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A Minimality Study for Set Unification

Puri Arenas-Sánchez Agostino Dovier

04 December, 1997

Abstract

A unification algorithm is said to be minimal for a unification prob-
lem if it generates exactly a (minimal) complete set of most-general
unifiers, without instances, and without repetitions. The aim of this
paper is to present a combinatorial minimality study for a significant
collection of sample problems that can be used as benchmarks for test-
ing any set-unification algorithm. Based on this combinatorial study,
a new Set-Unification Algorithm (named SUA) is also described and
proved to be minimal for all the analyzed problems. Furthermore, an
existing näıve set-unification algorithm has also been tested to show
its bad behavior for most of the sample problems.

1 Introduction

Many papers concerning constraint logic programming with sets (see, e.g., [DR93,
Ger94, LL91]) have pointed out that the complexities of the set-unification
problem and even of the simplest set-matching problem (see, e.g., [KN86,
BKN87, KN92]) are the real bottlenecks of any attempt to extend logic pro-
gramming with set entities. In [LL91], the problem is avoided using a de-
lay technique: any set-unification problem is delayed until it is transformed
into a simple ground “test.” This improves efficiency; however, if the two
terms do not become ground, obscure answers such as {X1, f(X1, X3)} .=
{Y1, f({Y3}, X1), X2} are returned. In [Ger94], only sets whose elements are
picked from a finite domain are admitted. Also in this case, efficiency is the
primary goal; nevertheless, allowed sets are very simple (for instance, nested
sets are not allowed).
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Set unification is a particular case of T -unification; given an equational
theory T and two terms s and t, four main algorithmic problems arise in
T -unification (T -matching when t is a ground term):

1. the decision problem, i.e., to decide whether or not a substitution θ
such that sθ

.=T tθ exists;

2. the counting problem, namely, the problem of computing the minimal
number of independent unifiers needed to cover all the solutions of
s

.=T t;

3. to provide an algorithm that returns a complete set (when it is finite)
of T -unifiers; and

4. to provide an algorithm that returns the minimal set of unifiers of
maximal generality that is also a complete set of unifiers (the cardinality
of such a set is the solution to the counting problem).

There are three kinds of T -unifications for structures akin to sets:

Boolean unification: all Boolean operators (∪, ∩, \, ·̄, 0, 1,. . . ) are used.
If the unification problem is solvable, a unique most general unifier is
sufficient (cf., e.g., [BS87]);

ACI unification: an associative, commutative, and idempotent binary op-
erator (such as ∪) is considered, as well as a set of constant symbols.
As Boolean unification, it can be used for flat sets only, but it requires
a great number of most general unifiers (cf., e.g., [Büt86, BB88]);

Set unification: the problem faced in our paper, is considered, whereby:

• Sets can be nested (e.g., {∅, {∅}, {∅, {∅}}}) and also variously com-
bined with terms built with “free” functor symbols (e.g., {{∅, f(a,
{∅})}{∅}, a}).

• The equational theory is not ACI but a different theory, thus
allowing us to describe unification problems different from those
of the ACI case. Accordingly, as studied in the paper, the number
of unifiers needed is fewer.

2
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• Although the equational theory is simpler (only two axioms) than
ACI , by dealing with nested sets, we can solve set-unification
problems that cannot be expressed using ACI unification; for in-
stance, {x, {y, {∅, z}}} = {{z}, w} .

In [HK95], Hermann and Kolaitis analyze the counting problem for a
variety of theories, including a restricted form of ACI . They prove that all
such problems are #P -complete (i.e., a counting Turing machine—a non-
deterministic machine with an auxiliary output device—needs polynomial
time to solve such problems).

In [BHK+88] the counting problem is exactly computed for 105 bench-
mark problems in the theories AC and AC1. Times needed for finding match-
ers and unifiers for the presented problems with several algorithms are re-
ported.

In [Büt86, BB88], the ACI unification problem is solved. In particular,
in [BB88], Baader and Büttner elegantly solve the counting problem for ACI
unification.

In [DOPR96] it is solved. Specifically, the problem of returning a com-
plete set of (Ab)(C`)-unifiers (in other words, of Set-unifiers) is resolved for
any unification problem involving terms built using a signature comprising
the set constructor symbol {· | ·} ((Ab) and (C`) are the absorption property
and the commutativity on the left property—see Section 2). In particular,
the finitary nature of set unification is proved. Such an algorithm solves
unification problems 1) and 3) above; nevertheless, it has bad behavior with
respect to the fourth one: the computed complete set of solutions contains
redundancies, namely repetitions of computed solutions as well as instances
of other solutions. The algorithm we present in this work can be seen as an
optimization of the algorithm of [DOPR96] in the direction of eliminating
redundancies.

The contribution of this work is twofold. First, in the stream of [BHK+88],
we analyze in detail some significant schemata of sample problems. For these
problems, we solve the counting problem by describing the smaller (minimal)
set of unifiers of maximal generality. Several reasons justify the choice of
such problems: their simplicity (which reflects into a simplification of the
analysis); the fact that they maximize the number of solutions for unification
problems of given size (the presence of distinct variables as elements of the
sets to be unified guarantees the maximum number of solutions); and the
fact that in using the unifiers for them we are able to describe a complete set
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of unifiers of any (nested) set-unification problem.
Second, we design a new general Set-Unification Algorithm (named SUA)

which, being able to produce exactly the minimal set of unifiers of maximal
generality for the sample presented goals, has a good expected behavior with
respect to all set-unification problems. This means that in general, the set
of returned solutions has very little redundancy. This fact is important if we
consider that the cardinality of the minimal complete set of unifiers for the
problems described in this paper (see Appendix A) is huge enough by itself.

The aim of obtaining minimal algorithms for set unification has already
been treated in the literature. For instance, in [Sto96], Stolzenburg develops
an interesting approach to set unification based on membership constraints.
Although efficient, as noted by the same author, the latter is not minimal
for some of the problems described in Section 3. Currently, we do not dis-
pose of an implementation of SUA. However, in [Sto96], a table comparing
the behaviors of several existing set-unification algorithms (including SUA)
is presented. The author’s results with Prolog implementations (done by
himself) reflect the number and time required by the analyzed algorithms
for computing the complete set of unifiers to six set-unification problems.
Such a table shows that SUA is the unique algorithm able to compute the
minimal complete set of most general unifiers for all problems except for one
(for which SUA computes less redundancies than the rest of the algorithms).
However, time results are not so good as they are desirable, mainly because
SUA is more complex than the rest of the known algorithms. However, effi-
ciency is not our primary goal here; instead, we prefer to base our efforts on
the elimination of redundancies.

The paper is organized as follows. In Section 2, we comment briefly on
some preliminary concepts needed in the rest of the paper. Section 3 presents
the sample unification problems with their corresponding minimality studies,
along with the recursive functions computing the number of solutions. Nu-
merical values for such functions are reported in Appendix A. In Section 4, a
new set-unification algorithm is presented, and is proved to terminate and to
be minimal for all sample suggested problems; another existing set-unification
algorithm is also tested, to check its behavior with respect to the analyzed
problems. Finally, some conclusions are drawn in Section 5.

4
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2 Preliminaries

We make use of standard CLP (see, e.g., [JM94]) and unification theory
notations (see, e.g., [Sie90]). Given a signature Σ (a set of functional symbols
together with their arities) and a denumerable set of variables V , TΣ(V) and
TΣ will denote the sets of terms and ground terms, respectively. Letters
X, Y, Z, . . . will denote variables; a, b, c, . . . will denote constant terms; s, t, . . .
will denote generic terms; and Var(t) will denote the set of variables occurring
in t.

We require the signature Σ to contain (at least) the constant symbol ∅,
representing the empty set, and the binary symbol {· | ·}, used as the set-
constructor symbol; the intuitive semantics of {t | s} is {t} ∪ s. We will say
that t ∈ TΣ(V) is a set term if t contains {· | ·} as the outermost constructor
symbol. Similar to lists in Prolog, the term {a | {b | {c | ∅}}} will be denoted
simply as {a, b, c}.

The two equational axioms

(Ab) {X, X |Z} .= {X |Z}
(C`) {X, Y |Z} .= {Y, X |Z}

called absorption property and commutativity on the left property , respec-
tively (see, e.g., [Sie90]), uniquely identify a finest congruence =Set on TΣ.

Definition 1 (Substitions) A substitution θ is a finite mapping from V
to TΣ(V), and is written as θ = [X1/t1, . . . , Xn/tn]. The notation implies
that the variables X1, . . . , Xn are different, and for i = 1, . . . , n, Xi 6≡
ti. In the following, range(θ) is defined to be the set {t1, . . . , tn}, whereas
dom(θ) is {X1, . . . , Xn}. Given substitutions θ = [X1/t1, . . . , Xn/tn] and
η = [Y1/s1, . . . , Ym/sm], the composition θ ◦ η is defined by removing from
the set {X1/t1η, . . . , Xn/tnη, Y1/s1, . . . , Ym/sm} those pairs Xi/tiη for which
Xi ≡ tiη, as well as those pairs Yi/si for which Yi ∈ {X1, . . . , Xn}.

Definition 2 (T -Unifier) Given an equational theory T , and two terms s
and t, we say that s =T t if s can be rewritten into t using a finite number
of times the axioms of T (in other words, T ` ~∀(s .= t)). Two terms s and
t are said to be T -unifiable if and only if there is a substitution σ such that
sσ =T tσ; such a σ is called a T -unifier. The set of all T -unifiers of two
terms s and t is denoted by UT (s, t).

5
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Following [FH86], given a congruence =T on TΣ, we write, for any set
of variables W ⊆ V, σ =W

T ρ if and only if ∀x ∈ W xσ =T xρ, for any
two substitutions σ and ρ. In the same way, σ is more general than ρ in
T over W (σ ≤W

T ρ) if and only if ∃η ρ =W
T σ ◦ η.1 The corresponding

equivalence relation on substitutions is denoted by ≡W
T ; i.e., σ ≡W

T ρ if and
only if σ ≤W

T ρ and ρ ≤W
T σ. Two substitutions σ and ρ are said to be

T -independent if neither σ ≤W
T ρ nor ρ ≤W

T σ.
It is important to notice that Set-unification is not ACI -unification. For

instance, by the above two definitions, we get that {a, X}θ =Set {b, Y }θ for
θ = [X/b, Y/a]. By contrast, in [BB88] the unification problem {a, X} .=
{b, Y } admits the ACI - (most general) unifier θ′ = [X/{b, c}, Y/{a, c}]. Uni-
fier θ′ is not a Set-unifier for the analyzed problem, since {a, {b, c}} is not
the same (nested) set as {b, {a, c}}. As a matter of fact, in [BB88] the prob-
lem {a, X} .= {b, Y } is a syntactic sugar for the ACI -unification problem
X ∪ {a} .= Y ∪ {b}. With the usual language of ACI (namely, variables,
constants, and the ACI symbol ∪), it is not possible to write a unification
problem with the same intended semantics as {a, X} .= {b, Y }.

Definition 3 (Complete Set of T -Unifiers) A complete set of T -unifiers
for s, t ∈ TΣ(V) is any subset CSU T (s, t) ⊆ UT (s, t) such that for all σ ∈
UT (s, t) there exists θ ∈ CSU T (s, t) verifying θ ≤W

T σ, where W = Var(s) ∪
Var(t).

Definition 4 (Complete Set of Independent T -Unifiers) A complete set
of independent T -unifiers for s, t ∈ TΣ(V) is any complete set of T -unifiers
µCSU T (s, t) satisfying the condition (∀στ ∈ µCSU T (s, t))(σ 6= τ ⇒ σ 6≤W

T
τ), where W = Var(s) ∪ Var(t).

Note that if CSU T (s, t) exists and is finite for any s, t ∈ TΣ(V), then
µCSU T (s, t) exists and is unique up to ≡V

T ([FH86]).

Definition 5 (T -Unifiable Herbrand Systems) A Herbrand system E
{t1

.= s1, . . . , tn
.= sn} is T -unifiable if and only if there is a substitution σ

such that tiσ =T siσ, for all 1 ≤ i ≤ n. In such a case, σ is called a T -unifier
for E. The set of all T -unifiers of E is denoted by UT (E).

Similar definitions to Definitions 3 and 4 can be given starting from a
Herbrand system E instead of the unification problem s

.= t. In the following,
when the context is clear, we will omit the prefix T before the word “unifier.”

1Note that the empty substitution ε is more general than any other substitution.

6

The Journal of Functional and Logic Programming 1997-7



Arenas et al. Minimality Study §3

Definition 6 (Solved Herbrand Systems) A set of equations E is said to
be in solved form if it has the form {X1

.= t1, . . . , Xn
.= tn} where ti ∈ TΣ(V),

1 ≤ i ≤ n, and each Xi is a distinct variable not occurring in tj, for all
i, j ∈ {1, . . . , n}. An equation X

.= t is said to be solved in E if X does occur
neither in t nor in E \ {X

.= t}.
Note that any solved-form system {X1

.= t1, . . . , Xn
.= tn} can be viewed

as the substitution [X1/t1, . . . , Xn/tn].
As said in the Introduction, in unification context, the decision problem

is the problem of deciding whether or not a system E is satisfiable. Given
a theory T , solving the unification problem means developing an algorithm
such that, for any unifiable Herbrand system E involving terms from TΣ(V),
the unification algorithm is able to compute through nondeterminism each
element of a complete set of unifiers of E . Notice that it is not required
that it computes exactly µCSU T (E). However, as we will see in detail in
Section 3, the presented theory Set is such that, even for simple unification
problems s

.= t, µCSU Set(s, t) becomes larger and larger. This means that
a valid criterion for comparing two Set-unification algorithms is the analysis
of the length of the list of solutions computed by them (the word “list” here
is used to reflect the fact that if a unification algorithm computes exactly
µCSU T (s, t), but some solution is returned more than once, it cannot be
considered minimal).

If the input system E is not T -unifiable, any unification algorithm should
conclude its computation reporting a failure result.

Definition 7 (Minimal Algorithm) A unification algorithm for a theory
T is said to be minimal for a unification problem t1

.= t2, if the algorithm
returns exactly a minimal complete set of independent unifiers for it. The
algorithm is said to be minimal for the theory T if it is minimal for all
unification problems written in the language of the theory T .

For instance, the Robinson unification algorithm is minimal for the empty
equational theory (it returns a unique—most general—unifier, or failure).

3 A Case Analysis

Experience in programming with sets teaches us that the number of unifiers
returned by a set-unification algorithm on a common input is, in general,

7
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very large. Therefore, one of the main goals of a unification algorithm is to
reduce, as much as possible, redundancies in the set of returned solutions.
Clearly, the optimal situation is that a unification algorithm for a theory T
is minimal for it (cf. Definition 7), namely, that it returns exactly a minimal
complete set of independent unifiers, without repetitions, without instances,
for any unification problem.

Given a unification problem between two sets2 it is possible, in princi-
ple, to determine the number of most-general and independent unifiers for
it (i.e., the cardinality of µCSU T (s, t)). Nevertheless, it is impossible to ex-
perimentally test the minimality (namely, the capability of returning exactly
| µCSU T (s, t) | solutions) for all (infinite) problems s

.= t with s, t in TΣ(V).
We will propose a number of (schemata of) reasonable sample goals on which
the minimality of an algorithm can be tested. Before presenting our election,
note that any set unification problem in our framework responds to one of
the following cases:

(a) {t1, . . . , tm} .= {s1, . . . , sn} ,
(b) {t1, . . . , tm | t} .= {s1, . . . , sn} ,
(c) {t1, . . . , tm | t} .= {s1, . . . , sn | t} ,
(d) {t1, . . . , tm | t} .= {s1, . . . , sn | s} ,

where ti, sj, s, t ∈ TΣ(V), 1 ≤ i ≤ m, 1 ≤ j ≤ n, and s 6= t. Moreover,
since repetitions of elements inside a set are irrelevant (as Axiom (Ab) in
Section 2 establishes), we can assume without loss of generality that t1, . . . , tm
(respectively, s1, . . . , sn) are pairwise-distinct terms. Thus, our first four
problems are:

(1) {X1, . . . , Xm} .= {Y1, . . . , Yn} ,
(2) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn} ,
(3) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn |Z} ,
(4) {X1, . . . , Xm |W} .= {Y1, . . . , Yn |Z} ,

where X1, . . . , Xm, Y1, . . . , Yn, W, and Z are pairwise-distinct variables. Of
course, any problem of type (a)–(d) can be viewed as an instance of Prob-
lem (1)–(4), respectively. Furthermore, the presence of distinct variables as
elements of the sets guarantees the maximum number of solutions, and in
finding the unifiers for them, we are also able to describe a complete set of

2e.g., {{X, f(g(Y )) |R}, f(X)} .= {A, {B, f(C)} |R}.

8
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unifiers of any (nested) set-unification problem. For instance, as we will see
in detail, any solution θ to {X1, . . . , Xm} .= {Y1, . . . , Yn} consists of a num-
ber of mappings of the form Xi/Yj or Yj/Xi. Such a solution can be seen
as a template useful for generating a number of equations between the ele-
ments s1, . . . , sm and t1, . . . , tn of the two generic sets forming the equation
{s1, . . . , sm} .= {t1, . . . , tn}. More precisely, the latter unification problem
can be reduced to the conjunction

∧
Xi/Yj in θ∨Yj/Xi in θ

si
.= tj

Since the four problem schemata (1)–(4) cover all possible set-to-set equation
cases, they are sufficient to implement the inductive step of a unification
algorithm dealing with sets having a list representation. It is very important
that no redundancy is introduced by the unification algorithm in solving
it: therefore, we will first analyze the problem schemata in detail from a
combinatorial point of view, to characterize the number of unifiers needed.

We see, in particular, that an easy upper bound to the number of nonre-
dundant unifiers for all such problems is (4(m + n))m+n, while the simple
ACI set-matching problem

X1 ∪ . . . ∪ Xm
.= {a1, . . . , an}

with X1, . . . , Xm pairwise-distinct variables and a1, . . . , an pairwise-distinct
constants, admits (2m − 1)n independent solutions.3 Assume m = n; then

lim
n→∞

(4(n + n))n+n

(2n − 1)n
= 0

This is one of the reasons for choosing the list-style representation of sets;
another reason is the simplicity of the hybrid and nested set axiomatization
(cf. [DPR96]).

We also analyze particular cases of Problems (1)–(4) when one of the
two sets contains ground elements (that, without loss of generality, we may
assume distinct constants). The problems are the following (the first two

3The solutions are exactly the functions between the set {a1, . . . , an} and the set of the
regions of the Venn diagram individualized by X1, . . . , Xm, save X1 ∪ . . . ∪ Xm.

9
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cases are matching problems):

(1′) {X1, . . . , Xm} .= {a1, . . . , an} ,
(2′) {X1, . . . , Xm |Z} .= {a1, . . . , an} ,
(3′) {X1, . . . , Xm |Z} .= {a1, . . . , an |Z} ,
(4′) {X1, . . . , Xm |W} .= {a1, . . . , an |Z} ,

where X1, . . . , Xm, W , and Z are pairwise-distinct variables, and a1, . . . , an

are pairwise-distinct constants. As shown in the tables presented in Ap-
pendix A, the cardinality of µCSUSet for Problems (1′)–(4′) is much smaller
than that for Problems (1)–(4), respectively.

As a particular case, it is interesting to analyze the cleverness of an algo-
rithm in solving the problem in which the two sets share elements. We will
analyze the cases

(5) {X1, . . . , Xm, Z1, . . . , Zk} .= {Y1, . . . , Yn, Z1, . . . , Zk}
(5′) {X1, . . . , Xm, a1, . . . , ak} .= {Y1, . . . , Yn, a1, . . . , ak}

where X1, . . . , Xm, Y1, . . . , Yn, and Z1, . . . , Zk are pairwise-distinct variables,
and a1, . . . , an are pairwise-distinct constant symbols. As we will show,
while 2,945 solutions are needed to {X1, . . . , X5} .= {Y1, . . . , Y5}, only 56 are
necessary (and sufficient) to describe all the solutions to

{X1, X2, Z1, Z2, Z3} .= {Y1, Y2, Z1, Z2, Z3}
Below we describe the functions that compute the cardinality of µCSUSet

for Problems (1)–(5) as well as for the simpler Problems (1′)–(5′). Tables
reporting some of their values are presented in Appendix A.

3.1 Problem (1)

We first analyze the simple matching Problem (1′). The number of solutions
to the problem

(1′) {X1, . . . , Xm} .= {a1, . . . , an}
is exactly the number of surjective applications from a set of m elements onto
a set of n elements. Such a number is denoted as Surj (m, n), and it is clearly
bounded by nm, the number of all the functions from a set of m elements to
a set of n elements. We analyze how to compute the function Surj :

10
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• if m < n, then Surj (m, n) = 0;

• if m ≥ n and m = n = 0, then Surj (m, n) = 1; if m > 0 and n = 0,
then Surj (m, n) = 0. If n = 1, then Surj (m, n) = 1; if m, n > 1, any
surjective function g : {X1, . . . , Xm} −→ {a1, . . . , an} can be obtained
by:

– extending a surjective function, g : {X1, . . . , Xm−1} −→ {a1, . . . , an},
so as to fulfill g(Xm) = ai (there are n possibilities for choosing
such an i); or

– extending uniquely a surjective function, g : {X1, . . . , Xm−1} −→
{a1, . . . , ai−1, ai+1, . . . , an}, so as to fulfill g(Xm) = ai (there are n
possibilities for choosing such an i).

This suggests the following recursive definition for the function Surj :



Surj (m, n) = 0 if m < n
Surj (m, 1) = 1 if 1 ≤ m

Surj (m, n) = n

(
Surj (m − 1, n − 1) +

Surj (m − 1, n)

)
if 1 < n ≤ m

A more compact description of Surj (m, n) can be given using Stirling

numbers of the second type (see, for instance, [Knu68]):
{

m

k

}
is the number

of ways to partition a set of m elements into k nonempty disjoint subsets.
Any surjective function g : {X1, . . . , Xm} −→ {a1, . . . , an} can be obtained
by mapping (with a bijection) an n-partition of {X1, . . . , Xm} onto the set
{a1, . . . , an}. Thus,

Surj (m, n) = n!
{

m

n

}
However, the recursive nature of the definition is not removed, but only
hidden into the definition of the Stirling number.

Now we describe a function Φ : ω2 −→ ω, which computes the number of
most general and independent solutions to the problem

(1) {X1, . . . , Xm} .= {Y1, . . . , Yn}

(notice that it admits a solution even if m < n):

11

The Journal of Functional and Logic Programming 1997-7



Arenas et al. Minimality Study §3.1

• if m = 0 and n = 0, then Φ(m, n) = 1 (the most general solution is the
substitution ε);

• if m > 0 and n = 0, or m = 0 and n > 0, then Φ(m, n) = 0;

• if we assume m, n > 0, and if m = 1 or n = 1, then Φ(m, n) = 1.
Letting m, n > 1, we analyze the form of a solution θ. Fix an element
in the first set, say Xm. Two cases can appear:

(a) θ binds Xm to all the elements of a proper subset S of {X1, . . . ,
Xm−1} (possibly empty) and to exactly one element Yi, for some
i = 1, . . . , n (n ways).4 The remaining part of θ is a solution to
the subproblem

{X1, . . . , Xm−1} \ S
.= {Y1, . . . , Yi−1, Yi+1, . . . , Yn}

(b) θ binds Xm to all the elements of a proper subset T of {Y1, . . . , Yn}
such that |T | ≥ 2 (if |T | = 1, then it is one of the cases analyzed
in the case above). The remaining part of θ is a solution to the
subproblem

{X1, . . . , Xm−1} .= {Y1, . . . , Yn} \ T

Thus, for m, n > 0 the function Φ is recursively described as follows:


Φ(m, 1) = 1 m ≥ 1
Φ(1, n) = 1 n > 1
Φ(m, n) = n

∑m−2
i=0

(
m−1

i

)
Φ(m − 1 − i, n − 1) + m, n > 1∑n−1

j=2

(
n
j

)
Φ(m − 1, n − j)

Theorem 1 The set of substitutions counted by Φ constitutes a minimal
complete set of independent Set-unifiers to Problem (1).

Proof of Theorem 1 By Axioms (Ab) and (C`), and Definition 2, µ is a
unifier to Problem (1) if (and only if)

(∗) ∀i ∈ {1, . . . , m} ∃j ∈ {1, . . . , n} (Xiµ = Yjµ) and
∀j ∈ {1, . . . , n} ∃i ∈ {1, . . . , m} (Xiµ = Yjµ)

4Throughout the paper, the verb “to bind” is used with a bidirectional meaning: if X
is bound to Y , also Y is bound to X.

12
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It is easy (but tedious) to see that all θs counted by Φ fulfill the formula
(∗) (thus, they are all unifiers), and that they are pairwise independent. It
remains to prove that they are sufficient to cover all possible solutions. We
prove this fact by induction on the pair 〈m, n〉, with m, n ≥ 1. If m = 1 or
n = 1, then the result is trivial. Let µ be a unifier to Problem (1) and both
m > 1 and n > 1.

Consider the element Xm. Since µ is a unifier, then there is j ∈ {1, . . . , n}
such that Xmµ = Yjµ. Two cases must be considered:

1. Assume that for all k ∈ {1, . . . , j−1, j+1, . . . , n}, Ykµ 6= Yjµ. Let S be
the maximal subset of {X1, . . . , Xm−1} such that for all X ∈ S, Xµ =
Xmµ = Yjµ. By (∗) it is clear that µ is a unifier to the subproblem:

(p) {X1, . . . , Xm−1} \ S
.= {Y1, . . . , Yj−1, Yj+1, . . . , Yn}

By induction hypothesis, there is a unifier θ (counted by Φ) to Problem
(p) such that θ ≤W

Set µ, where W is the set of variables occurring in
(p). Considering Rule (a) in the construction of Φ, we get θ′ = θ ∪
[X/Yj | X ∈ S ∪ {Xm}], a unifier to Problem (1) verifying θ′ ≤W

Set µ,
where W ′ = W ∪ {Xm} ∪ S.

2. Otherwise, let T be the maximal subset of {Y1, . . . , Yn} such that
Xmµ = Y µ for all Y ∈ T . If T = {Yj}, we are in the previous case.
Assume |T | > 1. Let S be the maximal subset of {X1, . . . , Xm−1} such
that for all X ∈ S, Xmµ = Xµ.

• If S is assumed empty, the proof follows trivially from (∗) and
induction hypothesis, using Rule (b) above.

• If we assume S is not empty, by (∗), µ is also a unifier to the
subproblem:

{X1, . . . , Xm−1} .= {Y1, . . . , Yj−1, Yj+1, . . . , Yn}

By induction hypothesis, a unifier θ more general than the restric-
tion of µ to the variables X1, . . . , Xm−1, Y1, . . . , Yj−1, and Yj+1, . . . , Yn

is counted by Φ. Thus, the substitution θ ∪ [Xm/Yj], computed
by Rule (a), is more general than µ.

Proof of Theorem 1 2

13
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The following alternative analysis of Φ will be useful for the study of
Problems (2) and (4), and for easily proving that Φ(m, n) ≤ mn · nm; any
most general unifier θ of {X1, . . . , Xm} .= {Y1, . . . , Yn} binds X-variables
with Y -variables in one of the following ways:

(a’) Xiθ = Yjθ, and Xhθ and Ykθ are all distinct from Xiθ for all h =
1, . . . , m, h 6= i and for all k = 1, . . . , n, k 6= j. In such a case, we say
that Xi/Yj is a simple binding in the solution θ.

(b’) There are j1, . . . , jq, q ≥ 2, such that Xiθ = Yj1θ = . . . = Yjqθ, and for
all h = 1, . . . , m, h 6= i, and for all k = 1, . . . , n, k 6= j1, . . . , k 6= jq,
and Xhθ and Ykθ are all distinct from Xiθ. In this case, we say there
is a q-fork in the solution θ.

(c’) There are i1, . . . , ip, p ≥ 2, such that Xi1θ = . . . = Xipθ = Yjθ, and for
all h = 1, . . . , m, h 6= i1, . . . , h 6= ip, and for all k = 1, . . . , n, k 6= j,
and Xhθ and Ykθ are all distinct from Xi1θ. In this case, we say there
is a p-cone in the solution θ.

The next example will clarify the notions of q-fork and p-cone defined
above.

Example 1 Consider the following two most general unifiers:

θ = [X1/Y1, X2/Y2, X3/Y3]
θ′ = [X1/Y1, Y2/Y1, X2/Y3, X3/Y3]

to the problem {X1, X2, X3} .= {Y1, Y2, Y3}.
While θ is composed of three simple bindings, θ′ contains a 2-fork com-

posed of X1θ
′ = Y1θ

′ = Y2θ
′ and a 2-cone consisting in X2θ

′ = X3θ
′ = Y3θ

′.
Graphically, θ and θ′ can be represented as follows:

θ ≡




X1
simple binding−→ Y1

X2
simple binding−→ Y2

X3
simple binding−→ Y3


 θ′ ≡




X1
2−fork−→

{
Y1

Y2

X2

X3

}
2−cone−→ Y3




Below we will describe a procedure for counting all such solutions.
Given n > 0, an n-tuple c ≡ [i1, . . . , in] is said to be a configuration

for the set {Y1, . . . , Yn} if the non-negative integers i1, . . . , in are such that∑n
j=1 ij · j = n.

14

The Journal of Functional and Logic Programming 1997-7



Arenas et al. Minimality Study §3.1

Let k (1 ≤ k ≤ n) be
∑n

j=1 ij; the configuration c is a witness of any
partition of {Y1, . . . , Yn} into k nonempty disjoint subsets such that there
are exactly i1 singleton subsets, i2 doubleton subsets, and so on. Let Cn be
the set of all the configurations for a fixed n; for instance, when n = 6, the
following 11 configurations are possible:

i1 i2 i3 i4 i5 i6

6 0 0 0 0 0
4 1 0 0 0 0
3 0 1 0 0 0
2 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1

i1 i2 i3 i4 i5 i6

2 2 0 0 0 0
0 3 0 0 0 0
0 0 2 0 0 0
1 1 1 0 0 0
0 1 0 1 0 0

It is easy to write a Prolog program that computes the set Cn for a given n
(see Figure 1).

Let ‖[i1, . . . , in]‖ be the number of partitions of {Y1, . . . , Yn} of the form
uniquely determined by [i1, . . . , in]. Clearly,

∑
i1+...+in=k

1·i1+...+n·in=n

‖[i1, . . . , in]‖ =
{

n

k

}

The following simple example clarifies how to compute ‖[i1, . . . , in]‖; let
n = 16, and c ≡ [5, 4, 1, 0, . . . , 0]. There are

(
16
2

)
ways for selecting the first

doubleton, and
(

14
2

)
,
(

12
2

)
, and

(
10
2

)
ways for selecting the second, the third,

and the fourth doubletons, respectively. In this way, however, any partition
will be counted 4! (= i2!) times, since there is no difference in selecting two
elements Yi and Yj in the first, second, third, or fourth attempts. There are
still

(
8
3

)
ways for selecting the unique subset of three elements. The remaining

elements will constitute the singletons of the partition. Thus,

‖c‖ =

(
16
2

)(
14
2

)(
12
2

)(
10
2

)
4!

·
(

8
3

)
1!

=
16!

((2!)4(3!)1)(5!4!1!)

Such a situation is easy to generalize so as to obtain:

‖[i1, . . . , in]‖ =
n!

Πn
j=2(j!)ij · Πn

j=1(ij!)
15
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configurations(N, Cn) :−
setof(C, conf(N, 1, N, C), Cn).

conf(0, , M, [ ]) :−
!, M = 0.

conf(N, , 0, C) :−
!, zerolist(N, C).

conf(N, W, M, [A | C]) :−
T is (M div W), in(A, T),
M1 is M − W ∗ A,
N1 is N − 1, W1 is W + 1,
conf(N1, W1, M1, C).

in(T, T).
in(A, T) :−

T > 0, T1 is T − 1,
in(A, T1).

zerolist(0, [ ]) :− !.
zerolist(N, [0 | R]) :−

M is N − 1,
zerolist(M, R).

Figure 1: The Prolog program-generating configurations.

Assume a partition S of {Y1, . . . , Yn} (S ⊆ P({Y1, . . . , Yn})) has the con-
figuration c ≡ [i1, . . . , in]. We want to compute the number of (most general
and independent) solutions θ to Problem (1) such that S is the smallest set
fulfilling S = {Z : (∀YiYj ∈ Z)(Yiθ = Yjθ)}.

Figure 2 illustrates the form of any such a θ, including:

• subsets of {X1, . . . , Xm} consisting of i2, i3, . . . , in elements are selected;

• for any j = 2, . . . , n, θ binds with a bijection the subset identified by
ij to the subset of S constituted by sets of exactly j elements; and

• moreover, the remaining m − ∑n
j=2 ij elements of {X1, . . . , Xm} are

connected by a surjection to the remaining i1 elements of {Y1, . . . , Yn}.

Thus, there are: (
m

i2

)(
m − i2

i3

)
. . .

(
m −∑n−1

j=2 ij
i1

)

ways for choosing the elements reflecting the situation described; once they
are fixed, there are:

Surj (i2, i2) . . . Surj (in, in)Surj
(
m −

n∑
j=2

ij, i1

)
16
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X1, . . . , Xm︸ ︷︷ ︸ Y1, . . . , Yn︸ ︷︷ ︸
i2




◦
...
◦

−−−→
Surj (i2, i2)

−−−→

◦◦
...
◦◦


 i2

i3




◦
...
◦

−−−→
Surj (i3, i3)

−−−→

◦ ◦ ◦
...
◦ ◦ ◦


 i3

...
...

...

in




◦
...
◦

−−−→
Surj (in, in)

−−−→

◦ . . . ◦
...
◦ . . . ◦︸ ︷︷ ︸

n


 in

m −∑n
j=2 ij




◦
...
◦

−−−→
Surj

(
m −∑n

j=2 ij , i1
)

−−−→

◦
...
◦


 i1

Figure 2: The form of a generic solution.
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possible situations. Hence, the number of most general unifiers we are looking
for is:

m!(
m −∑n

j=2 ij
)
!
· Surj

(
m −

n∑
j=2

ij, i1

)
=

m! · i1!
(m −∑n

j=2 ij)!
·
{

m−
∑n

j=2 ij

i1

}

Finally, given a configuration c ≡ [i1, . . . , in], the number of possible most
general unifiers from the set {X1, . . . , Xm} to any partition of {Y1, . . . , Yn}
having configuration c (we call this number ‖c‖m) will be:

‖[i1, . . . , in]‖m = ‖[i1, . . . , in]‖ · m!·i1!
(m−

∑n

j=2 ij)!
·
{

m−
∑n

j=2 ij

i1

}
= m!·n!·i1!

(Πn
j=2(j!)ij)·(Πn

j=1(ij !))·(m−
∑n

j=2 ij)!
·
{

m−
∑n

j=2 ij

i1

}

With this alternative point of view, the function Φ can be defined as:

Φ(m, n) =
∑
c∈Cn

‖c‖m

We end this subsection by showing an upper bound for the function Φ:

Lemma 1 For any m, n > 0, Φ(m, n) ≤ mn · nm.

Proof of Lemma 1 Any solution θ to a unification problem of Type (1) is
composed of two parts:

• a part that describes a surjective function from a subset S of {X1, . . . , Xm}
to a subset T of {Y1, . . . , Yn}; and

• the remaining part, which describes a surjective function from {Y1, . . . , Yn}\
T to {X1, . . . , Xm} \ S.

The first part is bounded by nm; the second part is bounded by mn.

Proof of Lemma 1 2

In [Sto96], an interesting approach to finding the solution to Problem (1)
using Taylor’s series is presented. In particular, it is implicitly proved that:

Φ(m, n) = (∆m
x ∆n

ye
(x(ey−1)+y(ex−1)−xy))〈0,0〉

where ∆k
vf(. . . , v, . . .) means to derive k times with respect to the variable

v.
18
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3.2 Problem (2)

Before facing the analysis of the solutions to the problem

(2) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn}
we briefly discuss how to compute a solution to the corresponding matching
Problem (2′):

(2′) {X1, . . . , Xm |Z} .= {a1, . . . , an}
Let S be a nonempty subset of {a1, . . . , an}, and θ1 be a solution to the
problem of Type (1′) {X1, . . . , Xm} .= S; then any substitution θ extending
θ1 with the mapping Z/({a1, . . . , an} \ S) ∪ T , for any T ⊆ S, is a solution
to Problem (2′) above.

It is easy to see that all the solutions obtained in this way are independent
and, furthermore, the collection of them is a complete set of unifiers. The
total number of solutions to Problem (2′) is therefore:

n∑
i=1

(
n

i

)(
Surj (m, i) · 2i

)

For the more general case of Problem (2), if S is a nonempty subset of
{Y1, . . . , Yn}, and θ1 is a solution to the problem of Type (1) {X1, . . . , Xm} .=
S, then any substitution θ extending θ1 with the mapping Z/({Y1, . . . , Yn} \
S) ∪ T is a solution to Problem (2), for any T ⊆ S. However, in this case,
solutions are not all pairwise independent, as the following example shows.

Example 2 Consider the unification problem of Type (2): {X1 |Z} .= {Y1, Y2}:
• If S = {Y1, Y2}, then {X1} .= {Y1, Y2} has the solution [Y1/X1, Y2/X1].

Such a (unique) solution can be extended with [Z/{Y2}] (by choosing
T = {Y2}).

• If S = {Y1}, then the problem {X1} .= {Y1} has the unique solution
[X1/Y1]. Such a solution can be extended with [Z/{Y2}] (by choosing
T = ∅), a more general solution than the first presented.

A closer analysis of the solutions to the problem {X1, . . . , Xm} .= S must
be performed to identify whether a solution θ—obtained by extending it with
a substitution of the form [Z/({Y1, . . . , Yn} \S)∪T ], with T ⊆ S—is general
or not. Assume an element Yi of S belongs to T . Two cases are possible:

19
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• θ does not bind Yi to any Yj, for j = 1, . . . , n, i 6= j. In other words:

Xi1θ = . . . = Xikθ = Yiθ for some i1, . . . , ik ∈ {1, . . . , m}, k ≥ 1
Yiθ 6= Yjθ for j = 1, . . . , n, i 6= j

• θ binds Yi to some Yjs, for j = 1, . . . , n, i 6= j. This means (see Problem
(1)) that there is a (k + 1)-fork in the solution θ of the form:

Xhθ = Yiθ = Yi1θ = . . . = Yikθ
for exactly one h ∈ {1, . . . , m} and for some i1, . . . , ik ∈ {1, . . . , n}.

In the former case, we can insert Yi into T . As a matter of fact, if
we consider the subproblem obtained by removing it from S, there are no
possibilities to map Xi1 , . . . , Xik in a way that subsumes the solution.

In the latter case, the situation is radically different. Note that θ has
the following structure: θ = [Xh/Yi, Yi1/Yi, . . . , Yik/Yi] ∪ θ∗ ∪ [Z/T ′], where
Yi ∈ T ′. If we consider the subproblem obtained by removing Yi from S, we
could obtain a solution θ′ = [Xh/Yi1 , Yi2/Yi1 , . . . , Yik/Yi1 ]∪θ∗ ∪ [Z/T ′], which
is more general than the previous one. This means that if we insert Yi into
T , we generate an instance of a solution already computed. An analogous
reasoning can be performed for any of Yi1 , . . . , Yik and for all k-forks in θ.
Thus, the number of such solutions can be computed by means of:

n∑
j=1

(
n

j

)
Φ′(m, j)

where Φ′ has the same structure as Φ (see Problem (1)), but now, considering
the possible extensions of Z with Y -variables occurring either in a simple
binding or in a cone. Therefore:


Φ′(m, n) = 0 (m > 0, n = 0) or (m = 0, n > 0)
Φ′(m, 1) = 2 (m ≥ 1)
Φ′(1, n) = 1 (n > 1)
Φ′(m, n) = 2n

∑m−2
i=0

(
m−1

i

)
Φ′(m − 1 − i, n − 1) + m, n > 1∑n−1

j=2

(
n
j

)
Φ′(m − 1, n − j)

The factor 2 represents the possibility of extending Z with the selected
Y -variable of the second set, in the generation of a cone or a simple binding.
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Another interesting but equivalent way for counting the number of so-
lutions to Problem (2) uses the concept of configuration defined to describe
solutions to Problem (1). Given a solution θ to the unification problem
{X1, . . . , Xm} .= S, for some S ⊆ {Y1, . . . , Yn} such that |S| = j, consider
its configuration cθ = [i1, . . . , ij]. There are 2j−forks(θ) possible values for T ,
where forks(θ) = 2 · i2 + . . . + j · ij. Hence,

n∑
j=1

(
n

j

) ∑
θ is a solution to

{X1, . . . , Xm} .
= {Y1, . . . , Yj}

2j−forks(θ)

is the minimal number of solutions for Problem (2).

3.3 Problem (3)

A generic solution to the problem:

(3) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn |Z}
must satisfy the constraints:

S0
.= S1 and

Z ⊇ ({X1, . . . , Xm} \ S0) ∪ ({Y1, . . . , Yn} \ S1)

where S0 is a subset of {X1, . . . , Xm} and S1 is a subset of {Y1, . . . , Yn}. In
other words, if θ is a most general solution to S0

.= S1, then:

θ ∪ [Z/({X1, . . . , Xm} \ S0) ∪ ({Y1, . . . , Yn} \ S1) ∪ N ]

where N is a new variable, whose intended meaning is “any set,” and is
a solution to Problem (3). Furthermore, it is easy to observe that they
are all pairwise independent. The number of most general and independent
solutions to Problem (3) is therefore

m∑
i=0

(
m

i

)
n∑

j=0

(
n

j

)
Φ(i, j)

The analysis of the simpler Problem (3′):

(3′) {X1, . . . , Xm |Z} .= {a1, . . . , an |Z}
21
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follows the same guidelines as the analysis of the more general Problem (3).
The only difference is that any unification between subsets S0 and S1 is of
Type (1′) instead of Type (1). This means that the number of most general
and independent solutions to Problem (3′) is computed by:

m∑
i=0

(
m

i

)
n∑

j=0

(
n

j

)
Surj (i, j)

3.4 Problem (4)

Analogously to Problem (3), the problem

(4) {X1, . . . , Xm |W} .= {Y1, . . . , Yn |Z}
can be reduced to the family of problems

S0
.= S1

Z
.= ({X1, . . . , Xm} \ S0) ∪ N ∪ T0 and

W
.= ({Y1, . . . , Yn} \ S1) ∪ N ∪ T1

where:

• S0 ⊆ {X1, . . . , Xm} and S1 ⊆ {Y1, . . . , Yn},

• Ti is a subset of Si, for i = 0, 1, and

• N is a new variable (whose intended meaning is “any set”).

Nevertheless, similar to Problem (2), we need to bound the range of each
Ti to avoid the generation of instances of other generated solutions.

As the analysis of Problem (1) shows, any solution θ to the problem S0
.=

S1 can generate three different situations, (a’), (b’), and (c’) (see Section 3.1).
Analyzing each of these situations, we can observe that when Xi and Yj are
of Case (a’), they can be inserted into T0 and T1, respectively, but never
simultaneously, because the solution:

[Xi/Yj, . . . , Z/{. . . |N}, W/{. . . |N}]

is more general than:

[Xi/Yj, . . . , Z/{. . . , Xi |N}, W/{. . . , Yj |N}]
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Following the same reasoning as in the analysis of Problem (2), Xi of Case
(b’) can be inserted into T0, while the introduction of Yj`

, for ` = 1, . . . , q in
T1 generates an instance of another solution. Similarly, Yj of Case (c’) can
be inserted into T1, while Xi` , for ` = 1, . . . , p must not be introduced in T0,
to guarantee the minimality property of the solutions.

Given a solution θ to S0
.= S1, we define the following:

• vert0(θ)—the sum of the number of k-forks for k = 2, . . . , |S1|;
• vert1(θ)—the sum of the number of h-cones for h = 2, . . . , |S0|;
• cones(θ)—the sum

∑|S0|
h=2 h · (# of h-cones); and

• forks(θ)—the same function defined in the solution to Problem (2).

Clearly, |S0| − cones(θ) − vert0(θ) = |S1| − forks(θ) − vert1(θ); such a
number (say p) is the number of elements connected with a bijection (see
Figure 2). As it has already been explained, such elements can all be inserted
in T0 and T1, but not simultaneously: there are

| {〈A, B〉 : A, B ⊆ {1, . . . , p}, A ∩ B = ∅} | = 3p

possibilities to extend θ.
Thus, we are ready to count all the solutions to Problem (4):
m∑

a=0

(
m

a

)
n∑

b=0

(
n

b

) ∑
θ is a solution to

{X1, . . . , Xa} .
= {Y1, . . . , Yb}

2vert0(θ)2vert1(θ)3a−vert0(θ)−cones(θ)

We now analyze the simpler problem:

(4′) {X1, . . . , Xm |W} .= {a1, . . . , an |Z}
It is simpler because no fork can occur in the solution of S0

.= S1 when
S1 ⊆ {a1, . . . , an}. In particular, we can prove that the number of solutions
to Problem (4′) is computed by the following function f :{

f(m, 0) = 1
f(m, n + 1) = f(m, n) + 3 ·

(
m
1

)
f(m − 1, n) + 2 ·∑m

k=2

(
m
k

)
f(m − k, n)

If n = 0 the result is trivial. Assume n > 0. Any solution for

{X1, . . . , Xm |W} .= {a1, . . . , an |Z}
can be obtained:
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• Extending uniquely a solution to

{X1, . . . , Xm |W} .= {a2, . . . , an |Z}

adding the element a1 to the set assigned to W .

• Extending any solution to

{X1, . . . , Xi−1, Xi+1, . . . , Xm |W} .= {a2, . . . , an |Z}

with the binding [Xi/a1] plus (possibly)

– adding a1 to the set assigned to W ;

– adding Xi (or, equivalently, a1) to the set assigned to Z.

Either the former or the latter extension can be done, but not simulta-
neously. However, adding both of them to the solution is an instance
of the solution without extensions.

• Let k ≥ 2 and j : {1, . . . , m} −→ {1, . . . , n} be a permutation. A
solution for the 〈m, n〉 problem can be obtained extending any solution
to

{Xjk+1 , . . . , Xjm |W} .= {a2, . . . , an |Z}
with the binding [Xj1/a1, . . . , Xjk

/a1] plus (possibly) adding a1 to the
set assigned to W . Observe that if Xjb

, b = 1, . . . , k (or, equivalently,
a1) is added to the set assigned to Z, then it would be an instance of
one of the solutions obtained extending

{Xjb
, Xjk+1 , . . . , Xjm |W} .= {a2, . . . , an |Z}

in which Xjb
is not bound to any of a2, . . . , an in one of the admitted

ways.

Note that as in Problem (2), it is possible to count the number of solutions
to Problem (4) by means of

m∑
a=0

(
m

a

)
n∑

b=0

(
n

b

)
Φ′′(a, b)
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where again, Φ′′ is similar to Φ, but now taking care of the possible extensions
of Z and W . That is the reason why factors 2 and 3 occur when cones, forks,
and simple bindings are generated:


Φ′′(m, n) = 0 (m > 0, n = 0) or (m = 0, n > 0)
Φ′′(m, n) = 3 (m = n = 1)
Φ′′(1, n) = 2 (n > 1)
Φ′′(m, 1) = 2 (m > 1)
Φ′′(m, n) = 3nΦ′′(m − 1, n − 1)

2n
∑m−2

i=1

(
m−1

i

)
Φ′′(m − 1 − i, n − 1) + m, n > 1

2
∑n−1

j=2

(
n
j

)
Φ′′(m − 1, n − j)

3.5 Problem (5)

As explained in the introduction to this section, it is interesting to analyze
whether or not the two sets involved in the equations share elements. This
allows for a great reduction in the number of the most general unifiers. We
will first analyze a ground sharing (Case (5′)), and then the more general
Case (5); the two problems will admit the same number of most general
solutions.

Any solution θ to the problem

(5′) {X1, . . . , Xm, a1, . . . , ak} .= {Y1, . . . , Yn, a1, . . . , ak}

maps every element of the lefthand side into an element of the righthand side
of the equation. Clearly, for i = 1, . . . , k, ai is implicitly mapped into itself.

Assume θ has the form [Xi1/a`, . . . , Xiα/a`, Yj1/a`, . . . , Yjβ
/a`]∪ θ′, where

α, β ≥ 1. Such a θ is an instance of the substitution θ′′ ∪ θ′, for any θ′′

solution to the problem of Type (1): {Xi1 , . . . , Xiα} .= {Yj1 , . . . , Yjβ
}.

This means, in particular, that we do not have to count solutions in which
both Xi/a` and Yj/a` occur in the solution, for any i, j, and `.

Any most general solution θ to Problem (5′) can be obtained as follows:

1. choose two disjoint subsets S0 and S1 of {a1, . . . , ak};

2. choose a subset T0 of {X1, . . . , Xm} and a subset T1 of {Y1, . . . , Yn};

3. θi is a solution to the problem of Type (1′), Ti
.= Si, for i = 0, 1;
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4. θ2 is a solution to the problem of Type (1), {X1, . . . , Xm}\T0
.= {Y1, . . . ,

Yn} \ T1; and

5. θ is θ0 ∪ θ1 ∪ θ2.

Hence, the number of most general and independent solutions to Problem
(5′) is:

Ψ(m, n, k) =
k∑

i=0

(
k

i

)
k−i∑
j=0

(
k − i

j

)
m∑

a=0

(
m

a

)
n∑

b=0

(
n

b

)
(
Surj (a, i) · Surj (b, j) · Φ(m − a, n − b)

)
From any solution θ to Problem (5′), a corresponding solution to Problem

(5) {X1, . . . , Xm, Z1, . . . , Zk} .= {Y1, . . . , Yn, Z1, . . . , Zk}

can be obtained by replacing any occurrence of ai with Zi, for i = 1, . . . , k.
Although it seems that Problem (5) has a number of solutions strictly greater
than Problem (5′), since it is consistent to consider solutions to T0

.= S0 and
T1

.= S1 containing p-forks (p ≤ k), note that any solution θ = [Zi1/Xi, . . . ,
Zip/Xi] ∪ θ′, p ≥ 2, of the form described above, is an instance of each of the
solutions θi1 = [Zi1/Xi] ∪ θ′, . . .,θip = [Zip/Xi] ∪ θ′.

Thus, Problem (5) has exactly the same number of most general and
independent solutions as Problem (5′).

Before ending this section, we will show that the number of solutions
to Problems (1)–(5) is bounded by (4(m + n))(m+n). All such functions are
bounded by the function δ(m, n) defined as:

m∑
a=0

(
m

a

)
n∑

b=0

(
n

b

)
Φ(a, b)2m−a2n−b

The function δ(m, n) represents the number of solutions to Problem (4) with-
out the careful removal of redundant solutions performed in Section 3.4.

Lemma 2 δ(m, n) ≤ (4(m + n))(m+n).
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Proof of Lemma 2 Since Φ is monotonic, then

δ(m, n) ≤ ∑m
a=0

(
m
a

)∑n
b=0

(
n
b

)
Φ(m, n)2m−a2n−b

= Φ(m, n)
∑m

a=0

(
m
a

)∑n
b=0

(
n
b

)
2m−a2n−b

≤ Φ(m, n)
∑m

a=0

(
m
a

)∑n
b=0

(
n
b

)
2m2n

= Φ(m, n)2m2n∑m
a=0

(
m
a

)∑n
b=0

(
n
b

)
= Φ(m, n)2m2n2m2n

= 4m4nΦ(m, n)

Lemma 1 ensures that

δ(m, n) ≤ 4m4nmnnm ≤ (4(m + n))(m+n)

Proof of Lemma 2 2

4 The Algorithm SUA

This section is devoted to describing a new set-unification algorithm, named
SUA, which is proved to be minimal for all the sample problems presented
in the previous section. Moreover, a brief analysis of a näıve algorithm is
presented, to compare it to SUA.

The code associated with SUA is presented in Figure 3. To simplify the
description of the algorithm, some local notation is defined. We make use of a
meta-function Can, which computes to any term t a canonical representation
Can(t) of its equivalence class with respect to =Set. In more detail, when t is
a set term, Can(t) returns t′, obtained by first removing repeated elements
in t and ordering the elements using the lexicographic order. For instance,
Can({a, a, b}) returns {a, b}. From an implementation point of view, the
“canonization” of sets allows us to easily detect if two sets are syntactically
equal (see Action 1 of functions unify set, unify set2, limit 1, and limit 2 in
Figures 4, 6, 7, and 8, respectively).

The set-operations | · | (cardinality), ⊆ (inclusion), ⊂ (strict inclusion), ∪
(union), ∩ (intersection), and − (set difference) are used on terms denoting
sets. The meaning of the set operators is purely syntactical; for instance,
|{X1, X2}| = 2: we do not need to distinguish the two cases X1 = X2 ∧
|{X1, X2}| = 1 and X1 6= X2 ∧ |{X1, X2}| = 2.

In the algorithm, X, W , W ′, Z, and Z ′ denote generic variables, t, t1, s1, t2,
and s2, . . . , denote generic terms, and N denotes a new variable introduced
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function SUA(E);
If E is in solved form, then return E
elseif E∗ is not empty, then choose n.d. one active equation s

∗= t in E∗,
consider E ′ := E − {s ∗= t} and:

0. i. t ≡ X: if X ∈ Var(s) then fail, else return SUA(E ′[X/s] ∪ {X
.= s});

ii. s ≡ X: if X ∈ Var(t) then fail, else return SUA(E ′[X/t] ∪ {X
.= t});

iii. s ≡ f(s1, . . . , sm) and t ≡ f ′(t1, . . . , tn):
if f 6≡ f ′, then fail
else (i.e., f ≡ f ′ and m = n): return SUA({s1

.= t1, . . . , sn
.= tn} ∪ E ′);

else choose n.d. one equation e (not in solved form) in E ; E ′ := E − {e};
case e of:

1. X
.= X: return SUA(E ′);

2. t
.= X and t 6∈ V: return SUA({X

.= t} ∪ E ′);
3. X

.= t, X ∈ Var(E ′), X 6∈ Var(t): return SUA(E ′[X/t] ∪ {X
.= t});

4. X
.= {t1, . . . , tm |X}: return SUA(E ′ ∪ {X

∗= {t1, . . . , tm |N}});
5. X

.= {t1, . . . , tm | t0}:
if t0 ∈ V and t0 6≡ X and X ∈ ⋃m

i=1 Var(ti): fail
elseif t0 ≡ f(s1, . . . , sn), f 6≡ {· | ·} and X ∈ ⋃m

i=0 Var(ti): fail ;
6. X

.= t and t ≡ f(t1, . . . , tn), f 6≡ {· | ·} and X ∈ Var(t): fail ;
7. f(s1, . . . , sn) .= g(t1, . . . tm), f 6≡ g: fail ;
8. f(s1, . . . , sn) .= f(t1, . . . tn), f 6≡ {· | ·}:

return SUA(E ′ ∪ {s1
.= t1, . . . , sn

.= tn});
9. {t1, . . . , tm | k} .= {s1, . . . , sn | k′}; let T := Can({t1, . . . , tm}) and

S := Can({s1, . . . , sn}): return SUA(unify set(T, S) ∪{k
∗= k′} ∪ E ′);

10. {s1, . . . , sn | k} .= {t1, . . . , tm |Z}:
return SUA({{t1, . . . , tm |Z} .= {s1, . . . , sn | k}} ∪ E ′);

11. {t1, . . . , tm |Z} .= {s1, . . . , sn | k}: let T := Can({t1, . . . , tm}) and
S := Can({s1, . . . , sn}). choose n.d. ∅ 6= S′ ⊆ S:
return SUA({Z

∗= (S − S′) ∪ Z ′ ∪ {k}} ∪ limit 1(T, S′, Z ′)|S∪T∪{Z} ∪ E ′);
12. {t1, . . . , tm |Z} .= {s1, . . . , sn |Z}: let T := Can({t1, . . . , tm}) and

S := Can({s1, . . . , sn}). Select n.d. T ′ ⊆ T and S′ ⊆ S:
if T ′ ∪ S′ 6= T ∪ S then

return SUA(unify set(T ′, S′) ∪{Z
∗= (T − T ′) ∪ (S − S′) ∪ N} ∪ E ′)

else return SUA(unify set(T, S) ∪E ′);
13. {t1, . . . , tm |W} .= {s1, . . . , sn |Z} where Z and W are different variables:

let T := Can({t1, . . . , tm}) and S := Can({s1, . . . , sn}).
Choose n.d. T ′ ⊆ T , S′ ⊆ S:
return SUA({(S − S′) ∪ W ′ ∗= W, (T − T ′) ∪ Z ′ ∗= Z}∪

limit 2(T ′, S′,Z ′,W ′) |S∪T∪{Z,W} ∪ E ′)).

Figure 3: The set-unification algorithm SUA.
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function unify set({t1, . . . , tm}, {s1, . . . , sn});
1. If {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal then return { };
2. elseif m = 1 and n > 1 then return {si

.= t1 : 1 ≤ i ≤ n};
3. elseif m ≥ 1 and n = 1 then return {ti

.= s1 : 1 ≤ i ≤ m};
4. else consider Common part := {t1, . . . , tm} ∩ {s1, . . . , sn} ;

Disagr1 := {t1, . . . , tm} − Common part ;
Disagr2 := {s1, . . . , sn} − Common part ;

(a) if Common part = ∅ then fix an i ∈ {1, . . . , m} and
select n.d. one of the following actions:

i. return 1= (ti, {t1, . . . , tm}, {s1, . . . , sn});
ii. return 2= (ti, {t1, . . . , tm}, {s1, . . . , sn});
iii. return 3= (ti, {t1, . . . , tm}, {s1, . . . , sn});

(b) if Common part 6= ∅ then choose n.d. S0, S1 ⊆ Common part, S0 ∩ S1 = ∅;
choose n.d. T0 ⊆ Disagr1, T1 ⊆ Disagr2 such that |T0| ≥ |S0| and |T1| ≥ |S1|:

return unify set(Disagr1 − T0, Disagr2 − T1) ∪
unify set2(T1, S1) ∪ unify set2(T0, S0).

Figure 4: Function unify set.

by SUA. The terms k and k′ denote nonvariables whose main functional sym-
bol is distinct from {· | ·}.5 Given a set of terms S and a substitution θ, θ|S
constrains the domain of θ to the variables contained in S. The abbreviation
“n.d.” stands for “nondeterministically.”

The algorithm SUA takes as input a system of equations E between terms,
and returns either fail—E is not unifiable—or, nondeterministically, a substi-
tution θ. The set of all such θs constitutes a complete set of Set-unifiers. The
algorithm temporarily generates equations (introduced by actions 4, 9, 11,
12, and 13) marked by ∗; they are called active equations, and are immedi-
ately removed by action 0. This is fundamental to guaranteeing termination
(see details in the proof of Theorem 2). The set of active equations is denoted
by E∗.

Actions 1–8 of SUA are identical to those used in the unification algorithm
presented in [DOPR96], and most of them are based on Clark’s equality
theory [Cla78]. Note that Action 4 does not return a failure. The reason is
that the unification problem X

.= {t1, . . . , tm|X}, where X does not occur in
t1, . . . , tm, admits as (most general) solution θ = [X/{t1, . . . , tm|N}], where
N is a fresh variable. Of course it holds that Xθ =Set {t1, . . . , tm|X}θ,

5Such entities are named kernels in [DOPR96].
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function 1=(ti, {t1, . . . , tm}, {s1, . . . , sn});
choose n.d. one j ∈ {1, . . . , n}:
return {ti

.= sj}∪ unify set({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sj−1, sj+1, . . . , sn}).

function 2=(ti, {t1, . . . , tm}, {s1, . . . , sn});
choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2:
return {s

.= ti : for all s ∈ S}∪ unify set({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn}−S}).

function 3=(ti, {t1, . . . , tm}, {s1, . . . , sn});
choose n.d. ∅ 6= T ⊂ {t1, . . . , ti−1, ti+1, . . . , tm}:
return {t

.= ti : for all t ∈ T} ∪ 1=(ti, {t1, . . . , tm} − T, {s1, . . . , sn}).

Figure 5: Functions 1=, 2=, and 3=.

because of the absorption property .
Action 9 corresponds to the resolution of Problems (1), (1′), (5), and (5′),

whereas actions 11, 12, and 13 solve, respectively, Problems (2), (2′), and (3)
and (3′), (4), and (4′). As we show later, all these actions faithfully follow
the ideas presented in the minimality studies described in Section 3. This
justifies the minimality of SUA for all set-unification problems studied in this
work.

The function unify set defined in Figure 4 takes as input two terms {t1, . . . ,
tm} and {s1, . . . , sn}, representing nonempty sets, and selects nondetermin-
istically which equalities between elements of {t1, . . . , tm} and {s1, . . . , sn}
should accompany the system E in a recursive call to SUA. Some comments
on unify set are needed to relate it to the unification Problems (1), (1′), (5),
and (5′). Action 4(a) is motivated by problems of Type (1) and (1′). As the
analysis of Problem (1) shows, we need to distinguish three different pos-
sibilities, (a’), (b’), and (c’) (see Section 3.1), to compute all solutions for
such a problem. These three cases are subsumed by functions 1=, 2=, and 3=
in Figure 5, respectively. Function 1= generates simple bindings by matching
one element of the first set, ti, with one element of the second set, sj. After-
wards, it combines the two sets deprived of the selected elements. Function
2= captures the concept of k-fork, and Function 3= captures the concept of
k-cone. In particular, when an answer is computed by SUA without using
Function 2=, then the answer may be considered as a surjective function from
the leftmost set onto the rightmost set. Since Function 2= cannot be applied
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function unify set2({t1, . . . , tm}, {s1, . . . , sn});
1. If {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal then return { };
2. elseif m ≥ 1 and n = 1 then return {ti

.= s1 : 1 ≤ i ≤ m};
3. else fix an i ∈ {1, . . . , m}: select n.d. one of the following actions:

i. return 1′
= (ti, {t1, . . . , tm}, {s1, . . . , sn});

ii. return 3′
= (ti, {t1, . . . , tm}, {s1, . . . , sn});

Figure 6: Function unify set2.

to Problem (1′) (otherwise, SUA would produce fail), then the algorithm
computes surjective functions as solutions to Problem (1′).

As we noted in the analysis of Problem (5), {X1, . . . , Xm, Z1, . . . , Zk} .=
{Y1, . . . , Yn, Z1 , . . . , Zk}, solutions associated with Ti

.= Si, i ∈ {0, 1},
S0 ∩ S1 = ∅, Si ⊆ {Z1, . . . , Zk}, T0 ⊆ {X1, . . . , Xm}, and T1 ⊆ {Y1, . . . , Yn}
containing forks are redundant. For this reason, Action 4(b) of unify set
requires us to use a new function, unify set2 (see Figure 6). The intended
meaning of this new function is to consider nondeterministically either 1= or
3=, but never 2=.6 The formal definition of unify set2 is equal to the defini-
tion of unify set, but with the removal of those actions corresponding to the
generation of forks, namely, Actions 2 and 4(a)ii. Notice that in particular,
the case m = 1, n > 1 never arises, since the initial call to unify set2 re-
quires m ≥ n. The auxiliary Functions 1′

= and 3′
= are defined as 1= and 3=,

respectively, changing the recursive calls to unify set by calls to unify set2.
A problem of Type (2) or (2′) can only be solved by using Action 11 of

SUA. The Function limit 1, presented in Figure 7, must simultaneously solve
the unification problem {X1, . . . , Xm} .= S for some S ⊆ {Y1, . . . , Yn} (for
such reasons, the definitions of 1=, 2=, and 3= are embedded in its definition
and bind Z to any subset of S not containing variables occurring in any h-
fork corresponding to the solution being computed. The definition of limit 2
in Figure 8 is similar to that of limit 1. In particular, for problems of Type
(4), the values of W and Z are constrained to avoid the introduction of
variables occurring in some h-fork or h-cone, respectively, of the solution θ
being computed. On the other hand, limit 2 must also control that those
variables bounded in θ by a simple binding are not introduced in Z and W
simultaneously.

6Note that for Problem (5′), the use of Function 2= is not possible.
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function limit 1({t1, . . . , tm},{s1, . . . , sn}, Z);
1. if {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal, then choose n.d.

S ⊆ {s1, . . . , sn}: return {Z
.= S};

2. elseif m = 1 and n > 1, then return {si
.= t1 : 1 ≤ i ≤ n} ∪ {Z

.= ∅};
3. elseif m = 1 and n = 1 or m > 1 and n = 1, then choose n.d. T ⊆ {s1}:

return {ti
.= s1 : 1 ≤ i ≤ m} ∪ {Z

.= T};
4. else fix i ∈ {1, . . . , m} and choose n.d. one of the following actions:

i. choose n.d. j ∈ {1, . . . , n} and T ⊆ {sj}:
return {ti

.= sj} ∪ {Z
.= T ∪ Z ′} ∪

limit 1({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sj−1, sj+1, . . . , sn}, Z ′);
ii. choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2:

return {s
.= ti : for all s ∈ S} ∪

limit 1({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn} − S, Z);
iii. choose n.d. T ′ ⊂ {t1, . . . , ti−1, ti+1, . . . , tm}, j ∈ {1, . . . , n} and T ⊆ {sj}:

return {t
.= sj : for all t ∈ T ′} ∪ {ti

.= sj} ∪ {Z
.= T ∪ Z ′}∪

limit 1({t1, . . . , ti−1, ti+1, . . . , tm} − T ′, {s1, . . . , sj−1, sj+1, . . . , sn}, Z ′).

Figure 7: Function limit 1.

4.1 Termination, Correctness, and Minimality of SUA

The following definition is helpful for the termination proof. Let E be a
system of equations, and let p be the total number of occurrences of function
symbols in the system. Then a function lev : Var(E) −→ N extended to
nonvariable terms as follows:

lev(f(t0, . . . , tn)) = max{1 + lev(t0), . . . , 1 + lev(tn)} f ∈ Σ, f 6≡ {· | ·}
lev({t | s}) = max{1 + lev(t), lev(s)}

and fulfilling condition (i) lev(`), lev(r) ≤ p, for any equation `
.= r in

E , always exists. If we require the further condition (ii) lev(`) = lev(r)
for any equation `

.= r in E , then such a lev may not exist (e.g., when
E = {X

.= f(X)}).

Lemma 3 Let E be a unifiable Herbrand system; then a function lev whose
extension to terms fulfills both conditions (i) and (ii) always exists.

Let {X
.= t} ∪ E be an equation system, and let p be the number of

occurrences of functional symbols in it. Assume X does not occur in t and
assume the function lev fulfills condition (i). Moreover, assume that lev is
such that lev(X) = lev(t). Then lev fulfills condition (i) also for the system
E [X/t] ∪ {X

.= t}.
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Algorithm SUA calls to the functions unify set, unify set2, limit 1, and
limit 2. To prove the termination of them is straightforward. In the proof of
the following theorem, we also make use of their semantics.

Theorem 2 (Termination) For any input system E, SUA always termi-
nates, no matter what nondeterministic sequence of choices is made.

Proof of Theorem 2 Assume that there is an infinite sequence of non-
deterministic choices such that SUA(E) does not terminate. Let E(0), E(1), E(2), . . .
be the values of E at the 0th, 1st, 2nd, . . . iteration, respectively, and let p
be the number of occurrences of functional symbols in E(0). A function
lev : Var(

⋃
j≥0 E(j)) −→ N must necessarily exist such that:

• the function fulfills condition (i) for all equation sets E(j), and

• any time a substitution [X/t] has been applied (Actions 0 and 3), then
lev(X) = lev(t).

If the function did not exist, then a failure situation caused by occur check
would rise, causing the computation to be finite.

Picking such a lev , we define a measure of complexity LE for the equa-
tion set E : LE =Def [#(2p), #(2p − 1), #(2p − 2), . . . , #(1), #(0)] where
#(j) returns the number of equations not in solved form `

.= r in E such that
lev(`) + lev(r) = j. The ordering between two lists of this form is the well-
founded lexicographical ordering.

It is easy to see that Actions 0, 1, 3, and 8 cause LE to strictly decrease.
Actions 4, 9, 11, 12, and 13 do not increase LE ; however, they introduce
active (i.e., marked by ∗) equations that will be eliminated immediately by
Action 0. Actions 2 and 10 leave LE unchanged; nevertheless, they at most
can double the number of actions, hence we may forget them. Because the
lexicographical ordering on constant-length lists of non-negative integers is
well-ordered, this is sufficient to prove termination.

Proof of Theorem 2 2

The above theorem proves that the SUA search tree does not contain
infinite branches: this guarantees that SUA computes a finite number of
unifiers.
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function limit 2({t1, . . . , tm},{s1, . . . , sn} Z,W );
1. If {t1, . . . , tm} and {s1, . . . , sn} are syntactically equal then choose n.d.

T ⊆ {t1, . . . , tm} and S ⊆ {s1, . . . , sn}: return {Z
.= T, W

.= S};
2. elseif m = 1 and n > 1 then choose n.d. T ⊆ {t1}:

return {si
.= t1 : 1 ≤ i ≤ n} ∪ {Z

.= T, W
.= ∅};

3. elseif n = 1 and m > 1 then choose n.d. S ⊆ {s1}:
return {ti

.= s1 : 1 ≤ i ≤ m} ∪ {Z
.= ∅, W

.= S};
4. elseif m = 1 and n = 1 then choose n.d. T ⊆ {t1}, S ⊆ {s1}

such that T ∪ S 6= {t1, s1}:
return {t1

.= s1, Z
.= T, W

.= S};
5. else fix i ∈ {1, . . . , m} and choose n.d. one of the following actions:

i. choose n.d. j ∈ {1, . . . , n} and S ⊆ {sj}, T ⊆ {tj}
such that T ∪ S 6= {sj , ti}:
return {ti

.= sj , W
.= S ∪ W ′, Z .= T ∪ Z ′}∪

limit 2({t1, . . . , ti−1, ti+1, . . . , tm},
{s1, . . . , sj−1, sj+1, . . . , sn}, Z ′, W ′);

ii. choose n.d. S ⊂ {s1, . . . , sn} such that |S| ≥ 2, T ⊆ {ti}:
return {s

.= ti : for all s ∈ S} ∪ {Z
.= T ∪ Z ′}∪

limit 2({t1, . . . , ti−1, ti+1, . . . , tm}, {s1, . . . , sn} − S, Z ′, W );
iii. choose n.d. T ⊂ {t1, . . . , ti−1, ti+1, . . . , tm},

j ∈ {1, . . . , n} and S ⊆ {sj}:
return {t

.= sj : for all t ∈ T} ∪ {ti
.= sj , W

.= S ∪ W ′}∪
limit 2({t1, . . . , ti−1, ti+1, . . . , tm} − T, {s1, . . . , sj−1, sj+1, . . . , sn}, Z, W ′).

Figure 8: Function limit 2.

Theorem 3 (Correctness and Completeness) The algorithm SUA is cor-
rect and complete with respect to the well-founded theory of hybrid sets Set
presented in Section 2.

Proof of Theorem 3 Actions 1 and 2 are justified by reflexivity and sym-
metry of equality, respectively. Action 3 is the substitution application. Its
correctness (and completeness) follows from equality axioms. Actions 5 and
6 are the occur check, justified by well-foundedness on (set) terms. Actions
0i and 0ii are combinations of Actions 3, 5, and 6.

Actions 7 and 8 are justified by Clark’s equality theory or CET (see [Cla78]).
Action 0iii is a combination of Actions 7 and 8.

Note that in Action 4, a unifier of X = {t1, . . . , tn |X} is θ = [X/{t1, . . . ,
tn |N}], where N is a new variable. As a matter of fact, {t1, . . . , tn |N} can
be proved equal to {t1, . . . , tn, t1, . . . , tn |N} by (Ab) and (C`). Moreover, any
unifier µ of the above equation must guarantee that t1µ ∈ Xµ, . . . , tnµ ∈ Xµ.
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Hence, θ is the most general unifier.
Soundness and completeness of Actions 9–13 follow because they consti-

tute a general schemata for every set-to-set equation. As shown in Section 3,
finding all solutions from Problems (1)–(4) is sufficient to be able to compute
all solutions to any set-to-set equation. This allows us to say that complete-
ness follows from the minimality result (Theorem 4 below).

Proof of Theorem 3 2

It remains to show that the unification algorithm SUA is minimal with
respect to all chosen sample problems. We will deal only with set terms
ended by the constant symbol ∅. This simplifies the analysis of Actions 9
and 11 of the algorithm (k and k′ are both ∅). The very long and technical
proof is not given completely here, due to space limitations. We only show
the minimal behavior of SUA for Problem (1), in which most of the analyzed
problems are based. Interested readers can consult [ASD95] for a complete
proof.

Lemma 4 A call to unify set({X1, . . . , Xm}, {Y1, . . . , Yn}) computes exactly
Φ(m, n) solutions.

Proof of Lemma 4 Straightforward (by induction on m).

Proof of Lemma 4 2

Lemma 5 If θ is an answer computed by unify set({X1, . . . , Xm}, {Y1, . . . ,
Yn}), m, n ≥ 1, then

θ ∈ CSUSet({X1, . . . , Xm}, {Y1, . . . , Yn})

Proof of Lemma 5 Let θ be a computed answer. We will prove, by induc-
tion on m, that θ ∈ CSUSet({X1, . . . , Xm}, {Y1, . . . , Yn}).
Base) If m = 1, the result holds trivially (only Action 2 or Action 3 can be
fired).
Step) Let θ be a solution computed by unify set({X1, . . . , Xm+1}, {Y1, . . . ,
Yn}), m ≥ 1.

If n = 1, the result holds trivially, since only Action 3 can be fired.
Otherwise, Action 4(a) was the first action executed. Suppose i, (1 ≤

i ≤ (m + 1)) was the fixed number related to such an action. Three different
alternatives depending on the first subaction used in the computation of θ
are possible:
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1. If 1= was used, then θ is of the form [Xi/Yj] ∪ θ′, where, θ′ is a solution
computed by

unify set({X1, . . . , Xi−1, Xi+1, . . . , Xm+1}, {Y1, . . . , Yj−1, Yj+1, . . . , Yn})

for some j, 1 ≤ j ≤ n. By induction hypothesis,

θ′ ∈ CSUSet({X1, . . . , Xi−1, Xi+1, . . . , Xm+1}, {Y1, . . . , Yj−1, Yj+1, . . . , Yn})

thus, θ is a unifier for the problem at hand. It remains to prove that

θ ∈ CSUSet({X1, . . . , Xi−1, Xi+1, . . . , Xm+1}, {Y1, . . . , Yj−1, Yj+1, . . . , Yn})

By contradiction, assume that there exists a unifier η for the sets
{Y1, . . . , Yn} and {X1, . . . , Xm+1} such that θ = η ◦ γ, for some substi-
tution γ. Consider the two substitutions:

η1 = {Xi/s ∈ η : sγ ≡ Yj}
η2 = {t/s ∈ η : t 6≡ Xi or sγ 6≡ Yj}

It is easy to see that η = η1∪η2. On the other hand, η1 is not empty; as
a matter of fact, if this were the case, then Xi/t or t/Xi would belong
to η2:7

• if Xi/t ∈ η2, since Xi/Yj ∈ θ, then tγ ≡ Yj (a contradiction with
respect to the definition of η2);

• assuming t/Xi ∈ η2, since Xi/Yj ∈ θ and θ = η ◦ γ, then Xi/Yj ∈
γ; thus t/Yj, Xi/Yj ∈ θ (a contradiction with respect to the struc-
ture of θ).

Hence, η1 = {Xi/t} and tγ = Yj. Notice that t ≡ Yj. As tγ = Yj, then
t/Yj ∈ γ, and t 6≡ Yj. Now, since Xi/t ∈ η, and η is a unifier, then
t 6∈ dom(η), and t 6≡ Xi. Thus t/Yj ∈ η ◦ γ ≡ θ. But t 6≡ Xi, then
t/Yj ∈ θ′ (a contradiction with respect to the structure of θ′).

7Note that if θ is a unifier to Problem (1), then {X1, . . . , Xm, Y1, . . . , Yn} ⊆ dom(θ) ∪
range(θ).
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On the other hand, since Xi/Yj ∈ η1 ⊆ η, then Yj 6∈ dom(η). Thus
Yj/· 6∈ γ. Note that Yj does not occur in η2. Otherwise, Z/Yj ∈ η2,
Z 6≡ Yj, and Z 6≡ Xi. As Yj/· 6∈ γ, then Z/Yj ∈ θ′, and this is again a
contradiction with respect to the structure of θ′.

Thus η1 = {Xi/Yj}. Since η is a unifier for the problem at hand,
and Xi, Yj 6∈ dom(η2) ∪ range(η2), then:

η2 ∈ CSUSet({X1, . . . , Xi−1, Xi+1, . . . , Xm+1}, {Y1, . . . , Yj−1, Yj+1, . . . , Yn})

Now [Xi/Yj ]∪θ′ = [Xi/Yj ]◦γ∪η2◦γ; necessarily θ′ = η2◦γ, but this is a con-
tradiction since θ′ is a most general unifier for {X1, . . . , Xi−1, Xi+1, . . . , Xm+1}
and {Y1, . . . , Yj−1, Yj+1, . . . , Yn}, by induction hypothesis.

2. If 2= or 3= were used as the first action in the computation of θ, then the
result would follow similarly to the previous case.

Proof of Lemma 5 2

Lemma 6 If θ and θ′ are solutions computed by two distinct nondetermin-
istic computations of unify set({X1, . . . , Xm}, {Y1, . . . , Yn}), m, n ≥ 1, then
θ 6≡ θ′.

Proof of Lemma 6 By induction on m.
Base) If m = 1, then the result follows trivially.
Step) Assume that the result holds for m ≥ 1. Let θ and θ′ be computed
answers for {X1, . . . , Xm+1} .= {Y1, . . . , Yn}. If the first actions executed to
compute θ and θ′ are i= and j=, i 6= j, respectively, then the result holds
trivially. Otherwise, suppose we have applied 1= as the first action in the
computation of both solutions. Then:

θ = [Xi/Yj ]∪
unify set({X1, . . . , Xi−1, Xi+1, . . . , Xm+1}, {Y1, . . . , Yj−1, Yj+1, . . . , Yn})︸ ︷︷ ︸

θ1

θ′ = [Xi/Yp]∪
unify set({X1, . . . , Xi−1, Xi+1, . . . , Xm+1, {Y1, . . . , Yp−1, Yp+1, . . . , Yn})︸ ︷︷ ︸

θ2
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where j, p ∈ {1, . . . , n}. If j 6= p, then the result holds trivially. If j = p, then
by induction hypothesis, θ1 6≡ θ2; since Xi 6∈ dom(θ1)∪dom(θ2)∪range(θ1)∪
range(θ2), then θ 6≡ θ′.

Applying similar reasonings, it can be proved that the result holds when
2= or 3= are used as first computation steps for θ and θ′.

Proof of Lemma 6 2

Proposition 1 The algorithm SUA enumerates without repetitions a mini-
mal complete set of independent unifiers to Problem (1).

Proof of Proposition 1 It is a consequence of Lemmas 4, 5, and 6.

Proof of Proposition 1 2

Theorem 4 (Minimality) The algorithm SUA is minimal with respect to
all 10 sample problems described in Section 3, i.e., SUA enumerates with-
out repetitions a minimal complete set of independent unifiers, to any given
unification problem belonging to one of the 10 given kinds.

Proof of Theorem 4 The minimality of SUA for Problem (1) is proved in
Proposition 1. For the other analyzed problems, see [ASD95] (for each of
them, the proof follows the reasoning performed in the corresponding part
of Section 3).

Proof of Theorem 4 2

4.2 Solutions Computed by a Näıve Algorithm

The aim of this section is to test an existing set-unification algorithm to show
its behavior for problems presented in Section 3. We see that the algorithm
is only minimal for Problem (1′). For the rest, the number of computed
unifiers is strictly greater than the minimal number of independent unifiers,
as is reported in the tables in Appendices B and C.

The Prolog code given in Figure 9 defines the predicate naive, and it is
the core of the general set-unification algorithm presented in [Jay92]. Both
algorithms do not terminate for Problem (3) (same rest variables). An ex-
tension of these algorithms covering this case can be found in [DOPR96]. For
the sake of simplicity, we have not written here a Prolog code for the latter
algorithm; however, we will refer to it as naive∗.
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naive(A,B) :−
(var(A); var(B)), !,A = B.

naive(A,B) :−
A =.. [F |Alist],
B =.. [F |Blist],
F 6= ′. ′, !,
naive all(Alist,Blist).

naive([T |Trest], [S |Srest]) :−
naive(T,S), naive(Trest,Srest).

naive([T |Trest], [S |Srest]) :−
naive(T,S), naive([T |Trest],Srest).

naive([T |Trest], [S |Srest]) :−
naive(T,S), naive(Trest, [S |Srest]).

naive([T |Trest], [S |Srest]) :−
naive([T |New],Srest),
naive(Trest, [S |New]).

Figure 9: A naive set-unification algorithm.

Functional symbols ∅ and {· | ·} are represented by [ ] and [· | ·], respec-
tively.

Predicate naive all is recursively defined on lists in the natural way. The
naive algorithm has a minimal behavior for Problem (1′) only. This is stated
in the following lemmata. As in Section 3, Xi, Yj, W, and Z denote pairwise-
distinct variables, while a1, . . . , an denote distinct constants.

Lemma 7 The Prolog execution of the goal

:− naive([X1, . . . , Xm], [a1, . . . , an])

returns exactly Surj (m, n) solutions, namely, it is minimal with respect to
Problem (1′).

Lemma 8 The number of solutions computed by the Prolog execution of the
goal

:− naive([X1, . . . , Xm], [Y1, . . . , Yn])

is computed by the following function


f2(m, 1) = 1 m ≥ 1
f2(1, n) = 1 n > 1
f2(m, n) = f2(m − 1, n − 1) + f2(m, n − 1)+ m, n > 1

nf2(m − 1, n) +
∑n−2

i=0

(
n
i

)
f2(m − 1, i + 1)

The naive program treats Problems (1) and (5) exactly the same way.
For instance, when m = 2, n = 2, and k = 3, 95,401 solutions are computed
instead of the 56 that are needed, showing its bad behavior in some cases.
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Lemma 9 The function f8, computing the number of solutions generated by
the Prolog execution of the goal

:− naive([X1, . . . , Xm |W ], [Y1, . . . , Yn |Z])

can be defined as follows:


f8(1, 1) = 4
f8(m, 1) = 3 · 2m − 2 m > 1
f8(1, n) = 3 · 2n − 2 n > 1
f8(m, n) = f8(m − 1, n − 1) + f8(m, n − 1)+ m, n > 1

(n + 1)f8(m − 1, n) +
∑n−2

i=0 (
(

n
i

)
+
(

n−1
i

)
)f8(m − 1, i + 1)

As already sketched, the presented naive program is not sufficient to deal
with Problem (3) (same rest variables). However, referring to the Prolog
implementation of the complete algorithm presented in [DOPR96] (assume
it is named naive∗), it is easy to prove the following.

Lemma 10 The function f7 returning the number of solutions computed by
the Prolog execution of the goal

:− naive∗([X1, . . . , Xm |Z], [Y1, . . . , Yn |Z])

is recursively defined as follows:


f7(0, n) = 1 n ≥ 0
f7(m, 0) = 1 m > 0
f7(m, n) = n(f7(m − 1, n − 1) + f7(m, n − 1)) + m > 0, n > 0

(n + 1)f7(m − 1, n)

5 Conclusions

In this paper, we have presented a deep combinatorial study for a signifi-
cant collection of set-unification problems, to determine the cardinality of
their minimal complete set of independent unifiers. Functions computing
the minimal number of unifiers for such selected problems have also been
reported. Furthermore, due to the recursive nature of such functions, it has
been possible to develop tables showing some values for them. Comparing
these tables with the computed ones for an existing näıve algorithm, it is
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possible to conclude that this näıve algorithm presents a bad behavior for all
analyzed problems except Problem (1′), for which it is minimal. These tables
also show that searching minimal set-unification algorithms is an interesting
line of research: since the minimal number of solutions is big by itself, it is
very important to avoid repeated solutions and solutions that are instances
of other solutions.

The paper also describes a new set-unification algorithm, SUA, based on
the ideas behind the previous combinatorial analysis. Thus, SUA has a mini-
mal behavior for all the presented problems, that is, it computes exactly the
complete set of minimal unifiers for the problems. Although the minimality
of SUA has only been proved for the problems presented in Section 3, due to
their relevance—they can be used for testing any set-unification algorithm—it
is reasonable to expect good behavior from SUA for any instance of the set-
unification problem. Finally, we deem that SUA can advantageously replace
any other known set-unification algorithms in implementations of set-based
logic programming languages (for instance, in the implementation of {log}
presented in [DP93]).
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A Minimal Unifiers

The following tables report some numerical values for the functions comput-
ing the minimal number of most general unifiers for the sample problems
presented in Section 3. The number on the x-axis denotes the value for m
(the first argument).

(1′) {X1, . . . , Xm} .= {a1, . . . , an}

(1′) 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 2 6 14 30 62 126
3 6 36 150 540 1,806
4 24 240 1,560 8,400
5 120 1,800 16,800
6 720 15,120
7 5,040

(1) {X1, . . . , Xm} .= {Y1, . . . , Yn}

(1) 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 2 6 14 30 62 126
3 15 48 165 558 1,827
4 184 680 2,664 11,032
5 2,945 13,080 59,605
6 63,756 320,292
7 1,748,803
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(2′) {X1, . . . , Xm |Z} .= {a1, . . . , an}

(2′) 1 2 3 4 5 6 7
1 2 2 2 2 2 2 2
2 4 12 28 60 124 252 508
3 6 30 126 462 1,566 5,070 15,966
4 8 56 344 1,880 9,368 43,736 195,224
5 10 90 730 5,370 36,250 228,090 1,359,130
6 12 132 1,332 12,372 106,452 856,212 6,505,812
7 14 182 2,198 24,710 259,574 2,562,182 23,928,758

(2) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn}

(2) 1 2 3 4 5 6 7
1 2 2 2 2 2 2 2
2 5 12 28 60 124 252 508
3 10 42 144 486 1,596 5,106 16,008
4 19 126 584 2,584 11,208 48,248 205,864
5 36 360 2,200 11,930 63,000 330,450 1,733,000
6 69 1,016 8,118 52,740 325,812 1,983,084 12,073,836
7 134 2,870 29,876 231,518 1,641,444 11,310,530 77,511,140

(3′) {X1, . . . , Xm |Z} .= {a1, . . . , an |Z}

(3′) 1 2 3 4 5 6 7
1 2 4 8 16 32 64 128
2 11 30 85 248 735 2,194
3 94 308 1,104 4,210 16,538
4 1,041 3,920 16,981 80,260
5 14,006 59,412 303,428
6 221,971 1,048,054
7 4,063,382

(3) {X1, . . . , Xm |Z} .= {Y1, . . . , Yn |Z}

(3) 1 2 3 4 5 6 7
1 2 4 8 16 32 64 128
2 11 30 85 248 735 2,194
3 103 356 1,269 4,678 17,735
4 1,441 5,940 25,237 110,668
5 27,631 131,142 640,513
6 685,507 3,660,958
7 21,169,037
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(4′) {X1, . . . , Xm |W} .= {a1, . . . , an |Z}

(4′) 1 2 3 4 5 6 7
1 4 9 18 35 68 133 262
2 7 35 125 393 1,175 3,447 10,057
3 10 79 484 2,371 10,342 42,523 169,624
4 13 141 1,257 9,209 57,269 321,661 1,700,281
5 16 221 2,606 26,091 223,496 1,683,441 11,599,186
6 19 319 4,693 60,145 671,563 6,600,163 58,356,577
7 22 435 7,680 120,443 1,674,170 20,690,167 229,717,972

(4) {X1, . . . , Xm |W} .= {Y1, . . . , Yn |Z}

(4) 1 2 3 4 5 6 7
1 4 9 18 35 68 133 262
2 39 131 413 1,185 3,459 10,071
3 652 2,811 11,402 44,983 175,224
4 15,937 82,499 409,897 1,997,795
5 524,056 3,133,773 18,217,350
6 21,998,671 148,144,723
7 1,136,372,140

Problem (5) (numerically equal to Problem (5′)) would require a three-
dimensional matrix to represent its values.

(5) {X1, . . . , Xm, Z1, . . . , Zk} .= {Y1, . . . , Yn, Z1, . . . , Zk}
(5′) {X1, . . . , Xm, a1, . . . , ak} .= {Y1, . . . , Yn, a1, . . . , ak}

Assume k = 1:

(5) 1 2 3 4 5 6 7
1 1 3 7 15 31 63 127
2 6 17 56 187 610 1,941
3 57 193 713 2,853 11,917
4 744 3,069 13,288 60,449
5 13,655 64,231 317,917
6 324,828 1,716,889
7 9,641,737
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k = 2:

(5) 1 2 3 4 5 6 7
1 3 7 21 67 213 667 2,061
2 20 60 204 776 3,148 13,096
3 203 766 3,109 13,484 62,223
4 3,082 13,454 62,978 311,814
5 62,657 310,834 1,632,265
6 1,627,418 9,000,178
7 52,179,619

k = 3:

(5) 1 2 3 4 5 6 7
1 7 19 61 223 877 3,559 14,581
2 56 195 746 3,093 13,808 65,391
3 705 2,859 12,681 60,231 302,829
4 12,226 56,891 284,286 1,510,483
5 277,091 1,448,325 8,044,117
6 7,888,698 45,590,823
7 273,498,973

B Unifiers Computed by Naive

The algorithm naive, presented in Section 4.2, is minimal for Problem (1′).
The following tables report some values concerning with the number of uni-
fiers returned by this algorithm on the sample Problems (1) and (4). For
Problem (3) we have used8 the algorithm presented in [DOPR96] (named
naive∗ in Section 4.2).

(1) 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 5 13 29 61 125 253
3 73 301 1,081 3,613 11,953
4 2,069 11,581 57,749 268,381
5 95,401 673,261 4,306,681
6 6,487,445 55,213,453
7 610,093,513

8Remember that naive does not terminate for Problem (3).
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(3) 1 2 3 4 5 6 7
1 4 10 22 46 94 190 382
2 13 67 265 931 3,073 9,787 30,505
3 46 424 2,692 14,356 69,436 316,324 1,386,172
4 193 2,845 26,689 201,637 1,343,353 8,259,805 48,109,009
5 976 21,046 273,946 2,785,306 24,436,786 194,636,506 1,449,663,106
6 5,869 173,215 2,982,457 39,232,711 437,961,529 4,380,170,455 40,526,990,857
7 41,098 1,582,372 34,748,680 573,495,616 3,913,855,304 65,037,766,320 834,652,259,744

(4) 1 2 3 4 5 6 7
1 4 10 22 46 94 190 382
2 52 208 736 2,440 7,792 24,328
3 1,372 7,516 37,012 170,668 754,132
4 60,316 418,996 2,653,036 15,780,916
5 3,964,684 33,340,420 258,420,172
6 363,503,932 3,587,040,388
7 44,280,657,292

C Comparing Results

We conclude the appendix by juxtaposing some results to make the improve-
ments of SUA vs. naive (Problems (1) and (4)) and naive∗ (Problem (3))
more graphic. We consider the diagonal of some of the presented tables (i.e.,
when m = n).

(1) 1 2 3 4 5 6 7
Naive 1 5 73 2,069 95,401 6,487,445 610,093,513
SUA 1 2 15 184 2,945 63,756 1,748,803
Ratio 1 2.5 4.9 11.2 32.4 101.8 348.9

(3) 1 2 3 4 5 6 7
Naive∗ 4 67 2,692 201,637 24,436,786 4,380,170,455 834,652,259,744
SUA 2 11 103 1,441 27,631 685,507 21,169,037
Ratio 2 6.1 26.1 139.9 884.4 6,389.7 39,428.0

(4) 1 2 3 4 5 6 7
Naive 4 52 1,372 60,316 3,964,684 363,503,932 44,280,657,292
SUA 4 39 652 15,937 524,056 21,998,671 1,136,372,140
Ratio 1 1.3 2.1 3.8 7.6 16.5 39.0

Notice that in each of these cases, the ratio grows (at least) exponentially!
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