consider the step from G′1, s

′ ≈ t′, G′′1 to (G′1, true, G
′′
1)τ2. Let x ≈

23

x → true be the employed rewrite rule, so τ2 is a most general unifier of
x ≈ x and s′ ≈ t′. There clearly exists a rewrite sequence

(G′1, s
′
1 ≈ t′1, C1, . . . , s

′
n ≈ t′n, Cn, G

′′
2)τ2

→∗ε (G′1, true, C1, . . . , true, Cn, G
′′
2)τ2.

Since all steps in this rewrite sequence take place at root positions using the
unconditional rewrite rule x ≈ x→ true, lifting can be applied, resulting in
a cnc-derivation Π2:

G′1, s
′
1 ≈ t′1, C1, . . . , s

′
n ≈ t′n, Cn, G

′′
2

;∗
υ2, ε

(G′1, true, C1, . . . , true, Cn, G
′′
2)υ2

such that υ2 6 τ2 [W ∪ I(τ1)]. We distinguish two cases.

1. Suppose G′1, G
′′
1 = �. In this case τ3 = ε. We simply define ϕ[d](Π) =

Π1; Π2. Note that (G′1, true, C1, . . . , true, Cn, G
′′
2)υ2 = >. Let θ1 =

τ1υ2. From υ2 6 τ2 [W ∪ I(τ1)] we infer that θ1 6 τ1τ2 = θ [W].

2. The case G′1, G
′′
1 6= � is more involved. First observe that υ2 is a unifier

of s′ and t′. Using the fact that τ2 is a most general unifier of s′ ≈ t′

and x ≈ x, it is not difficult to show that τ2 6 υ2 [V \ {x}]. Since
x /∈ W ∪ I(τ1) we have in particular τ2 6 υ2 [W ∪ I(τ1)]. It follows
that there exists a variable renaming δ such that υ2 = τ2δ [W ∪ I(τ1)].
Clearly Var(G′1, G

′′
1) ⊆ W∪I(τ1). The last part of Π can be transformed

(by changing the number of occurrences of true as well as the order of
the equations in each goal) into

Π3 : (G′1, true, C1, . . . , true, Cn, G
′′
2)τ2 ;+

τ3
>.

An application of Lemma 4.2 results in the cnc-refutation

ϕδ(Π3) : (G′1, true, C1, . . . , true, Cn, G
′′
2)υ2 ;+

δ−1τ3
>.

Define ϕ[d](Π) = Π1; Π2;ϕδ(Π3). Let θ1 = τ1υ2δ
−1τ3. We have θ1 =

τ1τ2τ3 = θ [W].

2

The proofs of the two remaining transformation lemmata are exactly the
same as the unconditional ones.

24

Lemma 4.6 (16) Let t ∈ V, t /∈ Var(s), and suppose that the first step of
Π takes place at the root position. There exists a cnc-refutation ϕ[v](Π):
(G′, G′′)σ1 ;∗

θ1
> with σ1 = {t 7→ s} such that σ1θ1 6 θ [W]. 2

Lemma 4.7 (17) Let t ∈ V, s = t, and suppose that the first step of Π takes
place at the root position. There exists a cnc-refutation ϕ[t](Π): G′, G′′ ;∗

θ1

> such that θ1 6 θ [W]. 2

Definition 4.8 The complexity |Π| of a cnc-refutation Π: G ;∗
θ > and the

well-founded order � on cnc-refutations are defined as in Definition 3.10.
The only difference is that in part (1) of the complexity measure we count
the number of narrowing steps at non-root positions in Π.

Lemma 4.9 (20) Let Π be a cnc-refutation and α ∈ {o, i, d, v, t}. We have
Π� ϕ[α](Π) whenever ϕ[α](Π) is defined. 2

Lemma 4.10 (21) For every cnc-refutation Π: G′, s ≈ t, G′′ ;∗
θ > there

exists a cnc-refutation ϕswap(Π): G′, t ≈ s,G′′ ;∗
θ > with the same com-

plexity. 2

Lemma 4.11 (24) Let Π be a basic cnc-refutation and α ∈ {o, i, d, v, t}.
The cnc-refutation ϕ[α](Π) is basic whenever it is defined. 2

Lemma 4.12 is the key lemma. It can be diagrammatically depicted as
follows:

∀ basic Π : G ;+
θ >

∃ Ψ1 : ⇓σ1

∃ basic Π1 : G1 ;∗
θ1
>

such that

{
σ1θ1 6 θ [W]

Π� Π1

Although the proof is very similar to that of Lemma 25 in [26], we present
the complete proof in order to show how the previous lemmata are used.

Lemma 4.12 (25) For every basic cnc-refutation Π: G ;+
θ > there exist

an lcnc-step Ψ1 : G⇒σ1 G1 and a basic cnc-refutation Π1 : G1 ;∗
θ1
> such

that σ1θ1 6 θ [W], Π � Π1, and the equation selected in the first step of Π
is selected in Ψ1.

Proof We distinguish the following cases, depending on what happens to
the selected equation e = s ≈ t in the first step of Π. Let G = G′, e, G′′.

25

1. Suppose narrowing is never applied to a descendant of s ≈ t at position
1 or 2. We distinguish four further cases.

(a) Suppose s, t /∈ V . We may write s = f(s1, . . . , sn) and t =
f(t1, . . . , tn). Let G1 = G′, s1 ≈ t1, . . . , sn ≈ tn, G

′′. We have
Ψ1 : G⇒[d] G1. Lemma 4.5 yields a cnc-refutation ϕ[d](Π): G1 ;∗

θ1

> such that θ1 6 θ [W]. Take σ1 = ε.

(b) Suppose t ∈ V and s = t. In this case the first step of Π1 must take
place at the root of e. Let G1 = G′, G′′. We have Ψ1 : G⇒[t] G1.
Lemma 4.7 yields a cnc-refutation ϕ[t](Π): G1 ;∗

θ1
> such that

θ1 6 θ [W]. Take σ1 = ε.

(c) Suppose t ∈ V and s 6= t. We distinguish two further cases,
depending on what happens to e in the first step of Π.

i. Suppose narrowing is applied to e at the root position. Let
σ1 = {t 7→ s} and G1 = (G′, G′′)σ1. We have Ψ1 : G ⇒[v], σ1

G1. Lemma 4.6 yields a cnc-refutation ϕ[v](Π): G1 ;∗
θ1
>

such that σ1θ1 6 θ [W].

ii. Suppose narrowing is not applied to e at the root position.
This implies that s /∈ V . Hence we may write s = f(s1, . . . , sn).
Let σ1 = {t 7→ f(x1, . . . , xn)}, G1 = (G′, s1 ≈ x1, . . . , sn ≈
xn, G

′′)σ1, and G2 = Gσ1. Here x1, . . . , xn are fresh variables.
We have Ψ1 : G⇒[i], σ1 G1. From Lemma 4.4 we obtain a cnc-
refutation Π2 = ϕ[i](Π): G2 ;∗

θ2
> such that σ1θ2 = θ [W].

Let W ′ = W ∪ {x1, . . . , xn}. Clearly Var(G2) ⊆ W ′. An
application of Lemma 4.5 to Π2 results in a cnc-refutation
Π1 = ϕ[d](Π2) : G1 ;∗

θ1
> such that θ1 6 θ2 [W ′]. Using the

inclusion VarW (σ1) ⊆ W ′ we obtain σ1θ1 6 σ1θ2 = θ [W].

(d) In the remaining case we have t /∈ V and s ∈ V . This case reduces
to case 1(c) by an appeal to Lemma 4.10.

2. Suppose narrowing is applied to a descendant of e at position 1. Let
l = f(l1, . . . , ln) → r ⇐ c be the used rewrite rule the first time
this happens. Because Π is basic, s cannot be a variable, for other-
wise narrowing would be applied to a subterm introduced by previous
narrowing substitutions. Hence we may write s = f(s1, . . . , sn). Let
G1 = G′, s1 ≈ l1, . . . , sn ≈ ln, r ≈ t, c, G′′ and G2 = G′, s ≈ l, r ≈
t, c, G′′. We have Ψ1 : G ⇒[o] G1. From Lemma 4.3 we obtain a

26

cnc-refutation Π2 = ϕ[o](Π): G2 ;∗
θ2
> such that θ2 = θ [W]. Let

W ′ = W ∪ Var(l → r ⇐ c). Clearly Var(G2) ⊆ W ′. An application of
Lemma 4.5 to Π2 results in a cnc-refutation Π1 = ϕ[d](Π2) : G1 ;∗

θ1
>

such that θ1 6 θ2 [W ′]. Using W ⊆ W ′ we obtain θ1 6 θ [W]. Take
σ1 = ε.

3. Suppose narrowing is applied to a descendant of e at position 2. This
case reduces to the previous one by an appeal to Lemma 4.10.

In all cases we obtain Π1 from Π by applying one or two transformation
steps ϕ[o], ϕ[i], ϕ[d], ϕ[v], ϕ[t] together with an additional application of ϕswap

in case 1(d) and (3). According to Lemma 4.11 Π1 is basic. According to
Lemmata 4.9 and 4.10 Π1 has smaller complexity than Π. 2

The proof of the following switching lemma can be found in the appendix.

Lemma 4.13 (26) Let G1 be a goal containing distinct equations e1 and
e2. For every cnc-derivation G1 ;τ1, e1, p1, l1→r1⇐c1 G2 ;τ2, e2τ1, p2, l2→r2⇐c2
G3 with p2 ∈ PosF(e2) there exists a cnc-derivation G1 ;υ2, e2, p2, l2→r2⇐c2
H2 ;υ1, e1υ2, p1, l1→r1⇐c1 H3 such that G3 = H3 and τ1τ2 = υ2υ1. 2

Lemma 4.14 (27) Let S be an arbitrary selection function. For every basic
cnc-refutation Π: G ;∗

θ > there exists a basic cnc-refutation ϕS(Π): G ;∗
θ

> respecting S with the same complexity. 2

Theorem 4.15 (28) Let R be an arbitrary CTRS and Π: G ;∗
θ > a ba-

sic cnc-refutation. For every selection function S there exists an lcnc-
refutation Ψ: G⇒∗σ � respecting S such that σ 6 θ [Var(G)].

Proof We use well-founded induction on the complexity of the given basic
cnc-refutation Π. In order to make the induction work we prove σ 6 θ [W]
for a finite set of variables W that includes Var(G) instead of σ 6 θ [Var(G)].
The base case is trivial: G must be the empty goal. For the induction step
we proceed as follows. First we use Lemma 4.14 to transform Π into a basic
cnc-refutation ϕS(Π): G ;+

θ > respecting S with equal complexity. Ac-
cording to Lemma 4.12 there exist an lcnc-step Ψ1 : G ⇒σ1 G1 respecting
S and a basic cnc-refutation Π1 : G1 ;∗

θ1
> such that σ1θ1 6 θ [W] and

ϕS(Π) � Π1. Let W ′ = VarW (σ1) ∪ Var(G1). Clearly W ′ is a finite set of
variables that includes Var(G1). The induction hypothesis yields an lcnc-
refutation Ψ′ : G1 ⇒∗σ′ � respecting S such that σ′ 6 θ1 [W ′]. Now define

27

σ = σ1σ
′. From σ1θ1 6 θ [W], σ′ 6 θ1 [W ′], and VarW (σ1) ⊆ W ′, we infer

that σ 6 θ [W] and thus also σ 6 θ [Var(G)]. Concatenating the lcnc-step
Ψ1 and the lcnc-refutation Ψ′ yields the desired lcnc-refutation Ψ. 2

Since basic conditional narrowing is known to be complete for decreasing
and confluent CTRSs ([24]), level-complete 2-CTRSs ([9, 24]), and termi-
nating and shallow-confluent normal 3-CTRSs ([33, Satz 9.7]), we obtain as
corollary the strong completeness of lcnc for these three classes of CTRSs.

Let us illustrate the above proof on a small example.

Example 4.16 Consider the CTRS R consisting of the following rewrite
rules:

f(g(x)) → x ⇐ x ≈ b
a → b

This CTRS is easily seen to be decreasing (take e.g. the recursive path order
with precedence f > b and a > b) and confluent. Consider the goal G =
g(f(x)) ≈ x. The substitution θ = {x 7→ g(a)} is a solution of G because we
have the rewrite sequence

Gθ = g(f(g(a))) ≈ g(a) → g(a) ≈ g(a) → true.

Basic conditional narrowing computes the solution {x 7→ g(b)} which is dif-
ferent from θ but equal to θ modulo (the equational theory induced by) R:

g(f(x)) ≈ x ;{x 7→g(x1)} g(x1) ≈ g(x1), x1 ≈ b ; true, x1 ≈ b

;{x1 7→b} >

Starting from this basic narrowing refutation, the above proof yields the fol-
lowing lcnc-refutation; the numbers on the right refer to the various cases

28

in the proof:

g(f(x)) ≈ x

⇓[i], {x 7→ g(x1)} 1(c)ii

f(g(x1)) ≈ x1

⇓[o], f(g(x2))→ x2 ⇐ x2 ≈ b 2

g(x1) ≈ g(x2), x2 ≈ x1, x2 ≈ b

⇓[d] 1(a)

x1 ≈ x2, x2 ≈ x1, x2 ≈ b

⇓[v], {x1 7→ x2} 1(c)i

x2 ≈ x2, x2 ≈ b

⇓[t] 1(b)

x2 ≈ b

⇓[v], {x2 7→ b} 1(c)i

�

In every step of this refutation the leftmost equation is selected.

The following variant of a well-known example due to Giovannetti and
Moiso [9] shows that lcnc is not (strongly) complete for terminating and
confluent 2-CTRSs, even under the additional normality restriction.

Example 4.17 Consider the 2-CTRS consisting of the following rewrite
rules:

a → b
a → c
b → c ⇐ f(x, b) ≈ d, f(x, c) ≈ d

f(b, b) → d
f(c, c) → d

Confluence and termination of R are easily shown. The goal b ≈ c admits
the empty substitution as solution but one easily shows that lcnc cannot
solve the goal b ≈ c.

29

It is interesting to note that the previous first-order example refutes the
completeness of Prehofer’s conditional lazy narrowing calculus cln for weakly
normalizing and confluent higher-order normal CTRSs [27, Theorem 3.2].1

5 Level-Complete CTRSs

In this section we present our third and final completeness result, for the
class of level-complete conditional (3-)CTRSs. Note that this class is not
covered by the results of the preceding section because of the incompleteness
of basic conditional narrowing (see Example 5.4 below).

Definition 5.1 Let R be a CTRS and G a goal with solution θ. The level
level(e) of an equation e ∈ Gθ is the smallest n such that e →∗n true. We
say that the rewrite sequence Gθ →∗R > is level-minimal if the depths of its
rewrite steps do not exceed the level of the originating equations. Clearly,
every rewrite sequence Gθ →∗R > can be transformed into a level-minimal
one (which may be longer than the given sequence).

We use induction with respect to the well-founded order on rewrite se-
quences defined below.

Definition 5.2 Let R be a level-terminating CTRS. For every n > 0, let
Gn = {G | Rn ` G} be the set of all goals G whose level does not exceed n.
Let G be a goal and θ a substitution such that Gθ ∈ Gn. With every equation
e = s ≈ t ∈ Gθ we associate the pair |e| = (level(e), {s, t}) whose second
component is the multiset which contains both sides of e. We equip the set
of these pairs with the order An = lex(>,�nmul) where �n = (→n ∪�)+. The
multiset consisting of all |eθ| for e ∈ G is denoted by (G; θ). Let Π: G→∗ H
and Π′ : G′ →∗ H ′ be rewrite sequences such that G ∈ Gn. We write Π� Π′

if (G; ε) Anmul (G′; ε). Note that this implies that G′ ∈ Gn.

Since→n is closed under contexts, the relation �n is a well-founded order
for every level-terminating CTRS R and every n > 0. As in the previous
section, it follows that� is a well-founded order on rewrite sequences. Note
that this order depends only on the initial goals of rewrite sequences. In the
proof below we make use of the well-known equivalence of M �mul N and
M −N �mul N −M .

1Cf. also [28, Theorem 6.8.9].

30

Theorem 5.3 Let R be a terminating and level-confluent CTRS. For every
solution θ of a goal G there exists an lcnc-refutation G ⇒∗σ � such that
σ 6R θ [Var(G)].

Proof We use well-founded induction with respect the well-founded order
� on rewrite sequences. Let Π: Gθ →∗ > be any rewrite sequence from Gθ
to > and let κ be the level of Π. In order to make the induction work we
prove σ 6R θ [W] for a finite set of variables W that includes Var(G). The
base case is trivial since G must be the empty goal (and thus we can take
σ = ε). For the induction step we proceed as follows. First we transform Π
into a level-minimal rewrite sequence. (This does not affect the complexity
(G; θ).) By rearranging the order of the equations in Π, we can assume that
the level of the leftmost equation in Gθ is minimal. Write G = e,H and
e = s ≈ t. Since it does not effect level-minimality, we may swap rewrite
steps that take place in different sides of eθ at will. This will simplify the
notation in some of the cases below. For the same reason we may assume
that in Π always the leftmost equation different from true is rewritten. Let
` = level(eθ). So κ > level(e′θ) > ` for all e′ ∈ H. We will show the existence
of an lcnc-step Ψ1 : G⇒σ1 G1 and a rewrite sequence Π1 : G1θ1 →∗ > such
that σ1θ1 6R θ [W] and Π� Π1. We distinguish the following cases.

1. Suppose s, t /∈ V . We distinguish two further cases, depending on what
happens to eθ in Π.

(a) Suppose no reduct of eθ is rewritten at position 1 or 2. We may
write s = f(s1, . . . , sn) and t = f(t1, . . . , tn). For 1 6 i 6 n
let ei be the equation si ≈ ti. Let G1 = e1, . . . , en, H. We have
Ψ1 : G ⇒[d] G1. Let σ1 = ε and θ1 = θ. The rewrite sequence Π,
which must be of the form

Gθ →∗` f(u1, . . . , un) ≈ f(u1, . . . , un), Hθ → true, Hθ →∗ >,

can be transformed into Π1:

G1θ1 →∗ u1 ≈ u1, . . . , un ≈ un, Hθ →∗ >, Hθ →∗ >.

Clearly σ1θ1 = θ. It is also clear that G1θ1 ∈ Gκ. It remains
to show that Π � Π1. We have (G; θ) − (G1; θ1) = {|eθ|} and
(G1; θ1) − (G; θ) = {|e1θ|, . . . , |enθ|}. For all 1 6 i 6 n we have
sθ � siθ and tθ � tiθ and thus also sθ �κ siθ and tθ �κ tiθ.

31

Hence {sθ, tθ} �κmul {siθ, tiθ} and therefore it suffices to show
that level(eθ) > level(eiθ). We have siθ →∗` ui and tiθ →∗` ui.
Therefore R` ` eiθ and hence the level of eiθ does not exceed the
level of eθ. We conclude that Π� Π1.

(b) Suppose a reduct of eθ is rewritten at position 1 or 2. Without
loss of generality we assume that the first such reduct is rewritten
at position 1, using the fresh variant l→ r ⇐ c of a rewrite rule in
R with l = f(l1, . . . , ln). We have s = f(s1, . . . , sn). The rewrite
sequence Π is of the form

Gθ →∗` f(s′1, . . . , s
′
n) ≈ tθ,Hθ →` rτ ≈ tθ,Hθ →∗ >

with f(s′1, . . . , s
′
n) = lτ and cτ →∗`−1 >. For 1 6 i 6 n let

ei = si ≈ li and define G1 = e1, . . . , en, r ≈ t, c,H. We have
Ψ1 : G ⇒[o] G1. Let σ1 = ε and define θ1 as the disjoint union of
θ and τ . Because

G1θ1 = s1θ ≈ l1τ, . . . , snθ ≈ lnτ, rτ ≈ tθ, cτ,Hθ

we obtain the rewrite sequence Π1:

G1θ1 →∗` s′1 ≈ l1τ, . . . , s
′
n ≈ lnτ, rτ ≈ tθ, cτ,Hθ

→∗ >, rτ ≈ tθ, cτ,H →∗ >.

Since W ∩ D(τ) = ∅ we have σ1θ1 = θ [W]. In order to conclude
that Π� Π1 we have to show that (G; θ)− (G1; θ1) = {|eθ|} Aκmul

{|e1θ1|, . . . , |enθ1|, |rτ ≈ tθ|}](c; τ) = (G1; θ1)−(G; θ). For all 1 6
i 6 n we have sθ� siθ →∗` s′i = liτ and consequently {sθ, tθ} �κmul

{siθ, liτ}. Furthermore, the level of eiθ1 does not exceed `. Hence
|eθ| Aκ |e1θ1|, . . . , |enθ1|. Next consider the equation rτ ≈ tθ.
Since rτ ≈ tθ →∗` true, the level of rτ ≈ tθ is at most `. Also,
sθ →∗` lτ →` rτ and thus {sθ, tθ} �κmul {rτ, tθ}. Hence |eθ| Aκ
|rτ ≈ tθ|. Finally, from cτ →`−1 > we infer that the level of every
equation in cτ is less than `. Therefore also {|eθ|} Aκmul (c; τ).

2. Suppose s /∈ V and t ∈ V . We distinguish two further cases.

(a) Suppose no reduct of eθ is rewritten at position 1. Write s =
f(s1, . . . , sn). Let σ1 = {t 7→ f(x1, . . . , xn)} and ei = xi ≈ si

32

for 1 6 i 6 n. Here x1, . . . , xn are fresh variables. Define
G1 = (e1, . . . , en, H)σ1. We have Ψ1 : G ⇒[i], σ1 G1. The rewrite
sequence Π is of the form

Gθ →∗` f(s′1, . . . , s
′
n) ≈ f(s′1, . . . , s

′
n), Hθ → true, Hθ →∗ >.

Define θ1 as the disjoint union of θ and {x1 7→ s′1, . . . , xn 7→ s′n}.
We have

G1θ1 = s′1 ≈ s1σ1θ1, . . . , s
′
n ≈ snσ1θ1, Hσ1θ1.

Because tθ →∗` f(s′1, . . . , s
′
n) = f(x1, . . . , xn)θ1 = tσ1θ1 and xθ =

xσ1θ1 for variables x different from x1, . . . , xn, t, we have xθ →∗`
xσ1θ1 for all variables x ∈ W . Hence σ1θ1 =R θ [W], Hθ →∗`
Hσ1θ1, and siσ1θ1

∗
`← siθ →∗` s′i for all 1 6 i 6 n. Since the

level of every equation in Hθ is at least `, level-confluence yields
Hσ1θ1 →∗ > such that for every equation e′ ∈ H the level of e′σ1θ1

is less than or equal to the level of e′θ. In addition, we obtain terms
u1, . . . , un such that siσ1θ1 →∗` ui ∗`← s′i for all 1 6 i 6 n. Hence
we obtain the rewrite sequence Π1:

G1θ1 →∗` u1 ≈ u1, . . . , un ≈ un, Hσ1θ1 →∗ >.

We show that Π � Π1. We have (G; θ) = {|eθ|}] (H; θ) and
(G1; θ1) = {|e1θ1|, . . . , |enθ1|}] (Hσ1; θ1). First we show that
|eθ| Aκ |e1θ1|, . . . , |enθ1|. For all 1 6 i 6 n we have sθ � siθ →∗`
s′i and sθ � siθ →∗` siσ1θ1 and thus also sθ �` s′i and sθ �`
siσ1θ1. Since �` ⊆ �κ we obtain {sθ, tθ} �κmul {s′i, siσ1θ1}. From
siσ1θ1 →∗` ui ∗`← s′i we infer that the level of eiθ1 does not ex-
ceed ` and therefore |eθ| Aκ |e1θ1|, . . . , |enθ1|. To conclude that
Π � Π1 it now suffices to show that (H; θ) wκmul (Hσ1; θ1). Here
wκmul denotes the reflexive closure of Aκmul. Let e′ = u ≈ v ∈ H.
We already observed that level(e′θ) > level(e′σ1θ1). Furthermore,
e′θ →∗` e′σ1θ1 and thus {uθ, vθ} �κmul {uσ1θ1, vσ1θ1}. Hence
|e′θ| wκ |e′σ1θ1|, implying the desired (H; θ) wκmul (Hσ1; θ1).

(b) Suppose a reduct of eθ is rewritten at position 1. In this case we
proceed as in case 1(b).

3. Suppose s ∈ V and t /∈ V . This case is similar to case 2.

33

4. Suppose s, t ∈ V . We distinguish two further cases.

(a) Suppose s = t. Let G1 = H. We have Ψ1 : G ⇒[t] G1. Let
σ1 = ε and θ1 = θ. From Π we extract the rewrite sequence
Π1 : G1θ1 →∗ >. We clearly have σ1θ1 = θ and Π � Π1 as
(G1; θ1) ⊂ (G; θ).

(b) Suppose s 6= t. Let σ1 = {s 7→ t} and G1 = Hσ1. We have
Ψ1 : G⇒[v], σ1 G1. Let θ1 be the R`-normal form of θ, i.e., θ1(x) =
xθ↓` for all variables x ∈ V . Here xθ↓` denotes the unique normal
form of xθ with respect to the confluent and terminating TRS R`.
Since eθ →∗` true, we have sθ↓` = tθ↓`. Hence sθ →∗` tθ↓` =
sσ1θ1. Because xθ →∗` xθ↓` = xσ1θ1 for variables x different
from s, we obtain xθ →∗` xσ1θ1 for all variables x ∈ W . Therefore
σ1θ1 =R θ [W]. From Π we extract the rewrite sequenceHθ →∗ >.
Since Hθ →∗` Hσ1θ1 = G1θ1, level-confluence yields a rewrite
sequence Π1 : G1θ1 →∗ > such that for every equation e′ ∈ H
the level of e′σ1θ1 is less than or equal to the level of e′θ. Hence
we obtain (H; θ) wκmul (G1; θ1) as in case 2(a) and thus (G; θ) =
{|eθ|}] (H; θ) Aκmul (G1; θ1). We conclude that Π� Π1.

Let W ′ = VarW (σ1) ∪ Var(G1). Clearly Var(G1) ⊆ W ′. Hence we can
apply the induction hypothesis to Π1 : G1θ1 →∗ >. This yields an lcnc-
refutation Ψ′ : G1 ⇒∗σ′ � such that σ′ 6R θ1 [W ′]. Define σ = σ1σ

′. From
σ1θ1 6R θ [W], σ′ 6R θ1 [W ′], and VarW (σ1) ⊆ W ′ we infer that σ 6R θ [W].
Concatenating the lcnc-step Ψ1 and the lcnc-refutation Ψ′ yields the de-
sired lcnc-refutation Ψ. 2

Let us illustrate the above proof on a small example.

Example 5.4 Consider the CTRS R consisting of the rewrite rules

a → b ⇐ f(x) ≈ g(b)
f(b) → g(x) ⇐ f(x) ≈ g(b)
f(a) → g(b)

of Werner [33, Beispiel 9.1]. This 3-CTRS is level-confluent and terminat-
ing. Consider the goal G = f(b) ≈ g(b). The empty substitution ε is a
solution of G because we have the rewrite sequence

Π: Gε = f(b) ≈ g(b) →2 g(a) ≈ g(b) →2 g(b) ≈ g(b) →0 true.

34

In both the first and the second rewrite step the instantiated condition of the
applied rewrite rule is f(a) ≈ g(b) which rewrites to true by applying the
third rewrite rule. Below we show a possible lcnc-refutation Ψ constructed
in the above proof. (Note that in general there are several possibilities for
Ψ as the equation in Gθ of minimal level is not uniquely determined.) The
selected equations are underlined and the numbers on the right refer to the
various cases in the proof:

f(b) ≈ g(b)

⇓[o], f(b)→ g(x1)⇐ f(x1) ≈ g(b) 1(b)

b ≈ b, g(x1) ≈ g(b), f(x1) ≈ g(b)

⇓[d] 1(a)

g(x1) ≈ g(b), f(x1) ≈ g(b)

⇓[o], f(a)→ g(b) 1(b)

g(x1) ≈ g(b), x1 ≈ a, g(b) ≈ g(b)

⇓[i], {x1 7→ a} 3(a)

g(a) ≈ g(b), g(b) ≈ g(b)

⇓[d] 1(a)

g(a) ≈ g(b), b ≈ b

⇓[d] 1(a)

g(a) ≈ g(b)

⇓[d] 1(a)

a ≈ b

⇓[o], a→ b⇐ f(x2) ≈ g(b) 1(b)

b ≈ b, f(x2) ≈ g(b)

⇓[d] 1(a)

f(x2) ≈ g(b)

⇓[o], f(a)→ g(b) 1(b)

x2 ≈ a, g(b) ≈ g(b)

⇓[i], {x2 7→ a} 3(a)

35

g(b) ≈ g(b)

⇓[d] 1(a)

b ≈ b

⇓[d] 1(a)

�

It is interesting to note that basic conditional narrowing fails to solve
the goal f(b) ≈ g(b) (Werner [33]). Hence the completeness of lcnc for
the above CTRS does not follow from the strong completeness result of the
previous section. An interesting question for future research is to establish
or refute the strong completeness of lcnc for the class of terminating and
level-confluent CTRSs and, if strong completeness fails to hold, to identify
complete selection functions.

6 Conclusion

In this paper we presented a number of completeness results for the lazy con-
ditional narrowing calculus lcnc. The only result that does not rely on some
kind of termination condition is the one of Section 3, for confluent 1-CTRSs
with respect to normalized solutions and leftmost selection. However, unlike
the results of Sections 4 and 5, this result does not permit extra variables
in the conditions and right-hand sides of the rewrite rules. An important
question is to find a class of non-terminating CTRSs with extra variables for
which (strong) completeness of lcnc (as well as ordinary conditional nar-
rowing) can be established. We believe that the class proposed by Suzuki et
al. [32] is a promising candidate.

Even when completeness with respect to a specific selection function like
Sleft is known, the search space of lcnc is still very large, owing mainly to the
delayed matching of patterns in the application of the outermost narrowing
rule as well as the non-determinism due to the choice of the inference rule.
In future work we would like to investigate under what conditions we can
eliminate this non-determinism. In the unconditional case this question has
been fully answered ([25]), but it seems doubtful whether the same conditions
work for arbitrary confluent (1-)CTRSs. In [13] Ida and Hamada present an
implementation of lcncd in the symbolic computation language Mathemat-
ica. lcncd is the conditional counterpart of the deterministic calculus lncd

36

([25]) and incorporates leftmost selection. It is unknown for which classes of
CTRSs and solutions this calculus is complete. (No completeness results are
reported in [13].)

Acknowledgements

Taro Suzuki is partially supported by the Grant-in-Aid for Encouragement
of Young Scientist 11780204. Aart Middeldorp is partially supported by the
Grant-in-Aid for Scientific Research (B) 12480066 of the Japanese Ministry
of Education, Culture, Sports, Science and Technology.

References

[1] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy.
Journal of the ACM, 47(4):776–822, 2000.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] A. Bockmayr. Beiträge zur Theorie des Logisch-Funktionalen Program-
mierens. PhD thesis, Universität Karlsruhe, 1990. In German.

[4] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, volume B,
pages 243–320. North-Holland, 1990.

[5] N. Dershowitz and Z. Manna. Proving termination with multiset order-
ings. Communications of the ACM, 22:465–476, 1979.

[6] N. Dershowitz, M. Okada, and G. Sivakumar. Canonical conditional
rewrite systems. In Proceedings of the 9th International Conference on
Automated Deduction, volume 310 of LNCS, pages 538–549, 1988.

[7] M. Fay. First-order unification in equational theories. In Proceedings of
the 4th Conference on Automated Deduction, pages 161–167, 1979.

[8] J. Gallier and W. Snyder. Complete sets of transformations for general
E-unification. Theoretical Computer Science, 67:203–260, 1989.

37

[9] E. Giovannetti and C. Moiso. A completeness result for E-unification
algorithms based on conditional narrowing. In Proceedings of the Work-
shop on Foundations of Logic and Functional Programming, volume 306
of LNCS, pages 157–167, 1986.

[10] J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-
Artalejo. A higer-order rewriting logic for functional logic programming.
In Proceedings of the International Conference on Logic Programming,
pages 153–167. The MIT Press, 1997.

[11] J.C. González-Moreno, M.T. Hortalá-González, and M. Rodŕıguez-
Artalejo. Polymorphic types in functional logic programming. Journal
of Functional and Logic Programming, 2001(1), 2001.

[12] M. Hamada. Strong completeness of a narrowing calculus for condi-
tional rewrite systems with extra variables. In Proceedings of the 6th
Australasian Theory Symposium, Electronic Notes in Theoretical Com-
puter Science, volume 31. Elsevier Science Publishers, 2000.

[13] M. Hamada and T. Ida. Deterministic and non-deterministic lazy con-
ditional narrowing and their implementations. Transactions of Informa-
tion Processing Society of Japan, 39(3):656–663, 1998.

[14] M. Hamada and A. Middeldorp. Strong completeness of a lazy condi-
tional narrowing calculus. In Proceedings of the 2nd Fuji International
Workshop on Functional and Logic Programming, pages 14–32, Shonan
Village, 1997. World Scientific.

[15] M. Hamada, A. Middeldorp, and T. Suzuki. Completeness results for
a lazy conditional narrowing calculus. In Combinatorics, Computation
and Logic: Proceedings of 2nd Discrete Mathematics and Theoretical
Computer Science Conference and the 5th Australasian Theory Sympo-
sium, pages 217–231, Auckland, 1999. Springer-Verlag Singapore.

[16] M. Hanus. The integration of functions into logic programming: From
theory to practice. Journal of Logic Programming, 19 & 20:583–628,
1994.

[17] M. Hanus. Lazy unification with simplification. In Proceedings of the
5th European Symposium on Programming, volume 788 of LNCS, pages
272–286, 1994.

38

[18] S. Hölldobler. Foundations of Equational Logic Programming, volume
353 of LNAI. 1989.

[19] J.-M. Hullot. Canonical forms and unification. In Proceedings of the
5th Conference on Automated Deduction, volume 87 of LNCS, pages
318–334, 1980.

[20] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science,
33:175–193, 1984.

[21] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,
pages 1–116. Oxford University Press, 1992.

[22] M. Marin, T. Ida, and T. Suzuki. On reducing the search space of higer-
order lazy narrowing. In Proceedings of the 4th Fuji International Sym-
posium on Functional and Logic Programming, volume 1722 of LNCS,
pages 319–334, 1999.

[23] A. Martelli, C. Moiso, and G.F. Rossi. Lazy unification algorithms for
canonical rewrite systems. In H. Aı̈t-Kaci and M. Nivat, editors, Resolu-
tion of Equations in Algebraic Structures, Vol. II, Rewriting Techniques,
pages 245–274. Academic Press Press, 1989.

[24] A. Middeldorp and E. Hamoen. Completeness results for basic narrow-
ing. Applicable Algebra in Engineering, Communication and Computing,
5:213–253, 1994.

[25] A. Middeldorp and S. Okui. A deterministic lazy narrowing calculus.
Journal of Symbolic Computation, 25(6):733–757, 1998.

[26] A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strong com-
pleteness and eager variable elimination. Theoretical Computer Science,
167(1,2):95–130, 1996.

[27] C. Prehofer. A call-by-need strategy for higher-order functional-logic
programming. In Proceedings of the International Symposium on Logic
Programming, pages 147–161. MIT Press, 1995.

[28] C. Prehofer. Solving Higher-Order Equations: From Logic to Program-
ming. PhD thesis, Technische Universität München, 1995. Appeared as
Technical Report 19508.

39

[29] C. Prehofer. Solving Higher-Order Equations: From Logic to Program-
ming. Progress in Theoretical Computer Science. Birkäuser, 1998.

[30] W. Snyder. A Proof Theory for General Unification, volume 11 of
Progress in Computer Science and Applied Logic. Birkäuser, 1991.

[31] T. Suzuki and A. Middeldorp. A complete selection function for lazy con-
ditional narrowing. In Proceedings of the 5th International Symposium
on Functional and Logic Programming, volume 2024 of Lecture Notes in
Computer Science, pages 201–215, Tokyo, 2001. Springer-Verlag.

[32] T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional
rewrite systems with extra variables in right-hand sides. In Proceed-
ings of the 6th International Conference on Rewriting Techniques and
Applications, volume 914 of Lecture Notes in Computer Science, pages
179–193, Kaiserslautern, 1995. Springer-Verlag.

[33] A. Werner. Untersuchung von Strategien für das logisch-funktionale Pro-
grammieren. Shaker-Verlag Aachen, March 1998. In German.

A Appendix

In this appendix we prove Lemmata 4.4 and 4.13. Most of the work for the
former is done in the following preliminary lemma.

Lemma A.1 Let Π: G ;∗
θ > be a cnc-refutation, W a set of variables,

and γ a substitution such that Var(G) ⊆ W , γ 6 θ [W], and the variables
in D(γ)∪I(γ) are different from the variables in the employed rewrite rules.
There exists a cnc-refutation Π′ : Gγ ;∗

θ′ > such that Π subsumes Π′, Πθ =
Π′θ′, and γθ′ = θ [W].

Proof We use induction on the length n of Π. The case n = 0 is obvious.
Suppose n > 0. Let the first step of Π be

G = (G′, e, G′′) ;σ1, p1, l1→r1⇐c1, e (G′, e[r1]p1 , c1, G
′′)σ1 = G1

and let Π1 : G1 ;∗
θ1
> be the remainder of Π, so σ1θ1 = θ. Let X be the set

of variables in the rewrite rules employed in Π. Without loss of generality
we assume that Var(G) ∩ X = ∅ and X ′ ∩ (D(σ1) ∪ I(σ1)) = ∅. Here X ′

40

is defined as the set X \ Var(l1 → r1 ⇐ c1). These two assumptions simply
state that the variables in the rewrite rules are sufficiently fresh.

First we show that we can mimic the first step of Π starting from the
goal Gγ. From γ 6 θ [W] we obtain a substitution δ such that γδ = θ [W].
Without loss of generality we may assume that D(δ) ⊆ VarW (γ). Hence the
substitution δ′ defined by

δ′(x) =

{
xδ if x ∈ VarW (γ),

xθ otherwise

satisfies γδ′ = θ [W ∪ X] because (D(γ) ∪ I(γ)) ∩ X = ∅. Since Var(e) ⊆
Var(G) ⊆ W and D(γ)∩X = ∅ we have eγ|p1δ

′ = e|p1γδ
′ = e|p1θ = e|p1σ1θ1 =

l1σ1θ1 = l1θ = l1γδ
′ = l1δ

′, so eγ|p1 and l1 are unifiable. Hence we obtain the
cnc-step

Gγ ;p1, σ′1, l1→r1⇐c1, eγ (G′γ, eγ[r1]p1 , c1, G
′′γ)σ′1

where σ′1 is any idempotent most general unifier of eγ|p1 and l1.
Next we show that (G′γ, eγ[r1]p1 , c1, G

′′γ)σ′1 = G1γ1 for a substitution γ1

satisfying γ1 6 θ1 [W ′] for a set of variables W ′ that includes Var(G1). We
have e|p1γσ

′
1 = eγ|p1σ

′
1 = l1σ

′
1 = l1γσ

′
1, so γσ′1 is a unifier of e|p1 and l1. Since

σ1 is a most general unifier of e|p1 and l1 there exists a substitution γ′ such
that σ1γ

′ = γσ′1. Let W ′ = VarW∪X(σ1) and γ1 = γ′�W ′ . It is easy to show
that Var(G1) ⊆ W ′. We have σ1γ1 = γσ′1 [W ∪X] and because D(γ)∩X = ∅
we obtain (G′γ, eγ[r1]p1 , c1, G

′′γ)σ′1 = (G′γ, eγ[r1γ]p1 , c1γ,G
′′γ)σ′1 = G1γ1.

Because δ′ is a unifier of eγ|p1 and l1, there exists a substitution δ′′ such that
σ′1δ

′′ = δ′. Using σ1γ1 = γσ′1 [W ∪ X] we obtain σ1γ1δ
′′ = γσ′1δ

′′ = γδ′ =
σ1θ1 [W ∪X] and thus γ1 6 θ1 [W ′].

We still have to show that (D(γ1)∪I(γ1))∩X ′ = ∅ before we can apply
the induction hypothesis to Π1. Because σ′1 is an idempotent most general
unifier of eγ|p1 and l1, we have D(σ′1)∪ I(σ′1) = Var(eγ|p1)∪ Var(l1). Clearly
Var(eγ|p1) ⊆ Var(G) ∪ I(γ) and thus Var(eγ|p1) ∩ X = ∅ by assumption.
Also Var(l1) ⊆ X \ X ′. Hence (D(σ′1) ∪ I(σ′1)) ∩ X ′ = ∅. Together with
D(σ1) ∩ X ′ = ∅, D(γ) ∩ X = ∅, and σ1γ1 = γσ′1 [W ∪ X] this implies
γ1 = ε [X ′], i.e., D(γ1) ∩ X ′ = ∅. It remains to show that I(γ1) ∩ X ′ =
∅. First observe that from I(γσ′1) ⊆ I(γ) ∪ I(σ′1), I(γ) ∩ X = ∅, and
I(σ′1) ∩ X ′ = ∅ it follows that I(γσ′1) ∩ X ′ = ∅. Suppose to the contrary
that x ∈ I(γ1)∩X ′ for some variable x. So there exists a variable y ∈ D(γ1)
such that x ∈ Var(yγ1). We have D(γ1) ⊆ ((W ∪X) \ D(σ1)) ∪ I(σ1�W∪X).
If y ∈ (W ∪ X) \ D(σ1) then yγ1 = yσ1γ1 = yγσ′1, so x ∈ I(γσ′1). This

41

contradicts I(γσ′1) ∩X ′ = ∅. If y ∈ I(σ1�W∪X) then there exists a variable
z ∈ W ∪X with y ∈ Var(zσ1) and thus x ∈ Var(zσ1γ1) = Var(zγσ′1), again
contradicting I(γσ′1) ∩X ′ = ∅.

Now we are in a position to apply the induction hypothesis to Π1. This
yields a cnc-refutation G1γ1 ;∗

θ′1
> such that γ1θ

′
1 = θ1 [W ′]. Concate-

nating this cnc-refutation with the cnc-step Gγ ;σ′1
G1γ1 yields the cnc-

refutation Π′ : Gγ ;∗
θ′ >. Here θ′ = σ′1θ

′
1. From γ1θ

′
1 = θ1 [W ′] we infer

σ1γ1θ
′
1 = σ1θ1 = θ [W ∪ X] and thus γθ′ = γσ′1θ

′
1 = σ1γ1θ

′
1 = θ [W ∪ X].

Hence also γθ′ = θ [W]. From the construction of Π′ it follows that Π sub-
sumes Π′ and Πθ = Π′θ′. 2

Proof of Lemma 4.4. Let tθ = f(t1, . . . , tn) and define the substitution
σ′ as follows:

σ′(x) =

{
ti if x = xi for some 1 6 i 6 n,

xθ otherwise.

We clearly have σ1σ
′ = θ [W] and thus σ1 6 θ [W]. An application of

Lemma A.1 yields the desired result. 2

Proof of Lemma 4.13. Let G1 = G′, e1, G
′′, e2, G

′′′. Since we may assume
that the variables in l2 → r2 ⇐ c2 are fresh, we have D(τ1) ∩ Var(l2 → r2 ⇐
c2) = ∅. Hence r2τ1 = r2, c2τ1 = c2, and thus

G3 = ((G′, e1[r1]p1 , c1, G
′′)τ1, e2τ1[r2]p2 , c2, G

′′′τ1)τ2

= (G′, e1[r1]p1 , c1, G
′′, e2[r2]p2 , c2, G

′′′)τ1τ2.

From D(τ1) ∩ Var(l2) = ∅ we also infer that e2|p2
τ1τ2 = e2τ1|p2

τ2 = l2τ2 =
l2τ1τ2, so e2|p2

and l2 are unifiable. Let υ2 be an idempotent most general uni-
fier of these two terms. By definition of most general unifier there exists a sub-
stitution ρ such that υ2ρ = τ1τ2. We have H2 = (G′, e1, G

′′, e2[r2]p2 , c2, G
′′′)υ2

and D(υ2) ⊆ Var(e2|p2
) ∪ Var(l2) by idempotency of υ2. Because we may

assume that Var(l1 → r1 ⇐ c1) ∩ (Var(e2) ∪ Var(l2 → r2 ⇐ c2)) = ∅,
we obtain D(υ2) ∩ Var(l1 → r1 ⇐ c1) = ∅. Hence e1υ2|p1

ρ = e1|p1
υ2ρ =

e1|p1
τ1τ2 = l1τ1τ2 = l1υ2ρ = l1ρ. So the terms e1υ2|p1

and l1 are unifiable.
Let σ be a most general unifier. We have σ 6 ρ. It follows that υ2σ 6 τ1τ2.
Using D(υ2) ∩ Var(l1) = ∅ we obtain e1|p1

υ2σ = e1υ2|p1
σ = l1σ = l1υ2σ, so

υ2σ is a unifier of e1|p1
and l1. Because τ1 is a most general unifier of these

42

two terms, we must have τ1 6 υ2σ. Let γ be any substitution satisfying
τ1γ = υ2σ. With help of D(τ1)∩Var(l2) = ∅ we obtain e2τ1|p2

γ = e2|p2
τ1γ =

e2|p2
υ2σ = l2υ2σ = l2τ1γ = l2γ. Hence we obtain τ2 6 γ from the fact that

τ2 is a most general unifier of e2τ1|p2
and l2. Therefore τ1τ2 6 τ1γ = υ2σ.

Since we also have υ2σ 6 τ1τ2, there is a variable renaming δ such that
υ2σδ = τ1τ2. Now define υ1 = σδ. Since most general unifiers are closed
under variable renaming, υ1 is a most general unifier of e1υ2|p1

and l1. From
D(υ2) ∩ Var(l1 → r1 ⇐ c1) = ∅ we infer r1υ2 = r1, c1υ2 = c1, and thus

H3 = (G′υ2, e1υ2[r1]p1 , c1, (G
′′, e2[r2]p2 , c2, G

′′′)υ2)υ1

= (G′, e1[r1]p1 , c1, G
′′, e2[r2]p2 , c2, G

′′′)υ2υ1.

Since τ1τ2 = υ2υ1 we conclude that G3 = H3. 2

43

