
The Journal of Functional and
Logic Programming

The MIT Press

Volume 1998, Article 1
16 January, 1998

ISSN 1080–5230. MIT Press Journals, Five Cambridge Center, Cambridge,
MA 02142-1493, USA; (617)253-2889; journals-orders@mit.edu, journals-info
@mit.edu. Published one article at a time in LATEX source form on the
Internet. Pagination varies from copy to copy. For more information and
other articles see:

• http://www.cs.tu-berlin.de/journal/jflp/

• http://mitpress.mit.edu/JFLP/

• gopher.mit.edu

• ftp://mitpress.mit.edu/pub/JFLP

c©1998 Massachusetts Institute of Technology. Subscribers are licensed to
use journal articles in a variety of ways, limited only as required to insure fair
attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.

Lucas Context-Sensitive Computations (Info)

The Journal of Functional and Logic Programming is a peer-reviewed and
electronically published scholarly journal that covers a broad scope of topics
from functional and logic programming. In particular, it focuses on the
integration of the functional and the logic paradigms as well as their common
foundations.

Editor-in-Chief: G. Levi

Editorial Board: H. Aı̈t-Kaci L. Augustsson
Ch. Brzoska J. Darlington
Y. Guo M. Hagiya
M. Hanus T. Ida
J. Jaffar B. Jayaraman
M. Köhler∗ A. Krall∗

H. Kuchen∗ J. Launchbury
J. Lloyd A. Middeldorp
D. Miller J. J. Moreno-Navarro
L. Naish M. J. O’Donnell
P. Padawitz C. Palamidessi
F. Pfenning D. Plaisted
R. Plasmeijer U. Reddy
M. Rodŕıguez-Artalejo F. Silbermann
P. Van Hentenryck D. S. Warren

∗ Area Editor

Executive Board: M. M. T. Chakravarty A. Hallmann
H. C. R. Lock R. Loogen
A. Mück

Electronic Mail: jflp.request@ls5.informatik.uni-dortmund.de

[ii]

The Journal of Functional and Logic Programming 1998-1

Context-Sensitive Computations in Functional
and Functional Logic Programs

Salvador Lucas

16 January, 1998

Abstract

Context-sensitive rewriting is a refined form of rewriting that ex-
plores a smaller reduction space by imposing some fixed restrictions on
the replacements. Any Term Rewriting System (TRS) can be given a
context-sensitive rewrite relation. In this paper, we review the theory
of context-sensitive rewriting and formulate conditions to guarantee
the confluence of this relation. Also, for left-linear TRSs, we show
that the (eventually obtained) computed value of a given expression
can also be produced by context-sensitive rewriting, thus furnishing
more efficient and still complete computations. We give the proce-
dure for establishing the adequate replacement restrictions in order
to achieve this. Finally, we raise the concept of context-sensitive re-
strictions from rewriting to narrowing, and provide the corresponding
completeness results.1

1 Introduction

The operational semantics of functional languages is often given as term
rewriting [Klo92, Lal93]. In this setting, a functional program is a set of
equations that are interpreted as left-to-right rewrite rules [DJ90, Rea93].
The execution of a functional program for any input term consists of the
evaluation of the term using the rewrite rules until it cannot be further
reduced (i.e., until a normal form is reached). Variables occurring in the
input term are considered to be universally quantified, and they cannot be

1This paper includes an extended and revised version of [Luc96a, Luc96c].

1

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §1

instantiated [Red85]. When we consider terms with logic (existentially quan-
tified) variables, different instantiations of the variables can lead to different
computed values. The result is a different computational paradigm that inte-
grates functional and logic features, called functional logic programming (see
[Han94] for a recent survey). Because rewriting is not able to instantiate
these variables, a new operational principle is needed when we consider func-
tional logic languages. Usually, this operational mechanism is (some form
of) narrowing [Hul80, Red85].

In practice, at each reduction step, the concrete choice of the rule and the
subterm to which the rule applies is determined by a reduction strategy . For
instance, the evaluation of a function call f(t1, . . . , tk) using a lazy strategy
only evaluates arguments t1, . . . , tk if it is necessary. An eager strategy first
evaluates arguments, and then perfoms the reduction of f applied to the
evaluated arguments. The choice of a reduction strategy is crucial to ensure
termination of the evaluation process. Lazy evaluation strategies allow us
to deal with nonterminating programs and infinite data structures, because
they delay the evaluation of arguments in a function call until they are really
needed. As a drawback, the implementation of lazy strategies is expensive,
owing to the need for closures for the delayed arguments, that introduce
space and time overhead during program execution [PJ87]. We also need to
(efficiently) decide which argument is needed in each reduction step, which
is not a trivial matter (see [Dur94, HL91, KM91, O’D85, TSvEP93]). Eager
evaluation strategies do not have this problem, because we decide to evalu-
ate all arguments with no further considerations. However, they can easily
progress into nontermination.

Context-sensitive rewriting (csr) represents a simple approach to both
strategies. It is not a strategy, but a restriction of rewriting that is based
on introducing syntactic restrictions for the allowed replacements. Context-
sensitive rewriting always preserves termination, and can sometimes improve
it [Luc96b, Zan97]. Even if we cannot obtain termination, we can define
strategies that are able to use the restrictions that context-sensitive rewrit-
ing imposes as a basis for obtaining simple, efficient normalizing strategies
[Luc97].

Context-sensitive rewriting has special strong connections with the lazy
strategies of functional programming languages. Actually, the mechanism
that allows us to prevent the evaluation of some expressions can also be
used to declare that these reductions need not be done. Context-sensitive
rewriting does allow us to easily express fixed, meaningful restrictions on

2

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §1

rewriting, similar to the way that lazy reduction techniques approximate
“needed” reductions à la Huet and Lévy [HL91]. The link between these
topics is analyzed in [Luc97].
In context-sensitive rewriting [Luc95], for each function symbol in the signa-
ture Σ, we fix the set of replacing positions by means of a mapping:

µ : Σ → P(IN)

This replacement map specifies the set of positions that can eventually be
reduced. Given a term t, the subterm of t at the occurrence u is a redex of
the context-sensitive rewrite relation, if it is a redex [DJ90] and the symbols
in t that label the occurrences above u satisfy the particular replacement
condition.

Example 1 Consider the TRS:

if(true, x, y) → x and(true, x) → x
if(false, x, y) → y and(false, y) → false
0 + x → x
s(x) + y → s(x + y)

For an input expression if(and(true, false), 0 + s(0), 0), we should not reduce
the second and third arguments until the condition and(true, false) has been
evaluated. By defining a replacement map such as µ(if) = {1} (and even
µ(s) = µ(and) = µ(+) = {1}), undesirable reductions are avoided with no
extra control. This also enforces the “intended meaning” of the if-then-else
operation.

In this paper, we summarize the basic theory of csr and analyze con-
fluence of csr . We generalize two well-known results on confluence of unre-
stricted rewriting to csr . The first one is “terminating TRSs having joinable
critical pairs are confluent” [Hue80]. The second one is “orthogonal TRSs are
confluent” [HL91, O’D77]. The latter complements the previous one, since
it also applies to nonterminating TRSs.

When considering functional programs, we would like to use the replace-
ment restrictions introduced by csr to improve evaluations without sacrific-
ing completeness. Context-sensitive rewriting can compute different normal
forms for a given expression, since the confluence and the length of the deriva-
tions might be modified by the replacement restrictions. Thus, even if we

3

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §1.1

ensure that the context-sensitive computations are both finite and conver-
gent, it is also essential to characterize conditions to guarantee that the value
that is computed by unrestricted rewriting and the evaluation performed by
csr do coincide. In this case, it makes sense to use csr instead of unrestricted
rewriting. We formalize here the conditions ensuring these requirements. We
show how to define a replacement map for a given TRS, in order to obtain
completeness in computations leading to head-normal forms and values. Our
results apply to the class of left-linear TRSs. We illustrate with some exam-
ples the definition of the replacement maps, and how it is possible to combine
the improvements in termination with useful computations in functional pro-
gramming.

Because narrowing can be considered to be a natural extension of rewrit-
ing to deal with logical variables, it seems natural to investigate whether
the idea of restricting the positions of allowed reductions can be raised from
rewriting to narrowing. The evaluation strategies are also an important sub-
ject of research in functional logic programming [Han95, Red85]. By intro-
ducing replacement restrictions, we expect to have similar improvements in
efficiency, i.e., in avoiding useless computations. We define context-sensitive
narrowing as a limited form of narrowing that incorporates replacement re-
strictions of a similar kind within the standard narrowing relation. We prove
that the same kind of restrictions that provide complete evaluations using
csr also ensure that context-sensitive narrowing does not lose completeness.
This is the basis for using context-sensitive narrowing in evaluating goals with
logic variables. A common application of logic variables is to use them to
solve equations. We show that context-sensitive narrowing can also be used
to obtain complete, more general sets of solutions in equational reasoning.

1.1 Related Work

Using replacement restrictions is not new in programming. A well-known
example concerns the binary operator cons on lists (::) in its nonstrict ver-
sion [FW76, HM76]. In [FW76, HM76], a modification of the evaluation
modes for some basic operations of Lisp is proposed. In particular, the new
cons operator does not evaluate its arguments. This is similar to impose
µ(::) = Ø. Since Lisp functions are evaluated by processing lists built from
these operations, the restrictions over the basic operators, in some sense, are
raised to arbitrary Lisp functions. In [KW95, Mar90], the specification of
replacement restrictions is similar to ours: in a first stage, the authors also

4

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §1.1

limit the replacements that are allowed on the arguments of function sym-
bols. Next, the restriction is raised to occurrences of terms. Nevertheless,
the reduction relations that are defined by using the replacement restrictions
are different from csr, and the computational behavior and properties differ:
[KW95] uses the replacement restrictions on the arguments of functions to
implement lazy reductions in an eager mode by means of a program trans-
formation. Therefore, the restricted rewrite relation (called lazy rewriting)
is not used in practice. It is only an intermediate step for defining the trans-
formation and its properties. In fact, few and weak results on computational
properties for lazy rewriting (whose definition is more complex than ours)
are given. Thus, a practical use of the restricted reduction relation itself is
not feasible. A more-detailed comparison is given after our technical presen-
tation.

In [Mar90] the implementation of lazy reductions by means of graph re-
duction techniques based on a restricted class of TRSs is proposed. In fact,
the reduction relation defined by Maranget (called conditional reduction, al-
though it is not related to conditional TRSs) is more similar to csr than is
the lazy rewriting in [KW95]. Maranget proves some results on confluence
and neededness of conditional reduction. Our results are more general than
theirs, as we show below. This is mainly because the class of TRSs proposed
by Maranget is very restrictive. Also, some details are missed in Maranget’s
discussion on confluence of conditional reduction, which we point out in this
paper. In [Luc97], we compare the results on neededness.

The replacement map of csr describes purely syntactic information on re-
strictions that is easy to manage and implement, and, as opposed to [KW95],
the restrictions on the occurrences are a simple extension of the restrictions
on symbols of the signature. Computational properties of csr have been suf-
ficiently analyzed to make it a suitable tool for computing using functional
programs. Also, the previous approaches assume that either the program-
mer should specify the replacement restrictions [KW95, Mar90], or that the
restrictions would be deduced from strictness information [HW87, KW95].
The first assumption is not suitable if we want to automatically introduce
the optimization in compiling time (on unannotated programs). The sec-
ond assumption can be as complex as the strictness analyses are: strictness
analyses take into account not only the left-hand sides of rules but also the
right-hand sides, and they use fixpoint techniques to establish the strictness
information [CPJ85].

In this paper, we give an easy method for automatically calculating the
5

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §2

most-restrictive replacement map that makes csr equivalent (but more ef-
ficient) to unrestricted rewriting in computations leading to head-normal
forms and values. We only consider left-hand sides of rules to define them,
and no fixpoint technique is used. We have formally proven the efficiency of
context-sensitive computations using such replacement maps [Luc97].

The paper is organized as follows. In Section 2, we briefly review the
technical concepts and results used in the remainder of the paper. In Sec-
tion 3, we formulate some basic properties of the context-sensitive rewrite
relation, and we illustrate the usefulness of csr in functional programming.
Section 4 provides criteria for ensuring confluence of csr for a suitable class
of programs. Section 5 characterizes the preservation of evaluations when
using csr . Section 6 introduces context-sensitive narrowing, and proves its
completeness. Section 7 concludes the paper.

2 Preliminaries

Let us first introduce the main notations used in the paper. For full def-
initions, we refer to [DJ90, Hue80, Klo92, Lal93]. Throughout the paper,
V denotes a countable set of variables, and Σ denotes a signature: a set
of function symbols {f, g, . . .}, each with a fixed arity given by a function
arΣ : Σ → IN (or just ar, when the signature is clear from the context). By
T (Σ, V) we denote the set of terms built from symbols in the signature Σ
and variables in V . A k-tuple t1, . . . , tk of terms is denoted as t̃, where k will
be clarified from the context. Given a term t, V ar(t) is the set of variable
symbols in t.

Terms are viewed as labeled trees in the usual way. Occurrences u, v, . . .
are represented by chains of positive natural numbers used to address sub-
terms of t. By ε, we denote the empty chain. We denote as |u| the length of
a chain u. If u is an occurrence, and W is a set of occurrences, u.W is the
set {u.v | v ∈ W}. Occurrences are ordered by the standard prefix ordering:
u ≤ v if and only if there is a chain w such that v = u.w. By u ‖ v we denote
that u, v are not comparable by means of ≤.

The set of occurrences of a term t is denoted by O(t). A linear term is
a term having no multiple occurrences of the same variable. The subterm
of t at occurrence u is denoted by t|u. The set of occurrences of nonvariable
symbols in t is OΣ(t), and OV (t) is the set of variable occurrences. By Os(t),

6

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §2

we denote the set of occurrences of s in t, i.e., u ∈ Os(t) if and only if t|u = s.
Denote as t[s]u the term t with the subterm at the occurrence u replaced with
s. Denote as root(t) the symbol labeling the root of t. Denote as Σ(t) = {f ∈
Σ | ∃u ∈ O(t). root(t|u) = f} the set of symbols from Σ appearing in t. The
chain of symbols lying in occurrences above/on u ∈ O(t) is prefix t(u), defined
as follows: prefix t(ε) = root(t), prefix t(i.u) = root(t).prefix ti

(u). The strict
prefix sprefix t(u) is defined by sprefix t(ε) = ε, sprefix t(u.i) = prefix t(u). We
refer to any term C, which is the same as t everywhere except below u, i.e.,
there exists a term s such that C[s]u = t, as the context within which the
replacement occurs. Roughly speaking, a context is a term C with a “hole”
at a specific occurrence u. Sometimes we write C[]u to represent the context
itself.

Consider the following properties from [Hue80]. Assume t1, t2, t3 ∈ T (Σ, V).
If u ∈ O(t1), v ∈ O(t2), then (t1[t2]u)|u.v = t2|v (embedding), and t1[t2[t3]v]u =
t1[t2]u[t3]u.v (associativity). If u, v ∈ O(t1) and u ‖ v holds, we have (t1[t2]u)|v =
t1|v (persistence) and t1[t2]u[t3]v = t1[t3]v[t2]u (commutativity). When u ≤ v,
assume v = u.w to get t1|v = (t1|u)|w (cancellation), t1[t2]v[t3]u = t1[t3]u
(dominance), and (t1[t2]v)|u = (t1|u)[t2]w (distributivity).

Recall the main concepts and notations about the lattice of first-order
terms. A substitution is a mapping σ : V → T (Σ, V). Denote as ε the
“identity” substitution: ε(x) = x for all x ∈ V . The set Dom(σ) = {x ∈
V | σ(x) 6= x} is called the domain of σ. Whenever Dom(σ)∩Dom(σ′) = Ø,
for substitutions σ, σ′, we denote by σ ∪ σ′ a substitution such that (σ ∪
σ′)(x) = σ(x) if x ∈ Dom(σ), and (σ ∪ σ′)(x) = σ′(x) if x ∈ Dom(σ′). Given
a subset W ⊆ V , denote as σ ↓W the restriction of σ to variables in W :
σ↓W (x) = σ(x), if x ∈ W and σ↓W (x) = x if x 6∈ W . The quasi-ordering of
subsumption ≤ in T (Σ, V) is t ≤ t′ ⇔ ∃σ. t′ = σ(t). We denote as σ ≤ σ′[[W]]
the fact that σ(x) ≤ σ′(x) for all x ∈ W . We write σ ≤ σ′ if and only if
σ ≤ σ′[[Dom(σ) ∪ Dom(σ′)]].

The equivalence ≡ induced by ≤ on T (Σ, V) is t ≡ t′ ⇔ t ≤ t′ ∧ t′ ≤ t.
The ordering > can be defined as t > t′ ⇔ t′ ≤ t ∧ t 6≤ t′. Let T̂ be the
quotient set T (Σ, V)/ ≡ completed with a maximum element, >. T̂ is a
complete lattice. We denote the least upper bound (lub) of two terms t, t′

as t t t′. This term is unique modulo ≡, and can be found (if it exists) by a
unification algorithm. If this lub exists, we write t =? t′ and say that t and
t′ are unifiable. A term s overlaps a term t if it can be unified with some
nonvariable subterm of t. Terms s and t are not overlapping if neither s
overlaps t nor t overlaps s.

7

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3

A rewrite rule (labeled α) is an ordered pair (l, r), written α : l → r
(or just l → r), with l, r ∈ T (Σ, V), l 6∈ V , and V ar(r) ⊆ V ar(l). The
left-hand side (lhs) of the rule is l, and r is the right-hand side (rhs). A TRS
is a pair R = (Σ, R) where R is a set of rewrite rules. By L(R), we denote
the set of lhs’s of R. An instance σ(l) of an lhs l ∈ L(R) is a redex, and
OR(t) = {u ∈ O(t) | ∃l ∈ L(R). t|u = σ(l)} is the set of redex occurrences
in a term t. If OR(t) = Ø, then t is called a normal form.

A TRS (Σ, R) is left-linear, if all lhs’s of rules in R are linear terms.
Two rules l → r and l′ → r′ (having disjoint variables) overlap if there is a
nonvariable occurrence u ∈ OΣ(l) such that l|u and l′ unify with the most
general unifier (mgu) σ. Recall that a substitution σ is an mgu of terms
t, s if, for every other unifier σ′ of t and s, it holds that σ ≤ σ′. The pair
〈σ(l)[σ(r′)]u, σ(r)〉 is called a critical pair . A critical pair 〈σ(l)[σ(r′)]u, σ(r)〉
with u = ε is an overlay. A critical pair 〈t, s〉 is trivial if t = s. A TRS is
almost nonambiguous if all its critical pairs are trivial overlays. A TRS is
nonambiguous if there are no overlapping lhs’s (trivial overlap in the same lhs
is not considered). A left-linear, almost nonambiguous TRS is called almost
orthogonal . A left-linear, nonambiguous TRS is called orthogonal.

For a given TRS R = (Σ, R), a term t rewrites to a term s (at the

occurrence u), written
[u,α]→ R (or just t

u→R s, t →R s, or t → s) if t|u = σ(l)
and s = t[σ(r)]u, for some rule α : l → r ∈ R, occurrence u ∈ O(t),
and substitution σ. The one-step rewrite relation for R is →R. The inner
reduction relation is >ε−→ =→ \ ε→. A term t is a head-normal form (hnf), if
there is no derivation t = t1 → t2 → . . . starting from t that reduces the root
of a term ti, i ≥ 1.

A term t narrows to s, written t ;[u,α,σ] s (or just t ;σ s), if there is
u ∈ OΣ(t) and a variant (i.e., a renamed version) of a rule α : l → r such
that t|u and l unify with (idempotent) mgu σ, and s = σ(t[r]u). A narrowing
derivation (or ;derivation) t ;∗

θ s is such that either t = s and θ = ε or
t ;σ0 t1 ;σ1 . . . tn−1 ;σn−1 s and θ = σn−1 . . . σ1σ0.

IN+
k is an initial segment {1, 2, . . . k} of the set of positive natural numbers

IN+, where IN+
0 = Ø. P(IN) is the power set of natural numbers. Given a

finite set A, |A| is the number of elements in A.

8

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3

3 Context-Sensitive Rewriting

In csr [Luc95], we impose a syntactically based restriction that prevents our
having to perform some reductions. This is achieved by the replacement
map.

Definition 1 (Replacement Map) Let Σ be a signature. A mapping µ :
Σ → P(IN) is a replacement map (or Σ-map) for the signature Σ if and only
if for all f ∈ Σ. µ(f) ⊆ IN+

ar(f).

A Σ-map µ determines the argument positions µ(f) that can be reduced
for each symbol f in the signature Σ. If we assume an arbitrary ordering
in the signature2 Σ = {f1, . . . , fn}, then we can express a Σ-map as follows:
µ = 〈I1, . . . , In〉, where Ij = µ(fj) for 1 ≤ j ≤ n.

The set of replacement maps that can be defined for a given signature
Σ is denoted as MΣ. In particular, we consider MØ = {µ⊥

⊥}, where µ⊥
⊥ is

the unique replacement map that corresponds to the empty signature (the
unique mapping that can be defined from an empty set to any other set).

The ordering ⊆ on P(IN) extends pointwise to an ordering v on replace-
ment maps.

Definition 2 (Partial Order on Replacement Maps) Let Σ be a signa-
ture. Let MΣ be the set of all Σ-maps, and let µ, µ′ ∈ MΣ. We define a partial
order v on MΣ as follows: µ v µ′ ⇔ ∀f ∈ Σ. µ(f) ⊆ µ′(f).

Therefore, µ v µ′ means that µ considers less positions than µ′ for re-
duction. The distributive complete lattice (P(IN), ⊆, Ø, IN, ∪, ∩) induces a
distributive complete lattice (MΣ, v, µ⊥, µ>, t, u). The (bottom) Σ-map µ⊥
is µ⊥(f) = Ø for all f ∈ Σ: the (top) Σ-map µ> is µ>(f) = IN+

ar(f) for all
f ∈ Σ. The least upper bound (lub) binary operation, t, gives the least
replacement map µtµ′, which is greater than or equal to both µ and mu′. It
is given by (µtµ′)(f) = µ(f)∪µ′(f) for all f ∈ Σ. The greatest lower bound
(glb) binary operation, u, gives the greatest replacement map µuµ′, which is
less than or equal to both µ and µ′. It is given by (µ u µ′)(f) = µ(f) ∩ µ′(f)
for all f ∈ Σ. We denote as µ ‖ µ′ the fact µ 6v µ′ and µ′ 6v µ. The following
lemma is used later.

Lemma 1 µ 6v µ′ if and only if ∃f ∈ Σ.∃i ∈ IN+
ar(f). i ∈ µ(f) ∧ i 6∈ µ′(f).

2We usually take the order in which the symbols are written.

9

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3

Proof of Lemma 1

¬(∃f ∈ Σ.∃i ∈ IN+
ar(f). i ∈ µ(f) ∧ i 6∈ µ′(f))

if and only if
∀f ∈ Σ.∀i ∈ IN+

ar(f). i 6∈ µ(f) ∨ i ∈ µ′(f)

if and only if
∀f ∈ Σ.∀i ∈ IN+

ar(f). i ∈ µ(f) ⇒ i ∈ µ′(f)

if and only if µ v µ′.

Proof of Lemma 1 2

We are also interested in considering replacement maps from different
signatures Σ, Σ′. We define a generic operation : MΣ → MΣ′ which, given
a replacement map µ ∈ MΣ, provides the insertion µ of µ into MΣ′ : for all
f ∈ Σ′,

µ(f) =
{

µ(f) if f ∈ Σ and arΣ(f) = arΣ′(f)
Ø otherwise

Note that when we consider a signature Σ, we always have µ⊥
⊥ = µ⊥ ∈ MΣ.

This motivates the symbol µ⊥
⊥.

This operation makes it feasible to extend algebraic operations on re-
placement maps in MΣ to operations between replacement maps from dif-
ferent signatures. For instance, given µ ∈ MΣ and µ′ ∈ MΣ′ , we write
µtµ′ ∈ MΣ∪Σ′ instead of µtµ′. In this way, we actually use : MΣ → MΣ∪Σ′ ,

: MΣ′ → MΣ∪Σ′ , and the lub operation of MΣ∪Σ′ . We will do so (mainly
in Section 5) unless we specify differently.

Also, given a subset of function symbols ∆ ⊆ Σ, we denote as µ ↓∆

the ∆-map, which is the restriction of the Σ-map µ to symbols in ∆, i.e.,
µ↓∆ (f) = µ(f) for all f ∈ ∆.

The replacement map determines the positions of the arguments that can
be reduced for a given symbol of the signature. The replacement condition
indicates the occurrences that can be rewritten.

Definition 3 (Replacement Condition) Let Σ be a signature, and µ be a
Σ-map. Let t ∈ T (Σ, V) be a term. The replacement condition is a predicate
γµ,t defined on the set of occurrences O(t) as follows:

γµ,t(ε)
γµ,f(t1,...,tk)(i.u) ⇔ (i ∈ µ(f)) ∧ γµ,ti(u)

10

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.1

We say that u is a µ-replacing occurrence of t or that t|u is a µ-replacing
subterm if and only if γµ,t(u) holds.

We write γt(u) when the replacement map is clear from the context. We
introduce the following notation derived from the concept of the replacement
condition. Denote as Oµ(t) the set of replacing occurrences of a term t, i.e.,
u ∈ Oµ(t) ⇔ u ∈ O(t) ∧ γt(u). The set of nonreplacing occurrences is
Õµ(t) = O(t)\Oµ(t). The set of replacing variable occurrences is Oµ

V (t) =
OV (t) ∩ Oµ(t). The set of replacing nonvariable occurrences is Oµ

Σ(t) =
OΣ(t)∩Oµ(t). The set of replacing occurrences of a subterm s of t is Oµ

s (t) =
Os(t)∩Oµ(t). Denote as Varµ(t) the set of replacing variables of a term t, i.e.,
V arµ(t) = {x ∈ V ar(t) | Oµ

x(t) 6= Ø}. The set of exclusively nonreplacing
variables is ˜V arµ(t) = V ar(t)\V arµ(t).

3.1 Basic Properties of the Replacement Condition

Proposition 1 (Compositionality of the Evaluation of γt) Let Σ be
a signature, t ∈ T (Σ, V), and u ∈ O(t). Then the following statement holds:
u = u1.u2 ⇒ (γt(u) ⇔ (γt(u1) ∧ γt|u1

(u2))).

Proof of Proposition 1 By induction on the length of u1. If u1 = ε, then
u = ε.u2. Therefore, γt(u) ⇔ true ∧ γt|ε(u) ⇔ γt(ε) ∧ γt|ε(u) ⇔ γt(u1) ∧
γt|u1

(u2). If u1 = i.u′
1, then t = f(t1, . . . , tk), 1 ≤ i ≤ k, and u = i.u′

1.u2. By
the induction hypothesis, γt(u) ⇔ γt(i.u′

1.u2) ⇔ i ∈ µ(f) ∧ γti(u
′
1.u2) ⇔ i ∈

µ(f) ∧ γti(u
′
1) ∧ γti|u′

1
(u2) ⇔ γt(i.u′

1) ∧ γt|i.u′
1
(u2) ⇔ γt(u1) ∧ γt|u1

(u2).

Proof of Proposition 1 2

This proposition allows us to realize the evaluation of replacement con-
ditions in a compositional mode. As immediate consequences of this result,
we have the following corollaries.

Corollary 1 Let Σ be a signature, t ∈ T (Σ, V), and u, v ∈ O(t). The
following statements hold:

1. (u ≤ v ∧ γt(v)) ⇒ γt(u)

2. (u ≤ v ∧ ¬γt(u)) ⇒ ¬γt(v)

Proof of Corollary 1
11

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.1

1. If v = u.v′ then by Proposition 1, γt(v) ⇔ γt(u) ∧ γt|u(v′). By contra-
diction, assume that ¬γt(u), and thus ¬γt(v). Since we have γt(v), the
claim holds.

2. If v = u.v′ and ¬γt(u), then by Proposition 1 it is obvious that ¬γt(v)
holds.

Proof of Corollary 1 2

Corollary 2 Let Σ be a signature, t ∈ T (Σ, V), and u ∈ O(t). The following
statement holds: γt(u) ⇒ (u = u1.u2 ⇒ γt|u1

(u2)).

Proof of Corollary 2 Similar to Corollary 1(1).

Proof of Corollary 2 2

We can assert some properties about the persistence of evaluating the
replacement condition γt with respect to two transformations of the term t:
substitution application and subterm replacement.

Proposition 2 (Persistence, e.g., Substitutions) Let Σ be a signature,
t ∈ T (Σ, V), and u ∈ O(t). Let σ be a substitution. Then, γt(u) ⇔ γσ(t)(u).

Proof of Proposition 2 By structural induction on t. Base case: if t is a
variable or a constant symbol, we have O(t) = ε and γt(ε) ⇔ γσ(t)(ε). For the
induction step, let t = f(t1, . . . , tk) and σ(t) = f(σ(t1), . . . , σ(tk)). Then, by
the induction hypothesis, γσ(t)(u) ⇔ γσ(t)(i.u′) ⇔ i ∈ µ(f) ∧ γti(u

′) ⇔ γt(u)
since u ∈ O(t).

Proof of Proposition 2 2

Proposition 3 (Persistence, e.g., Subterm Replacements) Let Σ be a
signature, t, t′ ∈ T (Σ, V), and u, v ∈ O(t). Then,

1. u ≤ v ⇒ (γt(u) ⇔ γt[t′]v(u))

2. u ‖ v ⇒ (γt(u) ⇔ γt[t′]v(u))

Proof of Proposition 3

12

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.1

1. By induction on the length of u. Base: u = ε. Then, γt(ε) ⇔ γt[t′]v(ε).
Induction step: Let u = i.u′ and v = i.v′. By distributivity and by the
induction hypothesis, we have γt[t′]v(i.u′) ⇔ i ∈ µ(f) ∧ γ(t[t′]v)|i(u

′) ⇔
i ∈ µ(f) ∧ γt|i[t′]v′ (u′) ⇔ i ∈ µ(f) ∧ γt|i(u

′) ⇔ γt(u).

2. If u ‖ v, then there exists w ∈ O(t), which is the glb of {u, v}. There-
fore, u = w.i.u′ and v = w.j.v′ with i 6= j. Let s = t|w = f(t1, . . . , tk).
By distributivity, we get (t[t′]v)|w = (t[t′]w.j.v′)|w = (t|w)[t′]j.v′ = s[t′]j.v′ .
Since i, j.v′ ∈ O(s), then by the persistence property, (s[t′]j.v′)|i =
s|i = ti with i ‖ j.v′. By Proposition 1, γt[t′]v(u) ⇔ γt[t′]v(w.i.u′) ⇔
γt[t′]v(w) ∧ γ(t[t′]v)|w(i.u′). Now consider the following facts. First, by
Proposition 3(1), γt[t′]v(w) ⇔ γt(w), since w < v. Second, by the
previous statements we have: γ(t[t′]v)|w(i.u′) ⇔ γs[t′]j.v′ (i.u′) ⇔ i ∈
µ(f)∧γ(s[t′]j.v′)|i(u

′) ⇔ i ∈ µ(f)∧γs|i(u
′) ⇔ γs(i.u′) ⇔ γt|w(i.u′). There-

fore, we conclude γt[t′]v(u) ⇔ γt(w) ∧ γt|w(i.u′) ⇔ γt(w.i.u′) ⇔ γt(u).

Proof of Proposition 3 2

The following proposition establishes that replacement restrictions only
depend on symbols lying on occurrences above a given occurrence.

Proposition 4 If u ∈ O(t) ∩ O(s) and sprefix t(u) = sprefix s(u), then u ∈
Oµ(t) ⇔ u ∈ Oµ(s).

Proof of Proposition 4 By induction on the length of u. If u = ε, then
the result is immediate, since ε ∈ Oµ(t) for all t. Otherwise, let u = v.w.
By Proposition 1, u ∈ Oµ(t) ⇔ v ∈ Oµ(t) ∧ w ∈ Oµ(t|v). By the induction
hypothesis, v ∈ Oµ(t) ⇔ v ∈ Oµ(s) and w ∈ Oµ(t|v) ⇔ w ∈ Oµ(s|v). Hence,
by Proposition 1, u ∈ Oµ(t) ⇔ v ∈ Oµ(s) ∧ w ∈ Oµ(s|v) ⇔ u ∈ Oµ(s).

Proof of Proposition 4 2

The previous results allow us to devise more efficient methods for eval-
uating the replacement condition in context-sensitive systems. In practice,
this is important in implementing a method for computing the replacement
condition. Our results allow us to do this compositionally and incrementally,
with respect to the context-sensitive rewriting process that we describe in the
following section. In particular, Proposition 3 expresses the independence of
the calculus of the replacement condition from the context below and around

13

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.2

a given occurrence of a term. Proposition 4 expresses this fact in a comple-
mentary way. These features are useful in parallel implementations of csr
and, in general, in ensuring the locality of the calculus of the replacement
condition. As a consequence, this entails the locality of context-sensitive
computations.

The evaluation of the replacement condition is preserved by the ordering
v on replacement maps.

Proposition 5 (Monotonicity of γt, e.g., the Order v) Let Σ be a sig-
nature, t ∈ T (Σ, V), and u ∈ O(t). Let µ, µ′ be two Σ-maps such that µ v µ′.
Then we get γµ,t(u) ⇒ γµ′,t(u).

Proof of Proposition 5 By induction on the length of u. If u = ε, the
result is immediate. For the induction step, let u = i.u′ and t = f(t1, . . . , tk).
Since γµ,t(u) ⇔ i ∈ µ(f) ∧ γti(u

′), if we have γµ,t(u), we also have i ∈ µ(f)
and γµ,ti(u

′). By the induction hypothesis, we get γµ′,ti(u
′), and since i ∈

µ(f) ⇒ i ∈ µ′(f), then i ∈ µ′(f), and thus γµ′,t(u).

Proof of Proposition 5 2

In Figure 1, we summarize the previous properties, but we express them
without using the replacement condition. Thus, they are given in terms of
the set of replacing occurrences only. In some cases, a simpler formulation
arises. We need the following propositions from Huet [Hue80], which are used
below.

Proposition 6 ([Hue80]) Let Σ be a signature, t ∈ T (Σ, V), and σ be a
substitution. Then we have O(σ(t)) = O(t) ∪ ⋃

t|u∈V {u.v|v ∈ O(σ(t|u))}, and
therefore, for all u ∈ O(t):

1. if t|u = t′ 6∈ V , then σ(t)|u = σ(t′);

2. if t|u = x ∈ V , then σ(t)|u.v = σ(x)|v for all v ∈ O(σ(x)).

Proposition 7 ([Hue80]) Let Σ be a signature, t, t′ ∈ T (Σ, V), and σ be a
substitution. Then, for all u ∈ O(t), we have σ(t)[σ(t′)]u = σ(t[t′]u).

14

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.2

Assume the meaning of symbols to be as in the corresponding formal
statements.

Oµ(x) = {ε}
Oµ(f(t̃)) = {ε} ∪ ⋃

i∈µ(f) i.Oµ(ti)

Proposition 1 u1.u2 ∈ Oµ(t) if and only if
u1 ∈ Oµ(t) ∧ u2 ∈ Oµ(t|u1)

Corollary 1(1) u ≤ v ∧ v ∈ Oµ(t) ⇒ u ∈ Oµ(t)
Corollary 1(2) u ≤ v ∧ u 6∈ Oµ(t) ⇒ v 6∈ Oµ(t)
Corollary 2 u1.u2 ∈ Oµ(t) ⇒ u2 ∈ Oµ(t|u1)
Proposition 2 Oµ(t) ⊆ Oµ(σ(t))
Proposition 3(1) u ≤ v ⇒ (u ∈ Oµ(t) ⇔ u ∈ Oµ(t[t′]v))
Proposition 3(2) u ‖ v ⇒ (u ∈ Oµ(t) ⇔ u ∈ Oµ(t[t′]v))
Proposition 5 µ v µ′ ⇒ Oµ(t) ⊆ Oµ′(t)

Figure 1: Properties of the replacing occurrences.

3.2 The Context-Sensitive Rewrite Relation

Next we introduce the context-sensitive rewrite relation. Essentially, we only
allow replacements on occurrences that satisfy the replacement condition.

Definition 4 (Context-Sensitive Rewrite Relation) Let R = (Σ, R) be
a TRS, and µ be a Σ-map. A term t µ-rewrites to a term s, written t

u
↪→R(µ) s,

if t
u→R s and u ∈ Oµ(t). The one-step context-sensitive rewrite relation of

R, e.g., µ, is ↪→R(µ). The context-sensitive rewrite relation of R, e.g., µ, is
↪→∗

R(µ).

In the sequel, when it is clear from the context, we drop references to the
TRS R = (Σ, R) and Σ-map µ, writing ↪→ instead of ↪→R(µ). Let us now
give a first example of csr .

Example 2 Consider the TRS and replacement map µ of Example 1, and
the input expression t = if(and(true, false), 0 + s(0), 0). Then, since 1 ∈
Oµ(t), we have (redexes underlined):

if(and(true, false), 0 + s(0), 0) ↪→ if(false, 0 + s(0), 0)

However,

if(and(true, false), 0 + s(0), 0) 6↪→ if(and(true, false), s(0), 0)
15

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.2

since 2 is not a µ-replacing occurrence of t, i.e., 2 6∈ Oµ(t).

Remark 1 Note that with the (top) Σ-map µ>, γµ>,t(u) holds for all terms
t and occurrences u ∈ O(t). Hence, Oµ>(t) = O(t). That is to say that
given a TRS R, the context-sensitive rewrite relation for µ> coincides with
the standard rewrite relation, i.e., ↪→R(µ>)=→R.

We denote as Oµ
R(t) = OR(t) ∩ Oµ(t) the set of replacing redexes. If

Oµ
R(t) = Ø, then t is called a µ-normal form.

The following proposition basically states that csr is closed under replac-
ing context application, as is unrestricted term rewriting.

Proposition 8 (Restricted Context Replacements) Let R = (Σ, R) be
a TRS, µ be a Σ-map, and u ∈ Oµ(C[t]u). If t ↪→∗ s, then C[t]u ↪→∗ C[s]u.

Proof of Proposition 8 By induction on the length n of the µ-derivation.
If n = 0, the result is immediate. If n > 0, then we consider t ↪→ t′ ↪→∗ s.
If t ↪→ t′, there is an occurrence v ∈ Oµ(t) and a rule l → r ∈ R such that
t|v = σ(l) for some substitution σ. Since u ∈ Oµ(C[t]u), by Proposition 1,
u.v ∈ Oµ(C[t]u). Therefore the same rule l → r applies to the occurrence
u.v of C[t]u, and then C[t]u ↪→ C[t′]u. By Proposition 3(1), u ∈ Oµ(C[t′]u).
Hence, by the induction hypothesis, the conclusion follows.

Proof of Proposition 8 2

The following proposition shows how the context-sensitive relations in-
duced by different replacement maps compare.

Proposition 9 (Monotonicity of ↪→, e.g. v) Let R = (Σ, R) be a TRS
and µ, µ′ be Σ-maps. Then, µ v µ′ ⇒ ↪→R(µ)⊆ ↪→R(µ′).

Proof of Proposition 9 If t ↪→R(µ) s, then there exist u ∈ Oµ(t), l →
r ∈ R, and substitution σ such that t|u = σ(l). Since we have γµ,t(u), by
Proposition 5 we also have γµ′,t(u), and then t ↪→R(µ′) s.

Proof of Proposition 9 2

From a computational point of view, this proposition mainly states that
csr gives rise to a reduction space which is smaller than the one for stan-
dard term rewriting (consider Remark 1). Context-sensitive rewriting is also
proven stable under substitution.

16

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.3.1

Proposition 10 (Stability of ↪→) Let R = (Σ, R) be a TRS, µ be a Σ-
map, and σ be a substitution. Then, t ↪→ s ⇒ σ(t) ↪→ σ(s).

Proof of Proposition 10 If t ↪→ s, then there exist u ∈ Oµ(t), l → r ∈ R,
and substitution σ′ such that t|u = σ′(l) and s = t[σ′(r)]u. Since l 6∈ V , then
by Proposition 6 we have that t|u = t′ 6∈ V and σ(t)|u = σ(t′) = σ(σ′(l)) =
σ′′(l). By Proposition 2, γσ(t)(u). Then σ(t) ↪→ σ(t)[σ(σ′(r))]u, and by
Proposition 7, σ(t) ↪→ σ(t[σ′(r)]u), i.e., σ(t) ↪→ σ(s).

Proof of Proposition 10 2

3.3 Applications

3.3.1 Improving the Evaluation of Expressions

As we illustrated in Examples 1 and 2, in some cases it makes sense to
evaluate some fixed argument up to its normal form whenever this outcome
is necessary to determine which rule has to be applied to an outer occurrence.
The following example further develops the advantages of this strategy.

Example 3 Consider the rules that define the short-cut Boolean operators
and/or of Lisp:

and(true, x) → x or(true, x) → true
and(false, x) → false or(false, x) → x

To evaluate a term and(t, s) (or(t, s)), according to these rules, if the first
argument reduces to false(true), any reduction performed on the second argu-
ment is useless and does not contribute to computing the intended value.

By using the replacement map µ(and) = µ(or) = {1}, the evaluation of
redexes that are different from the first argument of the input term can be
delayed.

Another case of study arises in the realm of lists.

Example 4 The following rules define the standard “projection” operators
head and tail on lists:

head(x :: y) → x
tail(x :: y) → y

The first function only requires the evaluation of the head of the list and the
second one evaluates the rest of the list. These points are only of interest

17

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §3.3.3

if cons (i.e., ::) does not evaluate its arguments systematically. Therefore,
programming languages have been conceived where cons does not evaluate all
arguments (see [FW76, HM76, Rea93]). This is easily achieved, for example,
by defining µ(::) = Ø.

3.3.2 Manipulation of Infinite Data Structures

The lazy cons in Example 4 is a suitable tool for computing with infinite
data structures [FW76, Rea93], as we illustrate in the following.

Example 5 Consider the following program, which selects one element from
an infinite list.

sel(0, x :: y) → x from(x) → x :: from(s(x))
sel(s(x), y :: z) → sel(x, z)

We define µ(::) = {1} and µ(f) = IN+
ar(f) for any other operator f . Let us

consider the following derivation:

sel(s(s(0)), from(0)) ↪→ sel(s(s(0)), 0 :: from(s(0)))
↪→ sel(s(0), from(s(0)))
↪→ sel(s(0), s(0) :: from(s(s(0))))
↪→ sel(0, from(s(s(0))))
↪→ sel(0, s(s(0)) :: from(s(s(s(0)))))
↪→ s(s(0))

This avoids progressing into nontermination even if the from-rule is not ter-
minating, thus improving termination as in lazy reduction strategies. In fact,
termination of ↪→ for this TRS can be formally established (see below).

3.3.3 Safe Computations

The concept of safe computation is the operational counterpart of the seman-
tic concept of strictness [Lal93, Vui74]. Given a Scott domain3 D, a function
f : Dk → D is strict in the i-th argument if f(x1, . . . , xi−1, ⊥, . . . , xk) = ⊥.
By interpreting (as usual) the bottom element of a domain as a nontermi-
nating computation, the strictness information can be used to define a com-
putation strategy. If we evaluate a strict argument, then the nontermination
of that evaluation will not prevent a value from being produced [Lal93].

3Any Scott domain has a least element which we denote as ⊥; see [Sto77].

18

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4

A reduction strategy that always evaluates on safe contexts is called a safe
strategy. A context C[]u is safe if C[⊥]u = ⊥. By defining the replacement
map µ(f) as the set of strict arguments of f , for each symbol f in the
signature, it is immediate to see that any replacing context C[]u, with u ∈
Oµ(C), is a safe context. Then any context-sensitive derivation turns into
a safe derivation. Strictness information for the functions can be eventually
obtained from some kind of strictness analysis [Myc80, Wad87].

However, we note that this fact does not mean that the evaluation is
complete whenever it is possible. This subject is addressed in the section
below.

3.3.4 Mechanization of Inference Systems

Context-sensitive rewriting can be formulated as an inference system (see
[Luc95]) by considering each rewrite rule l → r as a scheme of the axiom:

l → r

and introducing as many context-passing rules [Lal93] as replacing indices
i ∈ µ(f) for each k-ary function symbol f in the signature. That is, for each
replacing argument position i, we define the scheme of the rule:

t → s

f(t1, . . . , ti−1, t, . . . , tk) → f(t1, . . . , ti−1, s, . . . , tk)

Different computational systems have been formalized using inference sys-
tems whose axioms and rules match these patterns, including weak β-reduction,
call-by-name reduction strategies of λ-calculus, and π-calculus. Therefore, we
can use csr as a suitable mechanization of the execution of processes of these
systems. By treating these computational systems in a rewriting framework,
we are able to exploit the existing rewriting machinery (reduction machines,
graph reduction, etc.) and get efficient implementations of these systems
on real engines. In particular, graph reduction offers great improvements in
saving space and in removing redundant reductions when parallel reduction
strategies are considered [GKM87, Mar90]. Aside from this, all the results
of computational properties on csr are also applicable.

19

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.1

4 Confluence of Context-Sensitive Rewriting

A binary relation R ⊆ A × A on a set A is confluent [Hue80] if, for every
a, b, c ∈ A, whenever a R∗b and a R∗c, there exists d ∈ A such that b R∗d and
c R∗d. Analogously, R is said to be locally confluent if, for every a, b, c ∈ A,
whenever a R b and a R c, there exists d ∈ A such that b R∗d and c R∗d.
Also, R is said to be strongly confluent if, for all a, b, c ∈ A, a R b ∧ a R c ⇒
b R∗d ∧ c Rεd for some d ∈ A, with Rε is the reflexive closure of R, with
Rε = R ∪ {(a, a) | a ∈ A}.

An element ā ∈ A is said to be an R-normal form if there exists no b such
that ā R b. We say that ā is an R-normal form of a, if ā is an R-normal
form and a R∗ā. We say that R is terminating [Der87, Hue80] if and only
if there is no infinite sequence a1 R a2 R a3 In a terminating relation,
each element a ∈ A has at least a normal form. In a confluent terminating
relation, the normal form exists and it is unique.

We need to distinguish the computational properties of the standard
rewrite relation and the analogous ones in csr . Therefore we will speak of µ-
confluence and µ-termination for the confluence and termination properties
of µ-rewriting, i.e., the csr which uses the replacement map µ.

Because we prove confluence of csr by using Newman’s lemma, “a termi-
nating, locally confluent relation is confluent,” we briefly recall the existing
methods to prove termination of csr or, more accurately, µ-termination for
a given replacement map µ [Luc96b, Zan97].

4.1 Proving µ-Termination

We prove termination of csr by using standard methods in rewriting [Luc96b].

Theorem 1 ([Luc96b]) Let R = (Σ, R) be a TRS, and µ be a Σ-map. If
R terminates, then R µ-terminates.

For example, the TRSs in Examples 1, 3, and 4 prove to be µ-terminating:
the instances of these rules can be oriented from left to right by means of a
simplification ordering [Der87]. Many other TRSs are µ-terminating despite
the fact that this simple technique does not apply.

Example 6 Consider the nonterminating TRS R:

first(0, x) → [] from(x) → x :: from(s(x))
first(s(x), y :: z) → y :: first(x, z)

20

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.1

If we fix µ to be µ(::) = µ(from) = Ø, µ(s) = {1}, and µ(first) = {1, 2}, then
it is easy to verify that any µ-rewriting sequence from a given term t using
R will eventually terminate.

A formal proof of µ-termination for the TRS in Example 6 can be given by
using standard methods also [Luc96b]. The proof uses a transformed program
Rµ. The rules in Rµ are obtained from the rules in R by recursively removing
from the lhs and rhs of each rule the nonreplacing immediate subterms of
each term. Since the symbols of the original signature lose arguments, we
use new symbols from a new signature Σµ: fµ ∈ Σµ if and only if f ∈ Σ.
The arity of each fµ ∈ Σµ is arΣµ(fµ) = |µ(f)|. In the following theorem, by
a µ-conservative TRS we mean a TRS that verifies V arµ(r) ⊆ V arµ(l) for
all rule l → r, i.e., every µ-replacing variable in the rhs is also µ-replacing in
the lhs. Then we have the following theorem.

Theorem 2 ([Luc96b]) Let R = (Σ, R) be a TRS and µ be a Σ-map such
that R is µ-conservative. If Rµ terminates, then R µ-terminates.

If R is not µ-conservative, then Rµ will have extra variables in some
rhs. Hence it is not a standard TRS, and the available methods for proving
termination do not apply. For instance, R in Example 6 is µ-conservative
(with µ as given in the example). We can ensure that R µ-terminates,
because we can prove that Rµ:

firstµ(0µ, x) → []µ fromµ →::µ
firstµ(sµ(x), ::µ) →::µ

terminates. For more details and a discussion on the limitations of the
method, refer to [Luc96b].

TRSs which are not µ-conservative can be proven µ-terminating by using
the methods in [Zan97]. For instance, the TRS R in Example 5 is not µ-
conservative (being µ as given in the example). In fact, Rµ is:

selµ(0, ::µ (x)) → x fromµ(x) →::µ (x)
selµ(sµ(x), ::µ (y)) → selµ(x, z)

which has an extra variable z in the rhs of the second selµ rule. In [Zan97],
a method for proving µ-termination by transformation of the TRS is also
given, but the nonreplacing occurrences are marked, rather than removed.
Then, from a TRS R and a replacement map µ, we obtain Ψ(R, µ), which

21

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.2

is always a TRS. For instance, in the previous case, we obtain the following
Ψ(R, µ):

sel(0, x :: y) → x from(x) → x :: from(s(x))
sel(s(x), y :: z) → sel(x, a(z))
a(from(x)) → from(x) from(x) → from(x)
a(x) → x

which can be proved terminating by using recursive path ordering (see [Der87]).
Then, we have the following result.

Theorem 3 ([Zan97]) A TRS R is µ-terminating if Ψ(R, µ) is terminat-
ing.

However, as remarked in [Zan97], this method does not subsume the previous
one. For instance, the TRS R:

f(x) → g(h(f(x)))

with µ(f) = µ(h) = {1} and µ(g) = Ø is µ-terminating because Rµ:

fµ(x) → gµ

is easily proved terminating. However, Ψ(R, µ):

f(x) → g(h(f(x)))
a(h(x)) → h(x)
h(x) → h(x)
a(x) → x

is not terminating owing to the first rule.

4.2 Local Confluence

The diamond lemma (Newman, [HL91, New42]) establishes that any termi-
nating, locally confluent relation is confluent. In this section, we center our
discussion on analyzing local µ-confluence, to obtain results on µ-confluence
for µ-terminating TRSs.

In standard rewriting, a terminating TRS with nonoverlapping rules is
confluent [Hue80]. In csr, the fact that the rules do not overlap does not
imply µ-confluence, as the following example illustrates.

22

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.2

Example 7 Consider the following nonoverlapping TRS R.

f(x) → g(x, x)
h(0) → 0

If we define µ(f) = {1} and µ(g) = {1}, then we have the following µ-
rewriting chains leading to two different ↪→-normal forms for the considered
input term:

f(h(0)) ↪→ g(h(0), h(0)) ↪→ g(0, h(0))
f(h(0)) ↪→ f(0) ↪→ g(0, 0)

The following definition initiates the description of the class of TRSs that we
can guarantee to be locally µ-confluent. The main idea is that if there is any
variable occurrence in the lhs of a rewrite rule which satisfies the replacement
condition, then any other occurrence of this variable in the rule must be a
replacing occurrence too.

Definition 5 (TRS with Left Homogeneous Replacing Variables)
Let R = (Σ, R) be a TRS, and µ be a Σ-map. Consider a rule α : l →
r ∈ R. We say that α has left homogeneous µ-replacing variables if, for
all x ∈ V arµ(l), Ox(l) = Oµ

x(l) and Ox(r) = Oµ
x(r). The TRS R has left

homogeneous µ-replacing variables if all rules in R have left homogeneous
µ-replacing variables.

As usual, we drop references to the replacement map µ when no confusion
can arise. For example, the TRSs in Examples 1, 3, and 4 have left homoge-
neous replacing variables. The TRS in Example 5 has no left homogeneous
replacing variables (e.g., the replacement map that is given in the example).

This restriction constrains the canonical nature of a TRS. As a counter-
part, it is more difficult for the rules to µ-overlap. First, we introduce the
concept of µ-overlapping terms.

Definition 6 (µ-Overlapping Terms) Let t, s ∈ T (Σ, V), and µ be a Σ-
map. The term s µ-overlaps t at the occurrence u, if u ∈ Oµ

Σ(t) and t|u =? s.
Terms t and s are not µ-overlapping if neither s µ-overlaps t nor t µ-overlaps
s.

Now, a suitable notion of non-µ-overlapping TRSs can be given.

23

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.2

Definition 7 (Non-µ-Overlapping TRS) Let R = (Σ, R) be a TRS, and
µ be a Σ-map. Given two rules α1 : l1 → r1, α2 : l2 → r2 ∈ R such that l1
and l2 have no common variable (otherwise rename rules), α1 µ-overlaps α2,
if l1 µ-overlaps l2. The rules α1 and α2 are trivially µ-overlapping if α1 = α2

and α1, α2 µ-overlap at ε. The TRS R is non-µ-overlapping if it does not
contain nontrivial overlapping rules.

Now we introduce the adequate notion of the critical pair [Hue80] regard-
ing csr .

Definition 8 (µ-Critical Pair) Let R = (Σ, R) be a TRS, and µ be a Σ-
map. Let α1 : l1 → r1 and α2 : l2 → r2 be rewrite rules that are nontrivially
µ-overlapping at the occurrence u ∈ Oµ

Σ(l1). Let t = l1|u and t′ ≡ t t l2,
with V ar(t′) ∩ V ar(l1) = Ø. The superposition of α1 and α2 determines a
µ-critical pair 〈t1, t2〉 defined by t1 = σ1(l1)[σ2(r2)]u and t2 = σ1(r1), where
σ1 is the matching of t′ and t (t′ = σ1(t)) and σ2 is the matching of t′ and l2
(t′ = σ2(l2)).

Note that any µ-critical pair of the TRS is also a standard critical pair.
The following example shows how the replacement restrictions can be used to
avoid some overlaps which otherwise could lead to nonconvergent reductions.

Example 8 Consider the following TRS R:

g(b, a) → b
a → b

and a replacement map µ such that µ(g) = {1}. This TRS has overlapping
rules. However, since 2 is not a replacing occurrence in g(b, a), then there is
no µ-overlap. Hence, there is no µ-critical pair in the program.

Proposition 11 Let R = (Σ, R) be a TRS, and µ be a Σ-map. Let t ∈
T (Σ, V), x ∈ V , and Ox(t) = {ui}n

i=1, for n ≥ 0. Let σ, σ′ be substitutions
such that σ(x) ↪→ σ′(x) and for all y 6= x. σ(y) = σ′(y). Let s0 = σ(t)
and si = si−1[σ′(x)]ui

, 1 ≤ i ≤ n. If Ox(t) = Oµ
x(t), then si ↪→n−i σ′(t),

0 ≤ i ≤ n.

Proof of Proposition 11 By induction on n = |Ox(t)|. If n = 0, the result
is immediate. If n > 0, consider u1 ∈ Ox(t). Assume that s1 ↪→n−1 σ′(t).
Since γt(u1), then by Proposition 2, γσ(t)(u1). By Proposition 6, σ(t)|u1 =

24

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.2

σ(x). Now, since σ(x) ↪→ σ′(x), by Proposition 8, we have σ(t) = s0 ↪→ s1 =
σ(t)[σ′(x)]u1 . Hence, by Proposition 3(2) and by the induction hypothesis,
the conclusion follows.

Proof of Proposition 11 2

The following proposition follows directly from Proposition 3.7 in Huet
[Hue80], since a µ-critical pair is just a critical pair from µ-overlapping rules.

Proposition 12 Let R = (Σ, R) be a TRS, and µ be a Σ-map. Let l1 → r1

and l2 → r2 be two rewrite rules in R, u ∈ Oµ(l1), t = l1|u 6∈ V , and
σ1, σ2 be substitutions such that σ1(t) = σ2(l2). Then there exists a µ-critical
pair 〈t1, t2〉 of R and a substitution θ such that σ1(l1)[σ2(r2)]u = θ(t1) and
σ1(r1) = θ(t2).

In the following theorem, we write t ↓ t′ to denote the context-sensitive
joinability, i.e., t ↓ t′ if there exists s such that t ↪→∗ s and t′ ↪→∗ s.

Theorem 4 Let R = (Σ, R) be a TRS with left homogeneous µ-replacing
variables, e.g., a Σ-map µ. Then, R is locally µ-confluent if and only if for
every µ-critical pair 〈t1, t2〉 we have t1 ↓ t2.

Proof of Theorem 4 The proof is similar to the proof of Lemma 3.1 in
Huet [Hue80] and adapted to consider the replacement maps in csr . Using
the notations in Definition 8, we proceed as follows. Let 〈t1, t2〉 be a µ-critical
pair in R.

• (⇒) Since γl1(u), by Proposition 2, σ1(l1) ↪→ t1. By stability of ↪→
(Proposition 10), σ1(l1) ↪→ t2. Since ↪→ is locally confluent, then t1 ↓ t2.

• (⇐) Assume that for every µ-critical pair 〈t1, t2〉 in R, t1 ↓ t2. Let
t, t′, t′′ be terms such that t ↪→ t′ and t ↪→ t′′, that is, there exist rules
l1 → r1, l2 → r2 ∈ R, occurrences u1, u2 ∈ Oµ(t), and substitutions
σ1, σ2 such that t|u1 = σ1(l1), t|u2 = σ2(l2), and t′ = t[σ1(r1)]u1 , t′′ =
t[σ2(r2)]u2 .

Consider two cases according to the relative positions of the two redexes.

1. u1 ‖ u2, i.e., the occurrences u1 and u2 are disjoint. By the persistence
property and Proposition 3, we have t′|u2 = σ2(l2), γt′(u2), t′′|u1 =
σ1(l1), and γt′′(u1). By commutativity, s = t′[σ2(r2)]u2 = t′′[σ1(r1)]u1 ,
and then t′ ↪→ s and t′′ ↪→ s.

25

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.3

2. If u1, u2 are not disjoint, without loss of generality, we can assume
u1 ≤ u2 (the case u2 ≤ u1 is perfectly analogous). Let u2 = u1.v.
By the cancellation property; σ1(l1)|v = σ2(l2), and by distributivity,
t′′|u1 = σ1(l1)[σ2(r2)]v. Since u2 = u1.v and γt(u2), then by Corollary 2,
we get γt|u1

(v) or γσ1(l1)(v). Therefore, σ1(l1) ↪→ σ(l1)[σ2(r2)]v.

Now we have to prove that there exists s such that σ1(r1) ↪→∗ s and
σ1(l1)[σ2(r2)]v ↪→∗ s. Then the conclusion t′ ↓ t′′ follows by Proposi-
tion 8. According to Proposition 6, there are two cases to consider:

(a) v = v1.v2, l1|v1 = x ∈ V , σ2(l2) = σ1(x)|v2 .
We consider the substitution σ′

1 defined by σ′
1(x) = σ1(x)[σ2(r2)]v2

and σ′
1(y) = σ1(y), ∀y 6= x. Then we take the term s = σ′

1(r1). It
suffices to show that σ1(x) ↪→ σ′

1(x): since σ1(x)|v2 = σ2(l2), then
σ1(x) rewrites at occurrence v2 using l2 → r2, i.e., σ1(x) → σ′

1(x).
Let us show γσ1(x)(v2): because, by Proposition 6, σ1(l1)|v1 = σ1(x)
and γσ1(l1)(v) ⇔ γσ1(l1)(v1.v2), then, by Corollary 2, γσ1(x)(v2).
Hence σ1(x) ↪→ σ′

1(x). Also, by Corollary 1, γσ1(l1)(v1), and
by Proposition 2, γl1(v1) since v1 ∈ O(l1). Hence l1|v1 = x
is a replacing variable, x ∈ V arµ(l1). Therefore, since R is a
TRS with left homogeneous replacing variables, every other oc-
currence of x in l1 and r1 satisfies the corresponding replacement
condition, and by Proposition 11 we have σ1(r1) ↪→∗ σ′

1(r1) and
σ1(l1)[σ2(r2)]v ↪→∗ σ′

1(l1). By stability of ↪→, we have l1 ↪→
r1 ⇒ σ′

1(l1) ↪→ σ′
1(r1) and σ1(l1)[σ2(r2)]v ↪→∗ s. Recall that

t′|u1 = σ1(r1), t′′|u1 = σ1(l1)[σ2(r2)]v and, by Proposition 3, γt′(u1),
γt′′(u1). Then by applying Proposition 8 to context t[]u1 ,
t ↪→ t′ ∧ t ↪→ t′′ ⇒ t′ ↓ t′′.

(b) ∃l 6∈ V such that l = l1|v and σ2(l2) = σ1(l).
Since σ1(l1) µ-rewrites to σ1(l1)[σ2(r2)]v using l2 → r2 and γσ1(l1)(v),
by Proposition 12, there exists a µ-critical pair 〈t1, t2〉 and a sub-
stitution θ such that σ1(l1)[σ2(r2)]v = θ(t1) and σ(r1) = θ(t2). By
hypothesis, there exists t3 such that t1 ↪→∗ t3 and t2 ↪→∗ t3. Then
we take s = θ(t3), and the result follows by Proposition 8 and the
stability of ↪→.

Proof of Theorem 4 2

26

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.3

4.3 Strong Confluence

By proving strong confluence of a relation, we can also conclude confluence.
The procedure can be sketched as follows [Hue80]. Let R, S ⊆ A × A be
relations such that R+ = S+. If S is strongly confluent, then R is confluent.
Clearly, by taking S = R, strong confluence of R implies confluence of R.
However, we have a more interesting application of this result when R 6= S.

When we consider orthogonal TRSs, the parallel moves lemma is a well-
known result in rewriting which can be used to establish strong confluence
of parallel rewriting, i.e., simultaneous rewriting of redexes at disjoint occur-
rences. An elementary multiderivation simultaneously contracts a set U of
disjoint occurrences of redexes (written t

U→ s) [HL91]. We write t ‖→s when
the information about the concrete contracted occurrences is not relevant.
Given the elementary derivations A : t

u→ t′ and B : t
v→ t′′ (which are also el-

ementary multiderivations if we write A : t
{u}→ t′ and B : t

{v}→ t′′), the parallel
moves lemma defines elementary multiderivations denoted as B\A : t′ U→ s

and A\B : t′′ W→ s, which converge to a common reduct s [HL91]. This proves
that ‖→ is strongly confluent. Since →+= ‖→+, it easily follows confluence
of → for orthogonal TRSs.

To generalize this result to csr, we analyze the requirements of the par-
allel moves lemma. First, we consider the standard notion of residual by a
derivation.

Definition 9 ([HL91]) Given an orthogonal TRS R = (Σ, R), and an ele-

mentary derivation A : t
[u,α]→ s, where α : l → r ∈ R, and a redex occurrence

v ∈ OR(t), the set v\A of residuals of redex t|v by A is a subset of O(s) as
follows:

v\A =

Ø if v = u
{v} if v ‖ u (i)
{v} if v < u (ii)
{u.w1.v1 | r|w1 = x} if v = u.w.v1 and l|w = x ∈ V (iii)

For any nonelementary derivation A, we define v\A to be v\0 = {v}
(0 is the empty derivation), and v\(AB) =

⋃
w∈v\A w\B. The calculus of

residuals u\A of a redex occurrence u extends to sets of disjoint redex occur-
rences as follows: U\A =

⋃
u∈U u\A. Given derivations A, B, starting from t

with B being an elementary multiderivation contracting the set U ⊆ OR(t),

27

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.3

the residual derivation B\A of B by A is the elementary multiderivation
contracting the set U\A.

Definition 10 Given a TRS R = (Σ, R), a Σ-map µ, and an elementary

µ-derivation Aµ : t
[u,α]
↪→ R(µ) s, where α : l → r ∈ R, and v ∈ Oµ

R(t), the set
v\Aµ of residuals of t|v by Aµ is a subset of O(s) as follows: v\Aµ = v\A,

where A : t
[u,α]→ s.

Because any µ-derivation is also a derivation, the previous definition is
correct. The extension of the notion of mutiderivations to csr is also straight-
forward: Aµ : t

U
↪→ s is an elementary µ-multiderivation which contracts the

disjoint redexes at occurrences U ⊆ Oµ
R(t), i.e., ∀u, u′ ∈ U. u 6= u′ ⇒ u ‖ u′.

We also write t ‖↪→s when the information about the contracted redex occur-
rences is not relevant.

The fact that v\A ⊆ OR(s) is essential to define the concept of residual
derivation, etc. It means that the derivation A (which contracts the redex
t|u) left the possibility of reducing the residuals of the redex t|v unchanged
in further reduction steps.

We need to keep the analogous property in µ-derivations Aµ : t
u

↪→ s, i.e.,
v ∈ Oµ

R(t) ⇒ v\Aµ ⊆ Oµ
R(s). However, a residual of a replacing redex does

not need to be a replacing redex.

Example 9 Consider the orthogonal TRS R in Example 7. If we define
µ(f) = {1} and µ(g) = {1}, then we have the following µ-derivation:

Aµ : f(h(0)) ↪→ g(h(0), h(0))

The residuals of the replacing redex h(0) in t = f(h(0)) are {1, 2}. However,
2 6∈ Oµ(g(h(0), h(0))), and it is not a replacing redex occurrence.

Note that the problem arises with replacing redex occurrences v ∈ Oµ
R(t)

that are below the occurrence u ∈ Oµ
R(t) which the elementary µ-derivation

Aµ contracts. This is because the definition of residual that concerns this
case, i.e., (iii) in Definition 9, introduces occurrences w1 ∈ OV (r) to obtain
the corresponding residual u.w1.v1. However, to ensure that u.w1.v1 is a
replacing occurrence of a redex, we must ensure w1 ∈ Oµ(r) as well. The
requirement of having left homogeneous µ-replacing variables, which we in-
troduced in Section 4.2, also solves this problem. We note that for left-linear

28

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.3

TRSs (hence for orthogonal TRSs as well), the requirement of left homoge-
neous µ-replacing variables is simpler: for all x ∈ V arµ(l), Ox(r) = Oµ

x(r)
in every rule l → r. TRSs with left homogeneous µ-replacing variables are
expected to fulfill the following: instances of replacing variables in lhs’s are
replacing in the instantiated rhs’s. Hence, when we consider TRSs having
left homogeneous replacing variables, residuals of replacing redexes are also
replacing.

We also note that orthogonality is essential to ensure that Definition 9
considers all cases. In fact, the case v > u, which is treated in part (iii) of the
definition, would be incomplete without orthogonality. Moreover, the case
(ii), v < u, could produce that v 6∈ OR(s) without orthogonality. However,
in orthogonal TRSs, the reduction of a redex t|u that is below a redex t|v
does not compromise the possibility of reducing s|v, where s = t[σ(r)]u.

We can relax the requirement of orthogonality and still ensure the consis-
tency of Definition 10 by forbidding the replacement of overlapping redexes,
using the replacement restrictions. Hence, the generalization of orthogonal
TRSs in the presence of a replacement map µ is as follows:

Definition 11 (µ-Orthogonal TRS) Given a replacement map µ, a left-
linear TRS R is µ-orthogonal if R is non-µ-overlapping.

Example 10 Consider the TRS R:

f(x, y) → g(y, y) a → c
g(x, a) → f(x, b) b → b

and a replacement map µ such that µ(f) = µ(g) = {1}. Then, R is µ-
orthogonal. Note that R also has left homogeneous µ-replacing variables.

Proposition 13 Let R = (Σ, R) be a µ-orthogonal TRS having left homo-

geneous µ-replacing variables, e.g., a Σ-map µ. Let Aµ : t
[u,α]
↪→ R(µ) s be an

elementary µ-derivation, where α : l → r ∈ R, and let v ∈ Oµ
R(t) be a

replacing redex occurrence. Then v\Aµ ⊆ Oµ
R(s).

Proof of Proposition 13 By Definition 10, v\Aµ = v\A; therefore, we
consider the cases of Definition 9. Recall that s = t[σ(r)]u, and u, v ∈ Oµ

R(t).

Assume that t
[v,α′]→ s′ for some α′ : l′ → r′. The case u = v is immediate.

29

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.3

1. v ‖ u. Then v\Aµ = {v}. Since v ∈ Oµ(t), we have γt(v). Therefore,
by Proposition 3(2), γt[σ(r)]u(v), i.e., γs(v). Hence, v ∈ Oµ(s), and
moreover, v ∈ Oµ

R(s).

2. v < u. Similar to the previous point, using Proposition 3(1), we
conclude v ∈ Oµ(s). Now let us show that v ∈ OR(s). By contradiction:
if v 6∈ OR(s), then the reduction of the redex occurrence u has destroyed
the redex. Hence, it must be u = v.w and w ∈ OΣ(l′) (otherwise, if
w ∈ OV (l′) or w 6∈ O(l′), no problem arises). However, since t|v = σ′(l′)
and t|u = σ(l) = σ′(l′)|w = σ′(l′|w), then α and α′ overlap. Since
u = v.w ∈ Oµ(t), by Corollary 2, w ∈ Oµ(σ(l′)). Hence, by Proposition
2, w ∈ Oµ

Σ(l′), and thus α and α′ µ-overlap. But this contradicts the
µ-orthogonality of the TRS; therefore v ∈ Oµ

R(s).

3. If v > u, by reasoning as in the previous point, the only possibility
is v = u.w.v1 and l|w = x ∈ V . Consider v′ ∈ v\Aµ; v′ = u.w1.v1

and r|w1 = x. Since v ∈ Oµ(t), by Corollary 1, u.w ∈ Oµ(t). Since
t|u = σ(l), by Corollary 2, w ∈ Oµ(σ(l)). Thus, since w ∈ O(l), by
Proposition 2, w ∈ Oµ(l), i.e., x ∈ V arµ(l). Hence, because R has left
homogeneous replacing variables, w1 ∈ Oµ(r). Also we have by Corol-
lary 2 that v1 ∈ Oµ(t|u.w). Therefore, since w1 ∈ Oµ(r), by Proposi-
tion 2, w1 ∈ Oµ(σ(r)). Since σ(r)|w1 = t|u.w = s|u.w1 , by Proposition 1,
we get u.w1.v1 ∈ Oµ(s). Hence v′ ∈ Oµ

R(s).

Proof of Proposition 13 2

In this way, the context-sensitive extensions of the notion of “residual”
are sound (in particular, the notion of residual derivation Bµ\Aµ). In-
deed, if we cannot ensure v\Aµ ⊆ Oµ

R(s), then we cannot ensure that
U\Aµ ⊆ Oµ

R(s). Because the residual derivation Bµ\Aµ is a derivation con-
tracting the set U\Aµ, this would not be well defined for context-sensitive
multiderivations, because this set could contain nonreplacing redexes. This
means that Bµ\Aµ = B\A for all Aµ : t

U
↪→ t′, U ⊆ Oµ

R(t), U having pairwise
disjoint occurrences, and Bµ : t

W
↪→ t′′, W ⊆ Oµ

R(t), with W having pairwise
disjoint occurrences.

Next we provide the generalization of the parallel moves lemma for csr .

Lemma 2 Let R be a µ-orthogonal TRS, having left homogeneous µ-replacing
variables. Let Aµ, Bµ be elementary µ-multiderivations starting from a term

30

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.4

t. Then Bµ(Aµ\Bµ) and Aµ(Bµ\Aµ) are µ-multiderivations starting from t
and leading to the same term s, and for all u ∈ Oµ

R(t), we have u\Bµ(Aµ\Bµ) =
u\Aµ(Bµ\Aµ).

Proof of Lemma 2 Since Aµ = A, Bµ = B, and Bµ\Aµ = B\A, and
Aµ\Bµ = A\B, we apply the parallel moves lemma for unrestricted rewriting
[HL91].

Proof of Lemma 2 2

The parallel moves lemma for ‖↪→ (Lemma 2) shows that ‖↪→ is strongly
confluent.

4.4 Confluence

The following theorem allows us to devise a method for checking µ-confluence
in a µ-terminating TRS with left homogeneous µ-replacing variables.

Theorem 5 Let R = (Σ, R) be a µ-terminating TRS with left homogeneous
µ-replacing variables, e.g., a Σ-map µ. Let us denote by t̄ an arbitrary µ-
normal form of t ∈ T (Σ, V). Then, R is µ-confluent if and only if we have
t̄1 = t̄2 for every µ-critical pair 〈t1, t2〉 of R.

Proof of Theorem 5

• (⇒) For any µ-critical pair 〈t1, t2〉 of R, there exists t ∈ T (Σ, V) such
that t ↪→ t1 and t ↪→ t2. If ↪→ is confluent and terminating, then t
admits a unique µ-normal form, t̄1 = t̄2.

• (⇐) t̄1 = t̄2 implies t1 ↓ t2. Then, by Theorem 4, ↪→ is locally confluent.
Since ↪→ is terminating and locally confluent, by the diamond lemma,
↪→ is also confluent.

Proof of Theorem 5 2

Given a µ-terminating TRS R with left homogeneous µ-replacing vari-
ables, Theorem 5 suggests an effective way for testing µ-confluence. Because
R is µ-terminating, for any µ-critical pair 〈t1, t2〉, we can finitely compute
t̄1 and t̄2 and then check whether t̄1 = t̄2. If we have no µ-critical pairs,
checking µ-confluence is easier.

31

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.4

Corollary 3 A µ-terminating, non-µ-overlapping TRS with left homoge-
neous µ-replacing variables is µ-confluent.

Example 11 Consider the TRS R and replacement map µ of Example 8.
This TRS is not confluent. For example: g(b, a) → g(b, b), and g(b, a) → b.
Nevertheless, because R is terminating, by Theorem 1, R is µ-terminating.
Because R has left homogeneous µ-replacing variables and it has no µ-overlap,
by Corollary 3 R is µ-confluent.

However, for left-linear TRSs having no µ-critical pairs (µ-orthogonal
TRSs), we do not need to restrict ourselves to µ-terminating TRSs, since
we have a stronger result. Lemma 2 gives conditions for proving strong
confluence of ‖↪→. To conclude confluence of ↪→, we use the fact ↪→+= ‖↪→+.

Lemma 3 Let R be a TRS and µ be a replacement map. Then ↪→+= ‖↪→+.

Proof of Lemma 3 ↪→+⊆ ‖↪→+ is immediate, since ↪→ ⊆ ‖↪→. To prove
‖↪→+ ⊆ ↪→+, we proceed by induction on the length n of the multiderivation
t ‖↪→+s = t

U
↪→ t′′ ‖↪→∗s.

1. If n = 1, then t′′ = s and t ‖↪→+s = t
U
↪→ t′′. Thus, we proceed by

induction on |U | ≥ 1.

(a) If U = {u}, then t
{u}
↪→ s ⇔ t

u
↪→ s.

(b) If U = {u}] U ′, U ′ 6= Ø, then, since for all u, u′ ∈ U , u 6= u′ ⇒
u ‖ u′, we can write t

U
↪→ s ⇔ t

{u}
↪→ t′

U ′
↪→ s. Let us show that this

is correct: t′ = t[σ(r)]u for some rule l → r. Since occurrences
on U ′ are disjoint from u, and we have γt(u′) for all u′ ∈ U ′, by
Proposition 3.2, U ′ ⊆ Oµ(t′). Reductions in U ′ are disjoint from
reduction at u; hence, no redex occurrence in U ′ is destroyed.
Therefore, U ′ ⊆ Oµ

R(t′), and t′
U ′
↪→ s. By the induction hypothesis,

t′ ↪→+ s, i.e., t ↪→+ s.

2. If n > 1, then we have t
U
↪→ t′′ ‖↪→+ s. We have proven in the previous

paragraph that t ↪→+ t′′. Hence, by the induction hypothesis, t′′ ↪→+ s,
and t ↪→+ s.

Proof of Lemma 3 2

32

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §4.4

Now we can use the following fact [Hue80]:

Lemma 4 ([Hue80]) Let R, S ⊆ A × A be relations such that R+ = S+. If
S is strongly confluent, then R is confluent.

Finally, we obtain the desired result.

Theorem 6 Let R be a TRS and µ be a replacement map such that R is
µ-orthogonal and has left homogeneous µ-replacing variables. Then R is µ-
confluent.

Proof of Theorem 6 From Lemma 2, ‖↪→ is strongly confluent. By Lemma 3,
↪→+= ‖↪→+. By Lemma 4, ↪→ is confluent.

Proof of Theorem 6 2

For instance, the TRS R in Example 10 with the replacement map µ as
given there is not µ-terminating. However, since R is µ-orthogonal and has
left homogeneous µ-replacing variables, by Theorem 6, R is µ-confluent.

We can compare our results with the confluence result of conditional
reduction proved in [Mar90]. In [Mar90], Maranget analyzes the use of con-
ditional reduction to perform lazy reductions. Maranget introduces syntactic
replacement restrictions by using a domain function dom, which essentially
coincides with our notion of replacement map. Roughly speaking, condi-
tional reduction coincides with parallel csr . In the first section of his paper,
Maranget claims that “as in the case of standard TRSs, it is sufficient to
check the nonoverlapping condition on the left-hand sides of the reduction
rules” to prove confluence of conditional reduction. We have shown that this
is not necessarily true (Example 7). Analogously to our method, Maranget’s
claim is proved by showing strong confluence of conditional reduction. The
proof is correct because a strong restriction on the class of TRSs that are con-
sidered is also introduced, and this restriction implies that the TRSs have left
homogeneous replacing variables. However, the relevance of this additional
restriction to ensuring confluence of conditional reduction is not mentioned.
In fact, Maranget considers µ-orthogonal TRSs with the following restriction:
Va(r) ⊆ Va(l) and Vf (r) ⊆ Vf (l) for all rule l → r. Here, Va(t), the set of
allowed variables, can be expressed by Va(t) = V arµ(t). The set of forbidden
variables, Vf (t), is given by Vf (t) = {x ∈ V ar(t) | ∃u ∈ Õµ(t). t|u = x}.
Such conditions are needed because Maranget deals with graph reduction
techniques to implement laziness.

33

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5

It is not difficult to see that this condition implies that the TRS has
left homogeneous replacing variables: since the TRS is left-linear, we only
need to show that x ∈ V arµ(l) implies Ox(r) = Oµ

x(r). Assume that, be-
ing x ∈ V arµ(l), there is a nonreplacing occurrence of x in r. In this case,
x ∈ Vf (r). Since Vf (r) ⊆ Vf (l), we have that x ∈ Vf (l), i.e., there is a
nonreplacing occurrence of x in l. However, due to the left-linearity, this
is not possible. Thus, the TRSs considered by Maranget are a subclass of
the µ-orthogonal TRSs with left homogeneous µ-replacing variables. Re-
garding µ-confluence, our results are more general. For instance, the TRS
in Example 10 cannot be proven µ-confluent by using Maranget’s results.
Concerning neededness, we have a similar situation (see [Luc97]). However,
different from Maranget’s approach, we do not ensure that the subterms are
reduced only once (important in lazy reductions). We only ensure neededness
of the cs-computations.

Concerning lazy rewriting in [KW95], Kamperman and Walters give the
notion of ζ-confluence. The replacement restrictions introduced by Kam-
perman and Walters [KW95] use a predicate Λ on function symbols and
argument positions which is related to our replacement map as follows:4

¬Λ(f, i) ⇔ i ∈ µ(f) for f ∈ Σ and 1 ≤ i ≤ ar(f). They have the notion
of the “eager” path, which essentially coincides with our notion of replacing
occurrences. Their notion of a “lazy” path coincides with our nonreplacing
occurrences. However, lazy rewriting does not coincide with csr . In fact,
csr is a proper restriction of lazy rewriting. On the other hand, the no-
tion of ζ-confluence is weaker than confluence: the authors use ζ-equality
instead of equality to test the joinability of terms. Terms t and s are ζ-equal
if, after changing the maximal nonreplacing subterms by a new constant ζ,
they yield the same term. Kamperman and Walters only establish that lazy
rewriting preserves ζ-confluence. Since ζ-confluence is based on ζ-equality,
it is not possible to use it to ensure that the result that is obtained does
not depend on the applied rules; this only holds up to ζ-equality, which is
somehow weaker.

4In the definition of the predicate Λ(f, i), the authors allow i to range from 0 to ar(f).
However, this possibility is not used subsequently.

34

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.1

5 Preserving Meaning in Left-Linear TRSs

We have characterized classes of TRSs whose µ-confluence can be proved.
Now we focus on the question of coherence between unrestricted evaluations
with a TRS R and the corresponding context-sensitive computations for a
given replacement map µ. The following example motivates the argument.

Example 12 Consider the following (canonical) TRS R:

f(x, y) → g(x, y) a → b
g(b, b) → b

and a replacement map µ such that µ(f) = µ(g) = {1}. Then R has left
homogeneous µ-replacing variables, it is not µ-overlapping, and it is termi-
nating. By Theorem 1 and Corollary 3, R is µ-confluent. However, we have:

1. f(b, a) ↪→ g(b, a) and g(b, a) is a µ-normal form, but it is not the normal
form of f(b, a) because,

2. f(b, a) → g(b, a) → g(b, b) → b.

In other words, in spite of the fact that both relations ↪→ and → are termi-
nating and confluent, the respective normal forms for the considered input
term are different.

To solve this problem, we first analyze the relation between csr and un-
restricted rewriting.

5.1 Compatibility of the Replacement Restrictions
with the Rewriting Process

Because csr is a restriction of rewriting, a cs-derivation can always be viewed
as a rewriting derivation. The main question is the opposite: what are the
conditions for ensuring that a rewriting derivation can be viewed as a cs-
derivation?

The evaluation of a term by term rewriting proceeds by replacing sub-
terms that are instances of the lhs rules of the TRS (i.e., redexes) by the
corresponding instances of the rhs rules. Three main aspects should be
considered: pattern matching, reduction strategy, and replacement [O’D85].

35

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.1

Pattern matching allows us to detect redexes in the term, the reduction strat-
egy selects the redex to be reduced, and the replacement is finally performed
for the selected reduction.

The pattern-matching algorithm, the reduction strategy, and the replace-
ments are usually applied interleaved. For instance, if we consider a rule
f(l̃) → r and a term t = f(t̃), we have some kind of partial match between
f(l̃) and f(t̃), because they are rooted by the same symbol f . Perhaps some
argument li, 1 ≤ i ≤ ar(f), also matches an immediate subterm ti of t, i.e.,
ti = σ(li) for some substitution σ. If we want to “extend” this partial match-
ing, we should eventually reduce (to some extent) other unmatched subterms
tj. Therefore, the replacement restrictions should be compatible with this
requirement.

Example 13 Consider the TRS in Example 1, and the input term t =
if(cond, s, s′). Note that we have a partial matching between t and the rules
that define the operation if. By considering the if-rules, to extend the match-
ing we only need to reduce the condition cond to either true or false. If we
take µ such that 1 6∈ µ(if), this reduction is forbidden; then the matching
cannot be extended.

The reduction strategy is expected to select the immediate subterm whose
reduction is necessary to allow the matching. If we consider the replacement
restrictions introduced by a replacement map µ, we can define a property
that a rule’s lhs must satisfy to ensure that the pattern matching can be
extended (by performing cs-reductions) when necessary. This means that
the nonreplacing occurrences of an lhs (i.e., those occurrences that we will
not further inspect to allow for matching) must be variable occurrences. In
this case we have no need for more reductions, because the partial matching
for the corresponding subterm is trivially done. For instance, if we return to
Example 13, we could reduce either cond, or s, or s′. Since 2 and 3 are variable
occurrences of the if(true, x, y) and if(false, x, y) of the if-rules, reductions on
s and s′ no not improve the matching. Only reducing cond does. Thus, it is
sensible to impose µ(if) = {1}. This motivates the following definition.

Definition 12 (µ-Compatible Term) Let Σ be a signature and µ be a
Σ-map. A term t is µ-compatible (written compµ(t)) if the nonreplacing
occurrences of t are variables: Õµ(t) ⊆ OV (t). Equivalently, t is µ-compatible
if the nonvariable occurrences are replacing: OΣ(t) ⊆ Oµ(t).

36

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.1

The property can also be formulated for sets of terms. Thus, we say
that a set T ⊆ T (Σ, V) is µ-compatible (written compµ(T)) if and only if
∀t ∈ T. compµ(t). The predicate compµ is monotonic, e.g., the order v in
MΣ:

Proposition 14 Let Σ be a signature, t ∈ T (Σ, V), and µ, µ′ be Σ-maps. If
µ v µ′, then compµ(t) ⇒ compµ′(t).

Proof of Proposition 14 compµ(t) if and only if OΣ(t) ⊆ Oµ(t). Since
µ v µ′, Oµ(t) ⊆ Oµ′(t). Hence compµ′(t).

Proof of Proposition 14 2

The next proposition establishes that µ-compatibility of a term t ∈ T (Σ, V)
only depends on symbols in Σ(t).

Proposition 15 Let Σ be a signature, t ∈ T (Σ, V), and µ be a Σ-map.
Then, compµ(t) if and only if compµ↓Σ(t)

(t).

Proof of Proposition 15 Since OΣ(t) = OΣ(t)(t) and Oµ(t) = Oµ↓Σ(t)(t),
the conclusion follows by considering Definition 12.

Proof of Proposition 15 2

The µ-compatibility is a structural property.

Proposition 16 Let Σ be a signature, t ∈ T (Σ, V), and µ be a Σ-map.
Then, for all u ∈ O(t), compµ(t) implies both compµ(t[]u) and compµ(t|u).

Proof of Proposition 16 For (compµ(t) ⇒ compµ(t[]u)): compµ(t) ⇔
OΣ(t) ⊆ Oµ(t). Since OΣ(t[]u) ⊆ OΣ(t), by compµ(t), u ∈ OΣ(t[]u) im-
plies u ∈ Oµ(t). By Proposition 3(1), u ∈ Oµ(t[]u), and the conclusion
follows.

For (compµ(t) ⇒ compµ(t|u)): here we use compµ(t) ⇔ Õµ(t) ⊆ OV (t).
Let v ∈ Õµ(t|u). By Proposition 1, it must be u.v ∈ Õµ(t). Hence, by
compµ(t), u.v ∈ OV (t). Therefore, v ∈ OV (t|u), i.e., Õµ(t|u) ⊆ OV (t|u).
Hence, compµ(t|u).

Proof of Proposition 16 2

37

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.1

We can associate a replacement map µt to any term t which makes t
µt-compatible.

Definition 13 Let Σ be a signature, and t ∈ T (Σ, V). Define the Σ(t)-map
µt to be as follows: if t ∈ V , then µt = µ⊥

⊥. If t = f(t1, . . . , tk), we define
the auxiliary {f}-map µε

t to be µε
t(f) = {i | ti 6∈ V, 1 ≤ i ≤ ar(f)}. Then,

µt = µε
t t µt1 t . . . t µtk

.

Let us show some examples of calculus of µt for some terms.

Example 14 Given the term t = first(0, x), Σ(t) = {0, first}. We have:
µfirst(0,x) = µε

first(0,x) t µ0 t µx = 〈Ø, {1}〉 t 〈Ø, Ø〉 t 〈Ø, Ø〉 = 〈Ø, {1}〉.
For the term t′ = first(s(x), y :: z), Σ(t′) = {s, ::, first}, we get µfirst(s(x),y::z) =
µε

first(s(x),y::z) t µs(x) t µy::z = 〈Ø, Ø, {1, 2}〉 t 〈Ø, Ø, Ø〉
t 〈Ø, Ø, Ø〉 = 〈Ø, Ø, {1, 2}〉.

Now we prove that this replacement map characterizes the compatibility
of a term. First, we need some previous results.

Lemma 5 Let Σ be a signature, t ∈ T (Σ, V), and f ∈ Σ(t). Let s = f(s̃) =
t|u with u ∈ O(t). If i ∈ µs(f), then i ∈ µt(f).

Proof of Lemma 5 By induction on the length of u. If u = ε, the result
is immediate. If u = j.u′, and t = g(t̃), then, by the induction hypothesis,
i ∈ µtj(f), 1 ≤ j ≤ ar(g). Since µt(f) = µε

t(f) ∪ µt1(f) ∪ . . . ∪ µtar(g)(f), the
conclusion follows.

Proof of Lemma 5 2

Lemma 6 Let Σ be a signature, t ∈ T (Σ, V), and f ∈ Σ(t). If i ∈ µt(f),
then there exists s = f(s1, . . . , sk) = t|u with u ∈ Oµt(t) such that si 6∈ V .

Proof of Lemma 6 By structural induction. If t ∈ Σ ∪ V , it is vacuously
true. Let t = g(t1, . . . , tl).

1. If f = g, we take u = ε. Then, if i ∈ µt(f), we have that l = k
and i ∈ µε

t(f) ∪ µt1(f) ∪ . . . ∪ µtk(f). If i ∈ µε
t(f), then ti 6∈ V ,

and the conclusion follows. If i 6∈ µε
t(f), then, i ∈ µtj(f) for some

tj, 1 ≤ j ≤ k, and, by the induction hypothesis, there exists a term
s = f(s1, . . . , sk) = tj|v with v ∈ Oµtj (tj), which verifies si 6∈ V .
Because si 6∈ V , then j ∈ µε

tj
(f), and moreover, j ∈ µε

t(f); hence
j ∈ µt(f). Because i ∈ µt(f), j.v.i ∈ Oµt(t) and the conclusion follows.

38

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.1

2. If f 6= g, then µε
t(f) = Ø and µt(f) = µt1(f) ∪ . . . ∪ µtl(f). By the

induction hypothesis, the conclusion follows.

Proof of Lemma 6 2

Proposition 17 Let Σ be a signature, t ∈ T (Σ, V), and µ be a Σ(t)-map.
Then, compµ(t) if and only if µt v µ.

Proof of Proposition 17 For the “if” part, we first prove compµt
(t), by

contradiction. If ¬compµt
(t), then, OΣ(t) 6⊆ Oµt(t). Hence there is u ∈ OΣ(t)

such that u 6∈ Oµt(t). Therefore, it must be OΣ(t) 6= Ø, i.e., t 6∈ V . Since
ε ∈ Oµt(t) for all t, we can write u = v.w, where v ∈ Oµt(t) is a maximal
replacing occurrence, and w 6= ε (because u = v.w 6∈ Oµt(t)). Since u ∈
OΣ(t), we have v ∈ OΣ(t), and we can write t = C[f(t̃)]v. Since w 6= ε,
w = i.w′, for some i, 1 ≤ i ≤ ar(f), and since v is a maximal replacing
occurrence, i 6∈ µt(f). However, since u ∈ OΣ(t), and v.i ≤ u, it must be
v.i ∈ OΣ(t). Hence, if s = f(t̃), we have i ∈ µs(f). By Lemma 5, i ∈ µt(f).
We get a contradiction. Hence compµt

(t). Since µt v µ, by Proposition 14,
the conclusion follows.

For the “only if” part, we proceed by contradiction as well. If µt 6v µ,
then by Lemma 1, there exists a symbol f ∈ Σ(t), such that i ∈ µt(f) and
i 6∈ µ(f). Thus, by Lemma 6, there is a subterm s = f(s1, . . . , sk) = t|u
with u ∈ Oµt(t) such that si 6∈ V . Therefore, because u.i 6∈ Oµ(t), then
u.i ∈ Õµ(t) but t|u.i 6∈ V . Therefore, t is not µ-compatible.

Proof of Proposition 17 2

Therefore, Propositions 15 and 17 entail that the replacement map µt

fully characterizes the compatibility of a term t, e.g., any replacement map
µ.

Analogously, given a set of terms T ⊆ T (Σ, V), we also associate a mini-
mum replacement map µT = tt∈T µt which makes the set T -compatible.

Proposition 18 Let Σ be a signature, T ⊆ T (Σ, V), and µ be a Σ(T)-map.
Then, compµ(T) if and only if µT v µ.

Proof of Proposition 18 For the “if” part, if µT v µ, then by definition
of µT , for all t ∈ T , µt v µT v µ. Hence, by Proposition 17, compµ(t) for
all t ∈ T . Hence, compµ(T).

39

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

For the “only if” part, we proceed by contradiction. Assume µT 6v µ.
Then, there is t ∈ T such that µt 6v µ. Otherwise, since µT is the lub of
{µt | t ∈ T}, it should be µT v µ. However, if µt 6v µ, by Proposition 17,
¬compµ(t). Hence, ¬compµ(T).

Proof of Proposition 18 2

We trivially note that if T = T ′ ∪ T ′′, then µT = µT ′ t µT ′′ .

5.2 Context-Sensitive Rewriting vs. Rewriting

The definitions and results in the previous section can be used with TRSs.

Definition 14 (Canonical Replacement Map) Let R be a TRS. The
replacement map µcom

R defined as µcom
R = µL(R) = tl∈L(R) µl is the canonical

replacement map for the TRS R.

From Proposition 18, µcom
R is the minimum replacement map that simul-

taneously make every lhs of the TRS rules compatible terms. Therefore, in
the remainder of the paper, we use this fact by assuming that µcom

R v µ
means compµ(l) for all l ∈ L(R), i.e., OΣ(l) ⊆ Oµ(l) or Õµ(l) ⊆ OV (l). As
we show below, this replacement map has important properties concerning
the completeness of context-sensitive computations. Let us show an example
of the calculus of the canonical replacement map for a given TRS.

Example 15 Let Σ =
mathsf0, [], false, true, s, from, ::, and, first, if} and the TRS R:

if(true, x, y) → x and(true, x) → x
if(false, x, y) → y and(false, y) → false
0 + x → x first(0, x) → []
s(x) + y → s(x + y) first(s(x), y :: z) → y :: first(x, z)
from(x) → x :: from(s(x))

We obtain the following:

• µif(true,x,y)(if) = {1} and µif(true,x,y)(true) = Ø,

• µif(false,x,y)(if) = {1} and µif(false,x,y)(false) = Ø,

• µand(true,x)(and) = {1} and µand(true,x)(true) = Ø,
40

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

• µand(false,x)(and) = {1} and µand(false,x)(false) = Ø,

• µ0+x(+) = {1} and µ0+x(0) = Ø,

• µs(x)+y(+) = {1} and µs(x)+y(s) = Ø,

• µfirst(0,x)(first) = {1} and µfirst(0,x)(0) = Ø,

• µfirst(s(x),y::z)(s) = µfirst(s(x),y::z)(::) = Ø and
µfirst(s(x),y::z)(first) = {1, 2}, and

• µfrom(x)(from) = Ø.

Therefore: µcom
R (0) = µcom

R (false) = µcom
R (true) = µcom

R (s) = µcom
R (from) =

µR(::) = Ø, µcom
R (if) = µcom

R (and) = µcom
R (+) = {1} and µcom

R (first) = {1, 2}.
Now, we investigate the properties of csr when considering replacement

maps that are greater than or equal to the canonical replacement map µcom
R .

We denote as |A| the length of a multiderivation A : t ‖→∗s. Given terms
s, s′, we write s ≺ s′ to mean that s is a proper subterm of s′, i.e., there exists
u ∈ O(s′), u 6= ε such that s = s′|u. In the proof of the following proposition,
we use a well-founded strict ordering < between multiderivations: let A :
t ‖→∗s and A′ : t′ ‖→∗s′ be two multiderivations. Then, A < A′ if and only if
(|A|, s) <lex (|A′|, s′), i.e., either |A| < |A′|, or |A| = |A′| and s ≺ s′. Roughly
speaking, the proposition establishes that every (multi)derivation leading to
an instance of a linear term l can be simulated by csr under the canonical
replacement map (or greater) enriched with µl.

Proposition 19 Let R = (Σ, R) be a left-linear TRS, l be a linear term,
and µ be a Σ-map such that µcom

R t µl v µ. If we have a multiderivation
A : t ‖→∗σ(l), for some substitution σ, then there is a substitution θ such that
t ‖↪→∗θ(l) and, for all x ∈ V ar(l), we have Bx : θ(x) ‖→∗σ(x) and |Bx| ≤ |A|.

Proof of Proposition 19 By noetherian induction, using the ordering <
between multiderivations. The base case (minimal derivations, e.g., <) which
considers multiderivations A whose length is zero (|A| = 0) is immediate.

For the induction step, we let n = |A| > 0. Let A : t ‖→∗t′ U→ σ(l),
where the length of A′ : t ‖→∗t′ is |A′| = n − 1, and U ⊆ OR(t′) is such that
∀u, u′ ∈ U , u 6= u′ ⇒ u ‖ u′. We consider two cases: ε ∈ U and ε 6∈ U .

41

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

1. If ε ∈ U , then, because occurrences in U are mutually disjoint, it must
be U = {ε}. Then t′ is a redex, and there is a substitution σ′ and a

rule l′ → r′ such that A : t ‖→∗σ′(l′)
{ε}→ σ′(r′) = σ(l). Since A′ < A,

and µcom
R v µ (since l′ ∈ L(R), and µl′ v µcom

R , we ensure the initial as-
sumptions for the induction step) by the induction hypothesis, there is
θ′ such that t ‖↪→∗θ′(l′) and, for all x ∈ V ar(l′), B′

x : θ′(x) ‖→∗σ′(x), and

|B′
x| ≤ |A′|. Note that θ′(l′)

{ε}
↪→ θ′(r′). We define the multiderivation

B′ : θ′(r′) ‖→∗σ′(r′) as follows: let r′ = C[x1, . . . , xm], where x1, . . . , xm

are all the variables in V ar(r′) ⊆ V ar(l′), but with possible repeti-
tions, i.e., m ≥ |V ar(r′)|. Let w1, . . . , wm be the (disjoint) occurrences
of variables x1, . . . , xm in r′: xi = r′|wi

for 1 ≤ i ≤ m.

First, we write each multiderivation B′
xi

: θ′(xi) ‖→∗σ′(xi) as θ′(xi) =

s1
i

V 1
i→ s2

i → . . . → spi
i

V
pi
i→ spi+1

i = σ′(xi) for 1 ≤ i ≤ m. Here, pi = |B′
xi

|.
Then, B′ is B′ : r1 W1→ r2 → . . . → rp Wp→ rp+1, where p = max{pi | 1 ≤
i ≤ m}, and:

• r1 = C[s1
1, . . . , s

1
m] = C[θ′(x1), . . . , θ′(xm)];

• for all j, 1 < j ≤ p + 1, rj = C[rj
1, . . . , r

j
m] is such that, for all i,

1 ≤ i ≤ m, rj
i = sj

i if j ≤ pi + 1, and rj
i = rj−1

i otherwise; and

• for all j, 1 ≤ j ≤ p, let RedOc(j) = {i | 1 ≤ i ≤ m ∧ j ≤ pi} in
Wj =

⋃
i∈RedOc(j) wi.V

j
i .

Clearly, θ′(r′) = r1, and σ′(r′) = rp+1. Therefore, since |B′
xi

| ≤ |A′| and
|A′| = n − 1, we have pi ≤ n − 1 for each i, 1 ≤ i ≤ m, and the length
of the multiderivation B′ is |B′| = p = max{pi | 1 ≤ i ≤ m} < n.
Then, since σ′(r′) = σ(l), we have a multiderivation B′ : θ′(r′) ‖→∗σ(l)
such that B′ < A. By the induction hypothesis, θ′(r′) ‖↪→∗θ(l), and
for all x ∈ V ar(l), Bx : θ(x) ‖→∗σ(x) and |Bx| ≤ |B′| < |A|. Since

t ‖↪→∗θ′(l′)
{ε}
↪→ θ′(r′) ‖↪→∗θ(l), i.e., t ‖↪→∗θ(l), the conclusion follows.

2. If ε 6∈ U , we split the set U into a set Uov = {u ∈ U | u ∈ OΣ(l)} of
occurrences in U that “overlap” l, and a set U ov = U\Uov. Then:

• for all u ∈ U ov, we have either u 6∈ O(l) or u ∈ OV (l). We can
decompose U ov as follows: U ov = U1] . . .] Up such that, for all
j, 1 ≤ j ≤ p, there exist yj ∈ V ar(l) and vj ∈ OV (l) such that

42

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

l|vj
= yj, and U j = {u ∈ U ov | ∃w. u = vj.w} = vj.Wj. Let

Y = {y1, . . . , yp}, and

• by considering Uov = {u1, . . . , uq}, we define l′ = l[z1, . . . , zq],
where zi are new, distinct variables, zi 6∈ V ar(l) and l|ui

= zi

for all i, 1 ≤ i ≤ q. Let Z = {z1, . . . , zq}. Note that l′ is linear.
Moreover, by Propositions 16 and 17, µl′ v µl v µ. Also, note that
Y ⊆ V ar(l′), because occurrences in Uov and U ov are mutually
disjoint.

Then, we can express t′ in A : t ‖→∗t′ U→ σ(l) by using a substitution
σ′, such that t′ = σ′(l′). The substitution σ′ is defined as follows:

(a) σ′(x) = σ(x) for all x ∈ V ar(l′)\(Y ∪ Z),

(b) σ′(yj) = t′|vj
for 1 ≤ j ≤ p, therefore, Cyj

: σ′(yj) = t′|vj

Wj→
σ(l)|vj

. Note that |Cyj
| = 1, and recall that Wj = {w | vj.w ∈ U j};

and

(c) σ′(zi) = t′|ui
for 1 ≤ i ≤ q.

Therefore, from items 1 and 2 above, it follows that for all x ∈ V ar(l[])
(Z is disjoint from V ar(l)), we have derivations Cx : σ′(x) ‖→εσ(x) such
that |Cx| ≤ 1 (recall that t ‖→εs means either t ‖→s or t = s).

Now we write: A : t ‖→∗σ′(l′) U→ σ(l). Let A′ : t ‖→∗σ′(l′). Since
|A′| < |A|, by the induction hypothesis, there is θ′ such that t ‖↪→∗θ′(l′),
and for all x ∈ V ar(l′), there exists B′

x : θ′(x) ‖→∗σ′(x) such that
|B′

x| ≤ |A′|. Note that, for all x ∈ V ar(l[]), we have derivations
Bx : θ′(x) ‖→∗σ′(x) ‖→εσ(x). Hence, |Bx| = |B′

xCx| ≤ |B′
x| + 1 ≤

|A′| + 1 = |A| for each x ∈ V ar(l[]). For variables zi ∈ Z, we
have derivations Czi

: θ′(zi) ‖→∗σ′(zi) such that |Czi
| ≤ |A′|. Since

σ′(zi) = t′|ui
→ σ(l|ui

), we have C ′
zi

: θ′(zi) ‖→∗σ(l|ui
), and |C ′

zi
| ≤ |A|.

Since ui 6= ε, we have σ(l|ui
) ≺ σ(l). Hence, C ′

zi
< A. By the in-

duction hypothesis, for each i, 1 ≤ i ≤ q, there exists a substitution
θi such that θ′(zi) ‖↪→∗θi(l|ui

) and, for all x ∈ V ar(l|ui
), derivations

Bx : θi(x) ‖→∗σ(x) such that |Bx| ≤ |C ′
zi
| ≤ |A|. From these facts:

• we define θ to be θ = θ′ ∪ θ1 ∪ . . . ∪ θq. Since V ar(l) = V ar(l[])]
V ar(l|u1)] . . .] V ar(l|uq), and l is left-linear, θ is well defined,
and it covers all bindings for variables in V ar(l). Then, we get

43

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

that each Bx : θ(x) ‖→∗σ(x) verifies |Bx| ≤ |A| for all x ∈ V ar(l);
and

• we have t ‖↪→∗θ′(l′). Since l′ = l[z1, . . . , zq], we obtain θ′(l′) =
θ′(l[z1, . . . , zq]) = θ′(l)[θ′(z1), . . . , θ′(zq)]. Hence, we get the deriva-
tion t ‖↪→∗θ′(l)[θ′(z1), . . . , θ′(zq)]. We also have θ′(zi) ‖↪→∗θi(l|ui

) for
all i, 1 ≤ i ≤ q. Since µl v µ, OΣ(l) ⊆ Oµ(l). By Propo-
sition 2, Oµ(l) ⊆ Oµ(θ′(l)). Thus, since ui ∈ OΣ(l), for all i,
1 ≤ i ≤ q, we get ui ∈ Oµ(θ′(l)) and by Propositions 3(2) and 8,
θ′(l)[θ′(z1), . . . , θ′(zq)] ‖↪→∗θ′(l)[θ1(l|u1), . . . , θq(l|uq)]. By definition
of θ, θ′(l)[θ1(l|u1), . . . , θq(l|uq)] = θ(l). Thus, t ‖↪→∗θ(l).

Therefore, the conclusion follows.

Proof of Proposition 19 2

To simplify the notation, in the following proposition,
>ε−→∗ denotes a

multiderivation that does not consider redexes at the empty occurrence ε.
The next theorem is a consequence of the previous proposition. It establishes
the ability of csr to compute the same root symbol that unrestricted rewriting
obtains.

Theorem 7 Let R = (Σ, R) be a left-linear TRS, and µ be a Σ-map such
that µcom

R v µ. Let t ∈ T (Σ, V), and let s be a head-normal form. If t ‖→∗s,

then there exists s′ such that t ‖↪→∗s′, root(s) = root(s′), and s′ >ε−→∗s.

Proof of Theorem 7 If t is an hnf, the result is immediate. If t is not
an hnf, and it reduces to an hnf , s, there is a derivation A : t ‖→∗σ(l)

{ε}→
σ(r)

>ε−→∗s for some rule l → r. We write A′ : t ‖→∗σ(l) and A′′ : σ(r)
>ε−→∗s.

Note that |A| = |A′| + 1 + |A′′|. We proceed by induction on the length
|A| = n ≥ 1 of the derivation A. If n = 1, then t is a redex. Since t =
σ(l) ↪→ σ(r) = s, we take s′ = σ(r) = s. If n > 1, we apply Proposition 19 to
the derivation A′. Thus, there is θ such that t ‖↪→∗θ(l) and Bx : θ(x) ‖→∗σ(x)
for all x ∈ V ar(l) such that |Bx| ≤ |A′|. Hence, by proceeding as in case 1 in
the proof of Proposition 19, we can define a multiderivation B′ : θ(r) ‖→∗σ(r)

such that |B′| ≤ |A′|. Hence, the derivation B : θ(r) ‖→∗σ(r)
>ε−→∗s verifies

|B| = |B′| + |A′′| ≤ |A′| + |A′′| < |A|. If r = g(r̃), then root(s) = g, and by
construction, the derivation B′ does not reduce an occurrence ε of a redex.

44

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.2

Then we take s′ = θ(r), and, since s′ = θ(r)
>ε−→∗σ(r)

>ε−→∗s, t ‖↪→∗θ(l)
{ε}
↪→

θ(r) = s′, and root(s′) = g, the conclusion follows. If r ∈ V , then if θ(r)

is an hnf, we also have θ(r)
>ε−→∗σ(r)

>ε−→∗s, and we take s′ = θ(r). Clearly,
root(s′) = root(s). If θ(r) is not an hnf, since the derivation B verifies

|B| < |A|, by the induction hypothesis there is s′ such that θ(r) ‖↪→∗s′, s′ >ε−→∗s,

and root(s) = root(s′). Thus, since t ‖↪→∗θ(l)
{ε}
↪→ θ(r) ‖↪→∗s′, the conclusion

follows.

Proof of Theorem 7 2

Left-linearity is required for this proposition, as the following example
shows.

Example 16 Consider the TRS R:

f(x, x) → 0 h(0) → 0
g(0, x) → 0

This TRS is not left-linear. The term t = f(g(s(0), h(0)), g(s(0), 0)) is not a
head-normal form, since we have:

f(g(s(0), h(0)), g(s(0), 0)) → f(g(s(0), 0), g(s(0), 0)) → 0

we have µcom
R (f) = Ø, µcom

R (g) = µcom
R (h) = {1}. Because 1.2 is not a re-

placing occurrence of the term t, f(g(s(0), h(0)), g(s(0), 0)) 6↪→. This prevents
further reductions at the root, unlike the unrestricted derivation.

Also, Example 12 shows that the condition µcom
R v µ is required to ensure

the result. In the example, we had µcom
R ‖ µ. This prevents the derivation

from continuing after the term g(b, a). Note that the lhs g(b, b) is not µ-
compatible. However, we note that the condition µcom

R v µ is sufficient, but
not necessary. For instance, consider the following example.

Example 17 Consider the following TRS R (following Example 12):

g(b, b) → b f(x, y) → g(x, y)
g(b, a) → b a → b
g(b, f(x, y)) → b
g(b, g(x, y)) → b

45

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.3

Then, it is possible, even if we set µ(g) = {1}, to follow the unrestricted
derivation. This is because we obviate the need to extend matching in the
second argument of the g rules, because we explicitly provide for each possi-
bility of extending matching in this argument. This looks like a variable, but
it is not exactly equivalent.

In the remainder of the paper, we will use Proposition 19 and Theo-
rem 7 concerning derivations, rather than multiderivations. However, since
any derivation t

u1→ t2 → . . . → tn
un→ tn+1 can be considered as a multi-

derivation t
{u1}→ t2 → . . . → tn

{un}→ tn+1, we can consider derivations as
being multiderivations. Also, any elementary multiderivation t

U→ s with
U = {u1, . . . , un}, n ≥ 0, has an equivalent derivation t →∗ s given by
t = t1

u1→ t2 → . . . → tn
un→ tn+1 = s (since the redex occurrences are disjoint,

the order of the elementary derivations is not a problem), and thus we can
also consider multiderivations as being derivations.

Similar considerations can be made for ↪→ and ‖↪→, by taking into account
the corresponding properties of the replacement condition (see Lemma 3).

5.3 Meaningful Computations using Context-Sensitive
Rewriting

In this section, we use the previous results to establish the ability of csr to
compute interesting information in functional programming. Here, when we
speak about completeness, we mean that csr is able to compute interesting
information (head-normal forms, values, normal forms) using a nontrivial re-
placement map µ, i.e., µ < µ>. Otherwise, the discussion is meaningless,
because if µ = µ>, csr and unrestricted rewriting coincide. Our results on
completeness involve replacement maps µ which are greater than or equal to
the canonical replacement map µcom

R , i.e., µcom
R v µ. Of course, we can have

µcom
R = µ> (we show an example at the end of this section). However, we

usually have µcom
R < µ>. In this situation, it is worthy to speak about com-

pleteness of (nontrivial) context-sensitive computations. The most general
result concerns head-normal forms.

Theorem 8 Let R = (Σ, R) be a left-linear TRS, and µ be a Σ-map such
that µcom

R v µ. Every µ-normal form is a head-normal form.

46

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.3

Proof of Theorem 8 By contradiction. Let t be a µ-normal form. If t is
not a head-normal form, there is a derivation t →∗ σ(l) → σ(r) for some
l → r ∈ R. By Proposition 19, there exists a substitution θ such that
t ↪→∗ θ(l). Since t is a µ-normal form, it must be t = θ(l). Hence, t is a
redex, and θ(l) ↪→ θ(r). Thus, t is not a µ-normal form. Contradiction.

Proof of Theorem 8 2

From Example 16, we note that left-linearity is needed to ensure Theo-
rem 8. Also, Example 12 shows that the condition µcom

R v µ is not vacuously
used.

Given a TRS R = (Σ, R), we consider the signature Σ as the disjoint
union Σ = C] F of symbols c ∈ C, called constructors, which have no
associated rule, and symbols f ∈ F , called defined functions or operations,
which are defined by some program rule f(l̃) → r ∈ R: F = {f ∈ Σ | f(l̃) →
r ∈ R} and C = Σ\F . Constructor terms (i.e., values) are denoted as
δ ∈ T (C, V). Note that we do not impose any constructor discipline.

When considering such decomposition of the signature, we can formu-
late some interesting results about completeness of csr . Theorem 8 estab-
lished that, if we perform a µ-normalizing derivation, we also obtain a head-
evaluation of the term. However, we would like to ensure head-evaluations
using shorter µ-derivations without the need to fully µ-normalize the term.
Moreover, since we do not assume confluence, many head symbols for head-
normal forms, values, normal forms, etc. are possible. The first result con-
cerns computations leading to constructor head-normal forms.

Theorem 9 Let R = (Σ, R) = (C] F , R) be a left-linear TRS, and µ be a
Σ-map such that µcom

R v µ. Let t ∈ T (Σ, V), x ∈ V , and s = c(s̃) for some
c ∈ C. If t →∗ x, then t ↪→∗ x. If t →∗ s, then there exists s′ = c(s̃′) such

that t ↪→∗ s′ and s′ >ε−→∗s.

Proof of Theorem 9 Immediate consequence of Theorem 7.

Proof of Theorem 9 2

Thus, Theorem 9 provides conditions ensuring that csr is complete in
derivations leading to constructor head-normal forms (including variables).

For general head-normal forms, we have to restrict the class of TRSs
under consideration a bit more. First, we need the following lemma.

47

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.3

Lemma 7 ([Mid97]) Let R be an almost-orthogonal TRS. If t is a head-

normal form and s
>ε−→∗t, then s is a head-normal form.

Now we have the following result.

Theorem 10 Let R = (Σ, R) be an almost-orthogonal TRS, and µ be a Σ-
map such that µcom

R v µ. Let t ∈ T (Σ, V) and s = f(s̃) be a head-normal
form. If t →∗ s, then there exists a head-normal form s′ = f(s̃′) such that

t ↪→∗ s′ and s′ >ε−→∗s.

Proof of Theorem 10 By Theorem 7, there exists s′ such that t ↪→∗ s′ and

s′ >ε−→∗s. By Lemma 7, s′ is a head-normal form.

Proof of Theorem 10 2

We conjecture that, in fact, this result extends to arbitrary left-linear
TRSs. Concerning the notion of µ-orthogonal TRS, as introduced in Sec-
tion 4.3 (Definition 11), we note that it does not lead to a generalization
of Theorem 10. This is because whenever we consider a replacement map
µ such that µcom

R v µ, a µ-orthogonal TRS is always orthogonal. This is
owing to the fact that, because of µ-compatibility of the lhs of rules in the
TRS, all occurrences in OΣ(l), i.e., the occurrences that can introduce over-
lapping, are replacing occurrences. Hence, non-µ-overlapping is the same as
nonoverlapping.

The following theorem is the main result of this section. It gives condi-
tions ensuring that, for left-linear TRSs, csr is complete in evaluations, i.e.,
in reductions leading to values. To obtain this, we need to relax the restric-
tions imposed by the canonical replacement map µcom

R . Given a set B ⊆ C,
the replacement map µB

R is µB
R = µcom

R t µB, where µB(c) = IN+
ar(c) for all

c ∈ B, and µB(f) = Ø if f 6∈ B.

Theorem 11 Let R = (Σ, R) = (C]F , R) be a left-linear TRS, B ⊆ C, and
µ be a Σ-map such that µB

R v µ. For all t ∈ T (Σ, V) and δ ∈ T (B, V), we
have t →∗ δ if and only if t ↪→∗ δ.

Proof of Theorem 11 The “if” part is immediate, since ↪→⊆→. For the
“only if” part, we proceed by structural induction on δ. If δ ∈ B ∪ V ,

then by Theorem 9, t ↪→∗ s′, and s′ >ε−→∗δ. Since δ ∈ B ∪ V , s′ = δ. If

48

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.3

δ = c(δ̃) and c ∈ B, then we decompose t →∗ δ as t →∗ c(t̃) →∗ δ. Since
µcom

R v µB
R v µ, by Theorem 9 there exists c(s̃) such that t ↪→∗

R(µ) c(s̃) and

c(s̃)
>ε−→∗c(t̃). Thus, c(s̃)

>ε−→∗c(δ̃), and moreover, si →∗
R δi, 1 ≤ i ≤ ar(c). By

the induction hypothesis, si ↪→∗ δi. Since µB
R v µ, i ∈ µ(c) for 1 ≤ i ≤ ar(c).

Thus, by Proposition 8, the conclusion follows.

Proof of Theorem 11 2

To make practical use of Theorem 11, we need to know B before starting
the µ-evaluation in order to establish µB

R and, hence, a replacement map µ
such that µB

R v µ. This is not difficult if we have some typing information
available. For instance, if we deal with typed (or sorted) TRSs, as is usual in
functional programming, the sel function symbol in Example 5 would have
the following type: sel:Nat ×NatList → Nat . Then we could ensure that any
well-typed term t = sel(num, list), where num and list are Nat and NatList
terms, respectively, must be evaluated to a Nat term. Thus, the type of
function indicates what constructor symbols should be in B. For instance, 0
and s are the only constructors of Nat .

Theorem 11 formally justifies the evaluation of sel(s(s(0)), from(0)), using
the TRS R in Example 5. The replacement map µ given in this example
satisfies µB

R v µ, if we take B = {0, s}. As remarked in the example, R is
µ-terminating (see Section 4.1). This means that we can evaluate function
calls leading to natural numbers (which are the values that can be built
from B) without risk of infinite derivations, and at the same time preserve
completeness.

In general, it is not possible to extend Theorem 11 to computations
leading to general normal forms, as the following example shows.

Example 18 Consider the TRS:

f(x) → g(x, x) h(0) → 0
g(0, x) → 0 h(s(0)) → 0

Take µ(f) = µ(g) = µ(h) = µ(s) = {1}. The TRS and µ fulfill the condi-
tions in Theorem 11. Now g(s(0), h(0)) → g(s(0), 0), which is a normal form.
However, g(s(0), h(0)) is already in µ-normal form. Note that g(s(0), 0) 6∈
T (C, V).

However, we have some oportunities in special cases.
49

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §5.3

Theorem 12 Let R = (Σ, R) be a left-linear TRS, t ∈ T (Σ, V), and s ∈
T (Σ, Ø) such that s is a normal form. Let µ be a Σ-map such that µcom

R tµs v
µ. Then, t →∗ s if and only if t ↪→∗ s.

Proof of Theorem 12 The “if” part is immediate, since ↪→⊆→. For the
“only if” part, since t →∗ s and s is ground, we can write t →∗ ε(s), where
ε is the identity substitution. By Proposition 19, there exists a substitution
θ such that t ↪→∗ θ(s). Since s is ground, θ(s) = s.

Proof of Theorem 12 2

For instance, in Example 18, by taking µ(g) = {1, 2} we are able to obtain
the normalization of the input term t = g(s(0), h(0)) (in fact, µ = µ> in this
particular case). However, this result can be hard to use in practice, because
given an input term t, we usually do not know the shape of a normal form
s of t. Thus, we cannot easily establish either groundness of s (but if t is
ground, then s is trivially ground) or the replacement map µs.

It is worthy to note here that we do not need µ-confluence to ensure
completeness of µ-evaluations. Moreover, confluence of the TRS suffices to
ensure that all µ-derivations starting from a term t eventually converge to
its value δ ∈ T (B, V) (if it exists and µB

R v µ). This is easy to see: if t
evaluates to δ and we have t ↪→∗ t′ and t ↪→∗ t′′, confluence ensures that both
t′ and t′′ evaluate to δ. Hence, by Theorem 11, t′ ↪→∗ δ and t′′ ↪→∗ δ as well.
For instance, the TRS R of Example 5 has no left homogeneous µ-replacing
variables (being µ as given in the example). Thus, the results in Section 4 do
not apply, and we cannot ensure µ-confluence. However, since R is confluent
and µ-terminating, every context-sensitive evaluation of a given term yields
the same result. In this way, we obtain a kind of µ-confluence property that
restricts to derivations issuing from terms that have a value. Note that we
do not impose that R has left homogeneous µ-replacing variables.

This suggests that having left homogeneous µ-replacing variables is not
a necessary condition for ensuring µ-confluence of a TRS R = (Σ, R) =
(C] F , R). In fact, if we consider terminating completely defined TRSs (for
which every normal form is a value), Theorem 11 entails that confluence of
the TRS implies µ-confluence whenever µ satisfies µC

R v µ. For instance:

Example 19 Consider the terminating, completely defined TRS R:

f(x) → g(x, x) h(0) → 0
g(0, x) → 0 h(s(x)) → 0
g(s(x), y) → s(x)

50

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §6

Take µ(f) = µ(g) = µ(h) = µ(s) = {1}; then R has no left homogeneous
replacing variables. However, being C = {0, s}, we have µC

R v µ, and Theo-
rem 11 implies µ-confluence of R.

In [KW95], the results on completeness of lazy rewriting with respect
to normalization are only given up to ζ-equality (see Section 4.4), i.e., the
authors ensure that given a term t, there is a normal form, e.g., lazy rewriting,
that is ζ-equal to a normal form of t. Therefore, our results on completeness
for computing normal forms are more accurate (when we restrict ourselves
to values). Also, the results in [KW95] are restricted to left-linear, confluent
TRSs. We do not require confluence. Completeness results in [Mar90] also
concern normal forms, but they are given for a very restrictive class of TRSs
(see Section 4.4). No results on completeness of computations leading to
any notion of head-normal forms are given in these works.

In both [KW95, Mar90], no indication is given about how to define the
replacement restrictions to obtain the completeness results, or how the com-
pleteness of the restricted computations depends on the concrete imposed
restrictions. This is because they do not provide a means for explicitly com-
paring different replacement restrictions (as it is, for example, the ordering
v between replacement maps).

To end this section, a final remark. We note that the canonical replace-
ment map µcom

R gives a measure of the improvements that can be expected
from using csr instead of unrestricted rewriting. If µcom

R is equal to µ>, we
cannot introduce any improvement by using csr (at least if we want to en-
sure the minimum completeness properties for the cs-computations). For
instance, in the following TRS R for the definition of the parallel or [O’D85]:

or(true, x) → true or(false, false) → false
or(x, true) → true

we have µcom
R = µ>. Hence, csr and unrestricted rewriting coincide if we

want to ensure some kind of completeness. We can compare this situation
with the one already analyzed for the shortcut version of this operator, in
Example 3. There, we had µcom

R < µ>, and using csr instead of unrestricted
rewriting is better.

51

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §6

6 Context-Sensitive Narrowing

Functional logic languages integrate the most interesting features of pure
logic and functional languages in a unified framework. Logical variables,
partial data structures, and the search for solutions that stem from logic pro-
gramming, are available in the integrated language [Han95, Han94]. Nested
expressions, higher order functions, and the possibility of benefitting from the
deterministic nature of functions also become available from the functional
component.

To work with logic variables, we need to provide a new operational mech-
anism that is different from rewriting and is able to instantiate them. This
mechanism is narrowing. To bring the advantages that csr offers in func-
tional programming to functional logic languages, let us consider the idea
of limiting narrowing by means of a similar kind of replacement restriction,
expressed by a replacement map.

Definition 15 (Context-Sensitive Narrowing) Let R = (Σ, R) be a TRS,
and µ be a Σ-map. A term t µ-narrows to s, written t

µ
;[u,α,σ]s (or just

t
µ
;σs) if and only if t ;[u,α,σ] s in R and u ∈ Oµ(t).

Note that, analogously to the case of csr, we have that µ
; ⊆;. Thus,

context-sensitive narrowing (csn) explores a smaller search space than unre-
stricted narrowing. Let us consider an example.

Example 20 Consider the TRS and replacement map of Example 1. The
(unnecessary) narrowing step

if(and(x, false), y + s(0), 0) ;{y/0} if(and(x, false), s(0), 0)

is avoided with csn, because the occurrence 2 of the input term if(and(x, false), y + s(0), 0)
is not replacing.

We give a result similar to Theorem 11 for csn. It relies on the following
theorem, which expresses the correspondence between csr and csn. In fact,
it looks like the well-known result for unrestricted narrowing that is due to
Hullot [Hul80]. By a normalized substitution, we mean a substitution σ such
that σ(x) is a normal form, for all x ∈ V .

Theorem 13 Let R be a TRS, and µ be a Σ-map. Let t ∈ T (Σ, V), and W
be a finite set of variables containing V ar(t). Let η be a normalized substi-
tution with Dom(η) ⊆ V ar(t). Consider the following µ-rewriting derivation
issuing from η(t): η(t) = s0 ↪→[u0,α0] s1 ↪→[u1,α1] s2 ↪→ . . . sn−1 ↪→[un−1,αn−1] sn

52

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §6

1. there exists an associated µ-narrowing derivation issuing from t:

t = t0
µ
;[u0,α0,σ0] t1

µ
;[u1,α1,σ1] t2

µ
; . . . tn−1

µ
;[un−1,αn−1,σn−1] tn

2. for each i, 0 ≤ i ≤ n, there exists a substitution ηi and a finite set of
variables Wi such that:

• Dom(ηi) ⊆ Wi,

• ηi is normalized,

• η↓W = (ηiθi)↓W , and

• ηi(ti) = si,

where θ0 = ε and θi+1 = σi+1θi. Conversely, for each µ-narrowing
derivation 2 and substitution η such that θn ≤ η[[W]], there exists a
corresponding µ-rewriting derivation 1.

Proof of Theorem 13 The proof is basically the same as that of Theorem
1 in Hullot [Hul80], because each reduction step takes the same occurrence
as the corresponding narrowing step, and vice versa. Because the replace-
ment restrictions when considering narrowing derivations are the same as in
rewriting and they only depend on the considered occurrence, the proof is
still valid.

Proof of Theorem 13 2

When µ = µ>, Theorem 13 boils down to the standard result due to
Hullot (see [Hul80]). In the setting of this theorem, normalized substitutions
are important. To ensure that the computed substitutions are normalized,
here we consider constructor-based TRSs (CB-TRSs). When considering
CB-TRSs, the rules of a TRS R = (Σ, R) = (C] F , R) satisfy the following
requirement: for all l → r ∈ R, l = f(δ̃), where f ∈ F and δ̃ ∈ T (C, V)ar(f).
The following result is auxiliary.

Lemma 8 Let R = (Σ, R) be a left-linear CB-TRS. Let t, s ∈ T (Σ, V),
such that t ;∗

θ s. Then θ↓V ar(t) is a constructor substitution.

We note that for CB-TRSs, constructor substitutions are normalized.
Now we present the main result of this section.

53

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §6

Theorem 14 Let R = (Σ, R) = (C]F , R) be a left-linear CB-TRS, B ⊆ C,
and µ be a Σ-map such that µB

R v µ. Let t ∈ T (Σ, V), and δ ∈ T (B, V).
Then t ;∗

θ′ δ if and only if t
µ
;

∗
θ δ, and θ ≤ θ′[[V ar(t)]].

Proof of Theorem 14 The “if” part is immediate, since µ
; ⊆;, and we

get θ = θ′. For the “only if” part, by Lemma 8 and Theorem 13 (taking
η = θ′↓V ar(t), µ = µ> and considering that, since η = θ′↓V ar(t), we have ηn = ε
and then ηn(δ) = δ), we get t ;∗

θ′ δ ⇒ θ′(t) →∗ δ. Now, from Theorem 11,
θ′(t) →∗ δ ⇔ θ′(t) ↪→∗ δ. Finally, from Theorem 13, θ′(t) ↪→∗ δ ⇒ t

µ
;

∗
θ δ

and θ ≤ θ′[[V ar(t)]].

Proof of Theorem 14 2

As a consequence of Theorem 14, csn computes more general solutions
than unrestricted narrowing without losing completeness (when we observe
successful derivations leading to constructor terms).

Example 21 A successful csn derivation for the input expression of Exam-
ple 20 is:

if(and(x, false), y + s(0), 0) µ
;

∗
{x/true}0

The more expensive unrestricted narrowing reduction

if(and(x, false), y + s(0), 0) ;∗
{x/true,y/0} 0

is not produced.

Narrowing can be used to solve equations by instantiating the variables in
an equation in such a way that the equation becomes true. An equation is a
pair t ≈ t′ of terms. If we do not restrict ourselves to terminating TRSs, as is
usual in functional logic languages with a lazy operational semantics, normal
forms may not exist. Therefore, the validity of an equation is defined as a
strict equality on terms. This is done, for instance, in BABEL [MR92], K-
LEAF [GLMP91], etc, and it is the more appropiate choice in the presence
of infinite data structures and computations. Thus, a substitution σ is a
solution for an equation t ≈ t′ if and only if σ(t) and σ(t′) are reducible
to a same ground constructor term. By defining the symbol ≈ as a binary
operation symbol, equations can also be interpreted as terms. Therefore, all
notions for terms, such as substitution, narrowing, etc., will also be used for
equations. Given a CB-TRS R = (C] F , R), the operation ≈ is defined

54

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §7

by the TRS S≈ = (C] {true}] {≈, ∧}, S≈), where S≈ is: S≈ = {c ≈
c → true | c ∈ C and ar(c) = 0} ∪ {c(x1, . . . , xk) ≈ c(y1, . . . , yk) → x1 ≈
y1 ∧ . . . ∧ xk ≈ yk | c ∈ C, k > 0} ∪ {true ∧ x → x}, and ∧ is assumed to be
a right-associative infix symbol. These are the equality rules of a signature.
By adding the equality rules to the rewrite system, equation solving can be
done by narrowing equations to “true.”

The TRS S≈ is left-linear, and µcom
S≈ is µcom

S≈ (c) = Ø for all c ∈ C]
{true}, µ(∧) = {1}, and µcom

S≈ (≈) = {1, 2}. Thus, given a left-linear CB-
TRS R = (Σ, R) = (C] F , R), B ⊆ C, and a replacement map µ such that
µB

R v µ, it is obvious that, being R≈ = (Σ ∪ {∧, ≈}, R ∪ S≈), we also have
µcom

R t µcom
S≈ t µB = µB

R≈ v µ t µcom
S≈ . Therefore, we just need to add µcom

S≈ to
µ, and we have no further problems.

Example 22 Consider the TRS in Example 20 and the equation

if(and(x, false), y + s(0), 0) ≈ 0

We obtain

if(and(x, false), y + s(0), 0) ≈ 0

µ
;{x/true} if(false, y + s(0), 0) ≈ 0

µ
;ε 0 ≈ 0

µ
;ε true

and also

if(and(x, false), y + s(0), 0) ≈ 0

µ
;{x/false} if(false, y + s(0), 0) ≈ 0

µ
;ε 0 ≈ 0

µ
;ε true

Note that {x/true} and {x/false} are the most general solutions to the ini-
tial equation. Unrestricted narrowing would compute an infinite number of
solutions corresponding to useless instantiations of the variable y.

7 Conclusions

From a computational point of view, context-sensitive rewriting allows one
to achieve more efficient computations in comparison to standard rewriting.
Termination is preserved or enhanced by csr [Luc96b, Zan97]. Confluence
may sometimes be enhanced, but might also be lost. We have established

55

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations §7

classes of TRSs for which we can prove confluence of csr . We have also
established syntactic conditions to ensure that computations are kept under
csr . We have shown how to define a minimum replacement map to achieve
head-evaluations, evaluations, and even normalization of input terms. In
many cases, the restrictions imposed by such replacement maps are able to
preserve completeness and improve termination as well.

Example 23 Consider the following TRS from [Zan97]:

sel(0, x :: y) → x g(0) → s(0)
sel(s(x), y :: z) → sel(x, z) g(s(x)) → s(s(g(x)))
f(x) → x :: f(g(x))

The term f(0) describes the infinite list of numbers of the shape 2k − 1 for
all k ≥ 0. By using sel, we can compute the n-th element of this list. For
instance: sel(s(s(0)), f(0)). By considering µ(::) = µ(s) = µ(f) = µ(g) =
{1}, and µ(sel) = {1, 2}, in [Zan97], Zantema proves that this TRS is µ-
terminating. We note that by considering B = {0, s}, we have µB

R v µ.
Hence, Theorem 11 ensures the use of csr under the replacement map µ to
compute the value of the function call sel(s(s(0)), f(0)) (without getting an
infinite derivation).

We have also introduced context-sensitive narrowing, a kind of narrowing
relation based on the definition of restrictions on the replacement of argu-
ments in function calls. Finally, we have proven that csn is equivalent to
unrestricted narrowing under some syntactic restrictions on the program,
while it provides for more efficient computations.

Therefore, we can use the context-sensitive replacement restrictions ex-
pressed by a replacement map and the replacement condition as a suitable
operational tool for implementing computations with functional and func-
tional logic programs (via csr and csn, respectively). In fact, the results in
Section 5.3 show that csr under the canonical replacement map (or greater)
is sufficient to perform the reductions that are necessary to obtain meaning-
ful computations in functional programming. Since these results are valid for
a broad class of TRSs (left-linear TRSs), we think that the systematic use
of such fixed, simple replacement restrictions in rewriting is useful for imple-
menting the execution of functional (and functional logic) programs. In fact,
there exist reduction engines that provide means to either enable or disable
reductions of subterms of an input term during the evaluation process (e.g.,

56

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations (Ref)

the Rewrite Rule Machine in [GKM87]). These features could be used to ef-
ficiently implement the context-sensitive computations once we have shown
that they do not damage the evaluation process. However, a more detailed
analysis of this problem is a subject of future work.

The results of this paper show that in many cases, there exist natural
generalizations of many standard results of rewriting and narrowing to csr
and csn, respectively. This is the case of confluence, termination, the cor-
respondence between narrowing and rewriting . . . but also of more involved
topics as sequentiality of computations (see [Luc97]). From a theoretic point
of view, this suggests that the consideration of this kind of fixed replacement
restriction easily fits into the general theory of rewriting by just reformulat-
ing some well-known results to explicitly take into account the replacement
restrictions. Therefore, more benefits could be gained from a further anal-
ysis (in this direction) of still unexplored areas of the theory. For instance,
conditional TRSs, modularity, strategies, etc.

Acknowledgement of support: This work has been partially supported
by CICYT under grant TIC 95-0433-C03-03.

I would like to thank Maŕıa Alpuente and Germán Vidal for their encour-
agement and support during the development of this work.

References

[CPJ85] C. Clack and S. L. Peyton-Jones. Strictness analysis—a practical
approach. In J.-P. Jouannaud, editor, Functional Programming
Architecture, volume 201 of Lecture Notes in Computer Science,
pages 35–39, Berlin, 1985. Springer-Verlag.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic
Computation, 3:69–115, 1987.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol-
ume B: Formal Models and Semantics, pages 243–320, Amster-
dam, 1990. Elsevier.

57

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations (Ref)

[Dur94] I. Durand. Bounded, strongly sequential and forward-branching
term rewriting systems. Journal of Symbolic Computation,
18:319–352, 1994.

[FW76] D. P. Friedman and D. S. Wise. CONS should not evaluate its
arguments. In S. Michaelson and R. Milner, editors, Automata,
Languages and Programming, pages 257–284, Edinburgh, 1976.
Edinburgh University Press.

[GKM87] J. Goguen, C. Kirchner, and J. Meseguer. Concurrent term
rewriting as a model of computation. In J. H. Fasel and R. M.
Keller, editors, Graph Reduction. Proceedings of a Workshop, vol-
ume 279 of Lecture Notes in Computer Science, pages 53–93,
Berlin, 1987. Springer-Verlag.

[GLMP91] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel
leaf: a logic plus functional language. Journal of Computer and
System Sciences, 42(2):139–185, 1991.

[Han94] M. Hanus. The integration of functions into logic programming:
from theory to practice. Journal of Logic Programming, 19–
20:583–628, 1994.

[Han95] M. Hanus. Functional logic languages: combine search and effi-
cient evaluation. In J. W. Lloyd, editor, Proceedings of the 1995
International Symposium on Logic Programming, ILPS’95, pages
625–626, Cambridge, MA, 1995. The MIT Press.

[HL91] G. Huet and J.-J. Lévy. Computations in orthogonal term rewrit-
ing systems I, II. In J. L. Lassez and G. Plotkin, editors, Com-
putational Logic: Essays in Honour of J. Alan Robinson, pages
395–414 and 415–443, Cambridge, MA, 1991. The MIT Press.

[HM76] P. Henderson and J. Morris. A lazy evaluator. In Conference
Record of the 3rd Annual ACM Symposium on Principles of Pro-
gramming Languages, POPL’76, pages 95–103, New York, 1976.
ACM Press.

[Hue80] G. Huet. Confluent reductions: abstract properties and applica-
tions to term rewriting systems. Journal of the ACM, 27:797–821,
1980.

58

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations (Ref)

[Hul80] J. M. Hullot. Canonical forms and unification. In Proceedings
of the 5th International Conference on Automated Deduction,
volume 87 of Lecture Notes in Computer Science, pages 318–334,
Berlin, 1980. Springer-Verlag.

[HW87] C. V. Hall and D. S. Wise. Compiling strictness into streams.
In Conference Record of the 14th Annual ACM Symposium on
Principles of Programming Languages, POPL’87, pages 132–143,
New York, 1987. ACM Press.

[Klo92] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 2, pages 1–116, Oxford, 1992. Oxford
University Press.

[KM91] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term
rewriting systems. Journal of Symbolic Computation, 12:161–
195, 1991.

[KW95] J. F. Th. Kamperman and H. R. Walters. Lazy rewriting and
eager machinery. In H. Hsiang, editor, Proceedings of the 6th
International Conference on Rewriting Techniques and Applica-
tions, RTA’95, volume 914 of Lecture Notes in Computer Science,
pages 147–162, Berlin, 1995. Springer-Verlag.

[Lal93] R. Lalement. Computation as Logic. Masson-Prentice-Hall In-
ternational, Paris, Hemel Hempstead, 1993.

[Luc95] S. Lucas. Fundamentals of context-sensitive rewriting. In
M. Bartǒsek, J. Staudek, and J. Wiedermann, editors, Proceed-
ings of the XXII Seminar on Current Trends in Theory and Prac-
tice of Informatics, SOFSEM’95, volume 1012 of Lecture Notes in
Computer Science, pages 405–412, Berlin, 1995. Springer-Verlag.

[Luc96a] S. Lucas. Context-sensitive computations in confluent programs.
In H. Kuchen and S. D. Swierstra, editors, Proceedings of the
8th International Symposium on Programming Languages, Im-
plementations, Logics, and Programs, PLILP’96, volume 1140 of
Lecture Notes in Computer Science, pages 408–422, Berlin, 1996.
Springer-Verlag.

59

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations (Ref)

[Luc96b] S. Lucas. Termination of context-sensitive rewriting by rewriting.
In F. Meyer auf der Heide and B. Monien, editors, Proceedings
of the 23rd International Colloquium on Automata, Languages,
and Programming, ICALP’96, volume 1099 of Lecture Notes in
Computer Science, pages 122–133, Berlin, 1996. Springer-Verlag.

[Luc96c] S. Lucas. Using replacement restrictions in functional-logic lan-
guages. In 5th Compulog-Network Area Meeting on Language
Design and Semantic Analysis Methods. Università degli Studi
di Pisa, 1996.

[Luc97] S. Lucas. Needed reductions with context-sensitive rewriting. In
M. Hanus and K. Meinke, editors, Proceedings of the 6th Interna-
tional Conference on Algebraic and Logic Programming, ALP’97,
volume 1298 of Lecture Notes in Computer Science, pages 129–
143, Berlin, 1997. Springer-Verlag.

[Mar90] L. Maranget. Optimal derivations in weak lambda-calculi and
in orthogonal term rewriting systems. In Conference Record of
the 18th Annual ACM Symposium on Principles of Programming
Languages, POPL’90, pages 255–269, New York, 1990. ACM
Press.

[Mid97] A. Middeldorp. Call by need computations to root-stable form.
In Conference Record of the 24th Annual ACM Symposium on
Principles of Programming Languages, POPL’97, pages 94–105,
New York, 1997. ACM Press.

[MR92] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic pro-
gramming with functions and predicates: the language babel.
Journal of Logic Programming, 12(3):191–223, 1992.

[Myc80] A. Mycroft. The theory and practice of transforming call-by-need
into call-by-value. In Proceedings of the 4th International Sympo-
sium on Programming, volume 83 of Lecture Notes in Computer
Science, pages 269–281, Berlin, 1980. Springer-Verlag.

[New42] M. H. A. Newman. On theories with a combinatorial definition
of “equivalence.” Annals of Mathematics, 43:223–243, 1942.

60

The Journal of Functional and Logic Programming 1998-1

Lucas Context-Sensitive Computations (Ref)

[O’D77] M. J. O’Donnell. Computing in Systems Described by Equations,
volume 58 of Lecture Notes in Computer Science, Berlin, 1977.
Springer-Verlag.

[O’D85] M. J. O’Donnell. Equational Logic as a Programming Language.
Cambridge, MA, 1985. The MIT Press.

[PJ87] S. L. Peyton-Jones. The Implementation of Functional Program-
ming Languages. London, 1987. Prentice-Hall International.

[Rea93] C. Reade. Elements of Functional Programming. Reading, MA,
1993. Addison-Wesley.

[Red85] U. S. Reddy. Narrowing as the operational semantics of func-
tional languages. In Proceedings of the IEEE International Sym-
posium on Logic Programming, pages 138–151, New York, 1985.
IEEE.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. Cambridge, MA, 1977.
The MIT Press.

[TSvEP93] Y. Toyama, S. Smetsers, M. C. J. D. van Eekelen, and R. Plas-
meijer. The functional strategy and transitive term rewriting
systems. In M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van
Eekelen, editors, Term Graph Rewriting—Theory and Practice,
pages 266–275, New York, 1993. John Wiley.

[Vui74] J. Vuillemin. Correct and optimal implementation of recursion
in a simple programming language. Journal of Computer and
System Sciences, 9(3):332–354, 1974.

[Wad87] P. Wadler. Strictness analysis on non-flat domains (by abstract
interpretation over finite domains). In S. Abramsky and C. Han-
kin, editors, Abstract Interpretation of Declarative Languages,
pages 266–275, 1987. Ellis Horwood Ltd.

[Zan97] H. Zantema. Termination of context-sensitive rewriting. In
H. Comon, editor, Proceedings of the 8th International Confer-
ence on Rewriting Techniques and Applications, RTA’97, vol-
ume 1232 of Lecture Notes in Computer Science, pages 172–186,
Berlin, 1997. Springer-Verlag.

61

The Journal of Functional and Logic Programming 1998-1

