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Abstract

This paper proposes a number of models for integrating finite-
domain stochastic constraint solvers into constraint logic programming
systems to solve constraint-satisfaction problems efficiently. Stochas-
tic solvers can solve hard constraint-satisfaction problems very effi-
ciently, and constraint logic programming allows heuristics and prob-
lem breakdown to be encoded in the same language as the constraints;
hence their combination is attractive. Unfortunately, there is a mis-
match between the kind of information a stochastic solver provides
and that which a constraint logic programming system requires. We
study the semantic properties of the various models of constraint logic
programming systems that make use of stochastic solvers, and give
soundness and completeness results for their use. We describe an ex-
ample system we have implemented using a modified neural network
simulator, GENET, as a constraint solver. We briefly compare the
efficiency of these models against the propagation-based solver ap-
proaches that are typically used in constraint logic programming.

1 Introduction

This paper proposes a framework for using stochastic constraint solvers
within constraint logic programming (CLP), employing a number of models
for integration. Our motivation for using such solvers is to solve constraint-
satisfaction problems (CSPs) more efficiently. In the paper we concentrate
on this case, although the theoretical results are applicable to any stochastic
constraint solver and constraint domain.
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A CSP (see, e.g., [Tsa93]) involves a finite set of variables, each of which
has a finite domain (set) of possible values, and a constraint formula that
limits the combination of values for a subset of variables. The task is to
assign values to the variables so that the constraint formula is satisfied.

Although CSPs occur in a large number of applications, such as com-
puter vision, planning, resource allocation, scheduling, and temporal rea-
soning, CSPs are, in general, NP-complete. Thus, a general algorithm de-
signed to solve any CSP will necessarily require exponential time1 in the
worst case. Constraint logic programming systems have been successfully
used to tackle a number of industrial CSP applications, such as car sequenc-
ing [DSH88], disjunctive scheduling [Hen89], and firmware design [DSH90].
Stochastic search methods have also had remarkable success in solving in-
dustrial CSPs [WT92a] and constraint-satisfaction optimization problems
(CSOPs) [AK89, HT85].

Constraint logic programming systems use a constraint solver to direct a
search for an answer to a goal. When the constraint solver determines that
the constraints collected on some derivation path are unsatisfiable, the CLP
system backtracks and tries a different derivation path. Thus the solver’s key
behavior is its correct determination of unsatisfiability. Typically, constraint
solvers are incomplete, that is, they do not answer whether every constraint is
satisfiable or unsatisfiable. For example, many real-number constraint solvers
treat nonlinear constraints incompletely, and integer constraint solvers are
also typically incomplete. The major requirement of the incomplete solver
in a CLP system is determining unsatisfiability; that is, as often as possible,
the solver returns false if a constraint is unsatisfiable.

Most constraint solvers in a CLP system that are used to solve CSPs em-
ploy the technique of constraint propagation to solve the set of constraints.
Each constraint is used to restrict the possible values that variables within
it can take. Restrictions caused by one constraint may propagate further
restrictions from other constraints, and the propagation continues until no
further restrictions are made. Constraint propagation is algorithmic in na-
ture. To guarantee the finding of a solution, these solvers are augmented
with some form of enumerative search. When the CSP is tight,2 this search
may be very costly.

Many of the methods traditionally used in solving CSPs are not propagation-
1Assuming P 6= NP .
2A tight CSP has few solutions over a large search space.
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based. A major class of CSP-solving techniques are stochastic methods; for
example, simulated annealing, neural networks, and evolutionary algorithms.
These methods are designed to find solutions to CSPs using a relaxation-
based search. The methods are, in general, not guaranteed to find a solution,
and they typically involve a resource bound on the search that determines
how long the method will take and the likelihood of finding a solution. Such
solvers do not usually determine when a constraint is unsatisfiable, but these
kinds of solvers can be considerably more efficient than propagation-based
solvers on large or hard instances of CSPs. The problem we examine is how
such solvers can be used efficiently in CLP systems.

Earlier approaches that considered incorporating stochastic solvers into
CLP systems were restricted to one of the models we discuss. Lee and
Tam [LT95] required the program to execute only a single derivation, so
that backtracking could never occur. At the end of the single derivation, the
stochastic solver (the GENET algorithm discussed later) determines a solu-
tion. Both Illera and Ortiz [IO95] and Kok et al. [KMMR96] used genetic
algorithms to search for a good solution to a constraint that was collected
by a CLP system; hence they used a stochastic method to tackle a CSOP.
All of these papers show how using stochastic methods instead of enumera-
tion methods traditional to CLP can lead to substantial benefits. None of
these works used the stochastic constraint solver to control the search for
a successful derivation; rather, it was used only as a solution finder, hence
most of the issues dealt with in this paper do not arise. Besides, there are
related works developed in artificial intelligence that incorporate constraint-
reasoning techniques into stochastic solvers such as genetic algorithms (GA)
to improve performance in solving CSPs. Bowen and Dozier [BD95] consid-
ered a hybrid GA incorporating arc revision to determine when to stop with
failure in case the CSP is unsatisfiable. Riff Rojac [Roj96] studied how to em-
bed constraint propagation into GAs for solving CSPs. Our works focus on
a general theoretical framework for integrating stochastic constraint solvers
into constraint logic programming systems, rather than only addressing an
improvement in the stochastic solvers.

This paper is organized as follows. Section 2 briefly introduces some
preliminaries for subsequent discussion. Section 3 describes various models
for how a stochastic solver can be used within a CLP system, while Sec-
tion 4 gives soundness and completeness results for these various models.
In Section 5, we briefly describe GENET [WT92a, DTWZ94], a probabilis-
tic artificial neural network (ANN) used as the constraint solver. We use

3
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GENET to demonstrate the feasibility of our approach. We describe how
we adapt the original model to support efficient incremental execution with
backtracking on constraints. Section 6 gives our experimental results, and in
Section 7 we conclude.

2 Preliminaries

Here we briefly introduce constraint logic programming. For more details,
see [JM94]. A constraint domain A is a structure defining the language and
meaning of the primitive constraints. A primitive constraint is of the form
r(t1, . . . , tn), where r is a relation defined byA, and t1, . . . , tn are terms for A.
For example, X > Y + 2 is a primitive constraint over the domain of integer
constraints. We assume that the constraint domain includes the primitive
constraint =, which is always interpreted as identity. A constraint is of the
form c1∧ . . .∧cn, where n ≥ 0 and c1, . . . , cn are primitive constraints. When
n = 0, we usually write the constraint as true.

We assume familiarity with first-order logic (see, for example, [Men87]).
In particular, a valuation θ for a set S of variables is an assignment of values
from the domain of A to the variables in S. Suppose S = {X1, . . . , Xn};
then θ may be written {X1 7→ a1, . . . , Xn 7→ an}, indicating that each Xi

is assigned the value ai. Let vars(F ) denote the set of free variables occur-
ring in a formula F . Let ∃̄V F represent the formula ∃w1 . . .∃wkF , where
{w1, . . . , wk} = vars(F ) − V . Let ∃̃F represent the formula ∃̄∅F , the exis-
tential closure of F . If θ is a valuation for S ⊇ vars(c), then it is a solution
of c if the replacement of each variable by its value (as given by θ) yields a
true statement; that is, A |=θ c.

A constraint c is satisfiable if there exists a solution θ of c. Otherwise, it
is unsatisfiable. A constraint solver , solv, for a constraint domain A takes as
input any constraint c in A and returns true, false, or unknown. A solver solv
is correct if whenever solv(c) returns true, the constraint c must be satisfiable;
and whenever solv(c) returns false, the constraint c must be unsatisfiable. A
constraint solver is complete if it is correct and always returns either true or
false (never unknown).

An atom, A, is of the form p(t1, . . . , tn), where p is an n-ary predicate
symbol and t1, . . . , tn are terms from the constraint domain. A literal is
either an atom or a primitive constraint. A goal G is a sequence of literals
L1, . . . , Ln. An empty sequence is denoted 2. A rule, R, is of the form

4
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A :- B, where A is an atom and B is a goal. A is called the head of R, and
B is called the body of R. A (constraint logic) program, P , is a set of rules.
We will sometimes consider a goal as a conjunction of atoms and primitive
constraints.

Execution proceeds by mapping one state to another. A state is a pair
written 〈G c〉, where G is a goal and c is a constraint. A derivation step
from 〈G0 c0〉 to 〈G1 c1〉, written 〈G0 c0〉 ⇒ 〈G1 c1〉, is defined as follows:
Let G0 be of the form

L1, . . . , Li−1, Li, Li+1, . . . , Lm

where Lj, 1 ≤ j ≤ m are literals and Li is the selected literal . There are two
cases:

1. Li is a primitive constraint. Then G1 is L1, . . . , Li−1, Li+1, . . . , Lm, and
c1 is c0 ∧ Li. If solv(c1) = false, the state is failed .

2. Li is an atom p(t1, . . . , tn). Let R be a renamed version of a rule in P ,
sharing no variables with 〈G0 c0〉 of the form

p(s1, . . . , sn):-B1, . . . , Bk

Then c1 is c0, and G1 is

L1, . . . , Li−1, s1 = t1, . . . , sn = tn, B1, . . . , Bk, Li+1, . . . , Lm

A derivation 〈G0 c0〉 ⇒ 〈G1 c1〉 ⇒ . . . is a sequence of derivation steps
〈Gi ci〉 ⇒ 〈Gi+1 ci+1〉, where at each stage i ≥ 0 the state 〈Gi ci〉 is
not failed, and the selected literal is given by some selection strategy . A
derivation terminates either by reaching a failed state or an empty goal.

A derivation is successful if it is finite with last state 〈2 cn〉, where
solv(cn) 6= false. A derivation is finitely failed if it is finite and at the
last state is failed (solv(cn) = false). Thus a derivation only terminates by
success or by the solver detecting an unsatisfiable constraint; otherwise, the
derivation is infinite. A derivation is fair if it is finitely failed or each literal
appearing in the derivation is eventually selected. A selection strategy is fair
if it always produces fair derivations.

A derivation for a goal G is a derivation from state 〈G true〉. If

〈G true〉 ⇒ . . .⇒ 〈2 cn〉
5

The Journal of Functional and Logic Programming 1998-2



Stuckey and Tam Stochastic Constraint Solver Semantics §2

is a successful derivation for G, then ∃̄vars(G)cn is an answer to the goal G.
It will later be useful to refer to derivations in a manner where the last

step is always a derivation step of type 1. Let 〈G0 c0〉 (1)⇒ 〈G1 c1〉 represent
a sequence of any number of type 2 derivation steps followed by a type 1
derivation step. Clearly, for a derivation of the form 〈G0 c0〉 (1)⇒ 〈G1 c1〉 (1)⇒
. . .

(1)⇒ 〈Gn cn〉, the constraint solver is invoked on each of the constraints
c1, c2, . . . , cn.

Typically, CLP systems execute by starting from an initial state 〈G true〉
and building a derivation. Whenever a derivation step of type 2 is made, there
may be a choice of which rule in P to use in the step. If this is the case,
the system sets a choicepoint on the state 〈G0 c0〉 before the derivation
step. After a derivation step of type 1 is made where solv(c1) = false, then
the execution backtracks to the state of the last choicepoint and begins a
derivation from that point using an untried rule. If this is the last untried
rule, then the choicepoint is removed.

The constraint solver typically used in a CLP system to solve CSPs are
so-called propagation-based solvers (for example, see [Hen89]). Each variable
is associated with a domain of possible values, and consistency techniques
such as generalized arc-consistency are used to remove values that cannot be
part of a solution from the domains of variables. A common technique, called
bounds propagation, is to only ensure that the upper and lower bounds of each
variable are possibly consistent. Since the result of propagation does not,
in general, guarantee the existence of a solution, propagation-based solvers
usually return either false or unknown. Typically, they return true only
when every variable is explicitly constrained to take a unique value. For our
examples, we denote the range of integers from l to u inclusive as l..u, the
empty range as ∅, and X :: r to associate with variable X its current range
of values r.

Example 1 Consider the following simple CLP program executing in a con-
straint domain of the integers from 0 to 4:

p(X, Y, Z) :- X + Y + Z = 4, r(X, Y, Z).
r(X, Y, Z) :- X < 0.
r(X, Y, Z) :- X + Y + Z = 3.
r(X, Y, Z) :- X = Z.

The derivation tree in Figure 1 shows all possible derivations for the goal
p(X, Y, Z), and is somewhat simplified to remove extra variables introduced

6
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by renaming. The selected literal at each stage is underlined. If a bounds-

���������

PPPPPPPPP

1©〈p(X, Y, Z) true〉

2©〈X + Y + Z = 4, r(X, Y, Z) true〉

3©〈r(X, Y, Z) X + Y + Z = 4〉

6©〈X + Y + Z = 3 X + Y + Z = 4〉
4©〈X < 0 X + Y + Z = 4〉 8©〈X = Z X + Y + Z = 4〉

7©〈2 X + Y + Z = 3 ∧X + Y + Z = 4〉
5©〈2 X + Y + Z = 4 ∧X < 0〉 9©〈2 X = Z ∧X + Y + Z = 4〉

Figure 1: A derivation tree for a simple program

propagation solver were used in determining the derivations, then it would be
invoked on the constraints in 3©, 5©, 7©, and 9©, and would act as follows:

State Truth Bounds
3© unknown {X :: 0..4, Y :: 0..4, Z :: 0..4}
5© false {X :: ∅, Y :: 0..4, Z :: 0..4}
7© unknown {X :: 0..3, Y :: 0..3, Z :: 0..3}
9© unknown {X :: 0..4, Y :: 0..4, Z :: 0..4}

For example, it does not detect that the constraint at 7© is false, and it does
not guarantee an answer at 9©. To fix these weaknesses, the propagation
solver is usually executed with a labeling predicate that will set each variable to
some value. For example, the following program and goal would add labeling
to the above program:

value(0).
value(1).
value(2).
value(3).

7
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value(4).
goal(X,Y,Z) :- p(X,Y,Z), value(X), value(Y), value(Z).

Executing this goal would create a derivation tree similar in shape to that in
Figure 1, but at states 7© and 9©, execution would continue by trying different
values for X, then Y , then Z. The derivation tree below 7© would all lead to
failed derivations, while underneath 9© the first successful derivation would
be lead to a state

〈2 X + Y + Z = 4 ∧X = Z ∧X = 0 ∧ Y = 4 ∧ Z = 0〉

3 Using a Stochastic Solver

Consider the following simple example of a stochastic constraint solver for
Boolean CNF constraints (based on an algorithm by Wu and Tang [WT92b]).

Bool solve(F, ε)
Let m be the number of clauses in F
n := ln ε/ ln(1− (1− 1/m)m)
for i := 1 to n

generate a random truth assignment θ
if Fθ is true return true

endfor
return unknown

This algorithm is a randomized polynomial time algorithm for solving a
Boolean constraint F . The second argument, ε, gives a bound on its incom-
pleteness. Applied to a satisfiable constraint F , the algorithm3 will return
true with probability 1 − ε (this is quite a deep result of [WT92b]). So, ε
is the probability that the solver returns unknown when the constraint F is
satisfiable. All known complete solvers for this problem are exponential while
this algorithm is polynomial. But this solver never returns false, because it
can never determine that constraint F is unsatisfiable. Hence it seems diffi-
cult to use it in the context of a CLP system where we need failure to prune
the search space.

Because stochastic solvers in general cannot determine unsatisfiability,
when applied to an unsatisfiable constraint they will execute forever unless

3Assuming no individual clause is trivially false or true.

8
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some limit is imposed upon them. Therefore they usually have a resource
limit, for example, the iteration limit n in Bool solve. Thus, we define
a stochastic constraint solver as a solver that takes two arguments: a con-
straint, and a resource bound.

Definition 1 A stochastic solver ssolv takes a constraint c and resource
limit n, and either returns:

true, the amount of resources used to find a solution, and the solution itself.
For example, ssolv(c, n) = (true, m, θ) where m ≤ n, or

unknown, the resource limit, and a possibly meaningless valuation.4 For
example, ssolv(c, n) = (unknown, n, θ).

We define three functions for extracting parts of the stochastic solver’s an-
swer:

ans((x1, x2, x3)) = x1

res((x1, x2, x3)) = x2

val((x1, x2, x3)) = x3

Stochastic solvers are generally randomized algorithms, hence they define
a probability of finding a solution for some satisfiable constraint, c. We
assume that if c is a satisfiable constraint, then Pr(ans(ssolv(c, n)) = true) >
0 if n > 0; that is, the solver always has a chance of finding a solution,
given some resources. We assume that if c is an unsatisfiable constraint,
Pr(ans(ssolv(c, n)) = unknown) = 1 whatever resource bound n is used,
meaning the solver is correct and never returns false.5 We also assume for
technical convenience that Pr(ans(ssolv(c,−1)) = unknown) = 1. That is,
given negative resources, the solver always returns unknown.

Because of the mismatch between the type of information that a stochastic
solver provides and that required by a CLP system, several useful models
arise for using a stochastic solver within a CLP system.

4In some cases, this valuation can have meaning; for example, in using the GENET
solver discussed later, it could be the valuation that is closest to a solution.

5It is not difficult to extend the presentation here to handle solvers that return false,
but it is orthogonal to the problems we tackle.

9
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3.1 Model A: The Stochastic Solver as a Constraint
Solver

The most obvious combination is to use the stochastic constraint solver to
control the derivations. Clearly, because a stochastic constraint solver only
returns true or unknown, it will never cause the execution to backtrack if it
is used directly. Therefore, at some stage, we must assume that its failure
to find a solution indeed indicates that the constraint is unsatisfiable. Thus
we must sometimes treat the answer unknown as false. This will lead to
incompleteness, but there are already a number of sources of incompleteness
for CLP systems, such as depth-first search and unfair literal selection, so we
should be willing to accept this approach if the resulting incompleteness is
not too great.

More practically, even though the combination of propagation and enu-
meration is theoretically correct and complete, the actual behavior of most
finite-domain constraint solving systems is to return false after a certain de-
lay. This is because we cannot afford arbitrarily long consistency checks in
practice. As a result, resource exhaustion may occur, whereby a (possibly
consistent) constraint store is considered inconsistent after some time. Obvi-
ously, using stochastic solvers does not add any level of incompleteness with
respect to this practical use of propagation-based finite-domain solvers.

Example 2 Consider the program and goal of Example 1. Using a stochas-
tic solver, we might expect the following answers for each state where it is
invoked:

State Truth Possible Valuation
3© true {X 7→ 1, Y 7→ 1, Z 7→ 2}
5© unknown meaningless {X 7→ 1, Y 7→ 1, Z 7→ 2}
7© unknown meaningless {X 7→ 1, Y 7→ 1, Z 7→ 2}
9© true {X 7→ 1, Y 7→ 2, Z 7→ 1}

Note that the valuations corresponding to unknown answers are meaningless.
The unknown answers are treated as false, hence at 5© and 7©, execution
backtracks.

10
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3.2 Model B: The Stochastic Constraint Solver as a
Solution Finder at the End of a Derivation

The usual approach to solving CSPs in a CLP system employs a propagation
solver. Propagation solvers are weak, and do not detect many cases of un-
satisfiability. Usually, propagation solvers can only answer false or unknown,
however, they can answer true when there is a unique value for each of the
variables in the constraint (that is, the solver can check that a valuation is
a solution). Because of this CLP, programs for solving CSPs typically have
the following form:

goal(Vs) :- setupvars(Vs), constrain(Vs), labeling(Vs)

First the variables are declared, and then constrained. Finally, the labeling
predicate performs an enumerative search for a valuation by setting each
variable in turn to each of its possible values.

The enumerative search is usually where most of the computation time
of the program is spent. Enumerative searches, even with clever heuristics
to order the search, can sometimes perform very poorly; hence it is worth
considering to use a stochastic solver as a valuation finder. For Model B, the
constraint check in a derivation is performed by a propagation solver during
each derivation step of type 1, and then whenever a successful derivation is
found, e.g., when 〈G0 true〉 ⇒ . . .⇒ 〈2 cn〉, the stochastic solver is invoked
on cn to find a solution. The relaxation-based search of the stochastic solver
replaces the enumerative search defined by labeling. In this way, the labeling
part of the program is not required.

In addition, the propagation solver can communicate extra constraint in-
formation it derives from consistency techniques to the stochastic constraint
solver to improve its behavior. The obvious example involves communicat-
ing the domains of variables. Whenever the propagation solver can reduce
the domain of a variable, it can inform the stochastic solver of this reduced
domain. This reduces the search space of the stochastic solver.

Example 3 Consider the program and goal of Example 1, using a stochastic
solver as a solution finder and the propagation solver to control the derivation.
The propagation solver acts as in Example 1, and the stochastic solver is
invoked at 7© and 9©, resulting in:

State Truth Possible Valuation
7© unknown meaningless {X 7→ 1, Y 7→ 1, Z 7→ 2}
9© true {X 7→ 1, Y 7→ 0, Z 7→ 2}

11
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Note that the stochastic solver is not invoked at 5©, because the constraint
is already known to be false. At 7©, the stochastic solver is invoked with the
extra information that X, Y, and Z lie within the range 0..3, which comes
from the propagation solver. No enumeration of valuations is required.

3.3 Model C: The Stochastic Solver Augmented by a
Propagation Solver

This model is analogous to Model A. At each derivation step, the constraint
is checked by first the propagation solver and then the stochastic solver.
The role of the propagation solver is to detect unsatisfiability (which, when
detectable, can be found much faster than with the stochastic solver). Again,
the propagation solver can communicate extra constraint information to the
stochastic solver (as in Model B, above).

Example 4 Consider the program and goal of Example 1 using a stochastic
solver together with the propagation solver to control the derivation. The
result for each solver is shown below:

State Solver Truth Bounds or Valuation
3© prop unknown {X :: 0..4, Y :: 0..4, Z :: 0..4}
3© stoch true {X 7→ 1, Y 7→ 1, Z 7→ 2}
5© prop false {X :: ∅, Y :: 0..4, Z :: 0..4}
5© stoch not invoked
7© prop unknown {X :: 0..3, Y :: 0..3, Z :: 0..3}
7© stoch unknown meaningless {X 7→ 1, Y 7→ 1, Z 7→ 2}
9© prop unknown {X :: 0..4, Y :: 0..4, Z :: 0..4}
9© stoch true {X 7→ 1, Y 7→ 0, Z 7→ 2}

Note that again the stochastic solver is not invoked at 5©, and no enumeration
of valuations is required; when invoked at 7©, the stochastic solver has extra
constraint information from the propagation solver.

3.4 Model D: The Stochastic Solver Used in Parallel
with a Propagation Solver

The stochastic solver is used to give information about success—answering
either true or unknown. The propagation solver is used to give informa-
tion about failure, answering false or unknown. Constraints are sent to both

12
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solvers independently by the run-time engine. When the stochastic solver an-
swers true, the run-time engine continues the derivation immediately, with-
out waiting for the propagation solver. When the propagation solver answers
false, the run-time engine backtracks immediately, without waiting for the
stochastic solver. Otherwise, the run-time engine waits until both answer
unknown before the execution continues. A diagram of the interaction be-
tween the solvers and the run-time engine is shown in Figure 2.

CLP Engine

Stochastic
Solver

Propagation
Solverconstraints

constraintsconstraintsconstraints
true false

Figure 2: A stochastic solver in parallel with a propagation solver

The combination of solvers working asynchronously gives advantages to
both: first, the stochastic solver does not need to calculate every failure
(as in Model C), but additionally, the propagation solver does not need to
complete propagation of constraints for every satisfiable constraint store.
Consider executing a goal 〈c1, c2, c3, c4 c〉 where c∧ c1 ∧ c2 ∧ c3 is satisfiable,
but c∧c1∧c2∧c3∧c4 is not. Then suppose the stochastic solver quickly finds
solutions for c∧ c1, c∧ c1 ∧ c2, and c∧ c1 ∧ c2 ∧ c3 (for example, if its solution
for c is also a solution for these constraints). Before the propagation solver
can finish propagation for c ∧ c1, the execution has continued adding the
constraints c2, c3, and c4. The propagation solver may then be able to detect
the unsatisfiability of c∧ c1 ∧ c2 ∧ c3 ∧ c4 before it completes the propagation
required for solving c∧ c1 ∧ c2 ∧ c3. Overall, the failure of the derivation will
be detected faster.

3.5 Usage Strategies

When a stochastic constraint solver is required to communicate with the run-
time engine, as in Models A, C, and D, we need a way of specifying at each
derivation step of type 1 how many resources should be used. Additionally,
we need to specify whether at this point we will treat an unknown answer
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as false. Similarly, for Model B, we need a way of specifying how many
resources are used at the end of each derivation. This is the role of a usage
strategy.

A usage strategy U is a function on derivations that determines how a
stochastic solver is to be used. Given a derivation D ending in a derivation

step of type 1, 〈G true〉
(1)
⇒∗ 〈Gn cn〉, the usage strategy U(D) gives a pair

defining:

1. whether an unknown result is considered unknown or false, and

2. a resource limit R to be used in solving cn.

Define ans((x1, x2)) = x1 and res((x1, x2)) = x2. Many usage strategies are
possible, for example:

• fixed limit—the simplest usage strategy, denoted Ufl(R).

Ufl(R)(D) = (false, R)

where in each step, R resources are allocated and failure to find a
solution with R resources is considered to be “proof” that the constraint
is unsatisfiable.

• derivation limit—a more complicated strategy, denoted Udl(R).

Udl(R)(〈G true〉) = (false, R), and

Udl(R)(D
(1)⇒ 〈Gn+1 cn+1〉) = (false, m)

where Udl(R)(D) = (false, n), and m = n − res(ssolv(cn, n)). This en-
codes a strategy where resources are available for use in each derivation
R. After each step in the derivation, the resources used res(ssolv(cn, n))
are subtracted from the remaining resources.

• lookahead limit—a more complicated usage strategy, denoted Ull(R1,R2).
This strategy yields R2 resources to be used on each derivation before
we assume that the result unknown means false; however, at each indi-
vidual constraint-solving step, only R1 resources may be used to find a
solution. If, after using R1 resources, satisfiability has not been shown,
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an unknown result is treated as unknown, until the total resource limit
R2 is reached:

Ull(R1,R2)(〈G true〉) = (unknown, R1)
Ull(R1,R2)(D ⇒ 〈Gn+1, cn+1〉) = (v, m)

m = min(R1, Rem)
v = false if m = Rem else unknown

where Rem = R2−
n∑

i=1
res(ssolv(ci, ki))

and ki = res(Ull(R1,R2)(〈G true〉 ∗⇒ 〈Gi, ci〉))

Many other strategies are possible, for example, where the fixed limit
varies with the length of the derivation. Note that Model B can be seen as
a particular case of Model C, given a usage strategy Ub for Model B (which
clearly only assigns resources for successful derivations), then the following
usage strategy for Model C yields equivalent derivations:

Uc2b(〈G true〉
(1)
⇒∗ 〈2 c〉) = Ub(〈G true〉

(1)
⇒∗ 〈2 c〉)

Uc2b(〈G true〉
(1)
⇒∗ 〈Gn cn〉) = (unknown,−1) when Gn 6= 2

3.6 The Formal Models

Given that we have defined a usage strategy U , we can more formally define
each of the above models. Let ssolv be the stochastic solver, and psolv be
the propagation solver. The solver used to solve cn for the last derivation
step in the derivation

D = 〈G true〉
(1)
⇒∗ 〈Gn cn〉

is given by the following models:

Model A

asolv(cn) = true if ans(ssolv(cn, res(U(D)))) = true
= ans(U(D)) otherwise

15
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Model B

bsolv(cn) = psolv(cn) when Gn 6= 2

= psolv(cn) ∩ asolv(cn) otherwise

Model C

csolv(cn) = psolv(cn) ∩ asolv(cn)

Model D

dsolv(cn) = psolv(cn) ∩ ans(ssolv(cn, res(U(D))))

The ∩ operation is a form of conjunction for four-valued logic, as shown
in the table:

∩ true false unknown
true true ⊥ true
false ⊥ false false
unknown true false unknown

The ⊥ is a contradiction that can only happen in practice when psolv
answers true and asolv answers false. For example, using a fixed-limit strat-
egy in Model B or C, the asolv may answer false for a satisfiable constraint
cn owing to resource exhaustion, while the psolv answers true when there is
only one value remaining in the domain of each variable. For the correctness
of iterative deepening for Model C, it is treated as false. Note that asolv,
bsolv, and csolv are, in general, incorrect solvers.

4 Semantics

When using a stochastic solver, we sometimes assume an unknown result is
false; therefore, the standard theoretical results for the CLP scheme [JL87]
are not applicable. In this section we show what theoretical results hold for
the use of the various models.

4.1 Success

Regardless of which model and usage strategy U is used, we have the following
soundness result for successful derivations.
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Theorem 1 For Models A, B, C, or D, if 〈G true〉 ⇒∗ 〈2 c〉 is a derivation
achieved using stochastic solver ssolv and usage strategy U , then P,A |= c→
G.

Proof of Theorem 1 We prove that for a derivation 〈G0 c0〉 ⇒n 〈Gn cn〉
of length n that

P,A |= Gn ∧ cn → G0 ∧ c0

The essential result is that for a single derivation step 〈Gj cj〉 ⇒ 〈Gj+1 cj+1〉,

P,A |= Gj+1 ∧ cj+1 → Gj ∧ cj

Say the step is of type 1. Literal Lj is just transferred from Gj to cj+1,
in which case

|= Gj+1 ∧ cj+1 ↔ Gj ∧ cj

Say the step is of type 2. Then

P |= p(s1, . . . , sn)← B1 ∧ . . . ∧Bk

and since A treats equality as identity,

A |= s1 = t1 ∧ . . . ∧ sn = tn → (p(s1, . . . , sn)↔ p(t1, . . . , tn))

Together we have that

P,A |= p(t1, . . . , tn)← s1 = t1 ∧ . . . ∧ sn = tn ∧B1 ∧ . . . ∧Bk

Clearly, from the form of 〈Gj cj〉 and 〈Gj+1 cj+1〉,

P,A |= Gj+1 ∧ cj+1 → Gj ∧ cj

Proof of Theorem 1 2

Because stochastic solvers are able to return solutions to constraints, we
have the following slightly stronger soundness result as a corollary.

Corollary 1 For Models A, B, C, or D, if 〈G true〉 ⇒∗ 〈2 c〉 is a
derivation achieved using stochastic solver ssolv and usage strategy U , and
ssolv(c, k) = (true, l, θ), then P,A |=θ G.
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Given that we are using a probabilistic solver, we cannot expect to have a
strong completeness result. In practice, CLP systems are already incomplete
because of the fixed search strategy, so completeness may not be seen as
vital. However, we would like to have some form of completeness.

Let us define Prff (〈G true〉 ∗⇒ 〈Gn cn〉, U) to be the probability that
the solver applied to cn using usage strategy U returns false when cn is, in
fact, satisfiable. Given the sequence

〈G true〉 (1)⇒ 〈G1 c1〉 (1)⇒ . . .
(1)⇒ 〈2 cn〉

where each ci is satisfiable, the overall probability that this sequence succeeds
using strategy U is

(1−Prff (〈G true〉
(1)
⇒∗ 〈G1 c1〉, U))×. . .×(1−Prff (〈G true〉

(1)
⇒∗ 〈2 cn〉, U))

As long as there is a nonzero probability of finding a solution at each step,
there is a finite probability that the sequence will succeed.

We can guarantee this if the usage strategy provides enough resources so
that the solver at each stage has a nonzero probability of finding a solution.
We call such combinations of solvers and usage strategies nonstarving . Be-
cause we assume for any satisfiable constraint c that Pr(ans(ssolv(c, n)) =
true) > 0 if n > 0, any fixed-limit strategy is nonstarving.

For Model D, we have the usual completeness result for CLP, because
when using Model D we never assume that the stochastic solver has deter-
mined unsatisfiability when this is not actually the case.

Proposition 1 (Jaffar and Lassez [JL87]) If P,A |= ∃̃G, then when us-
ing a correct solver, there exists a successful derivation of the form 〈G true〉 ⇒∗

〈2 c〉.
For the other models, we only have a weak (probabilistic) form of com-

pleteness.

Theorem 2 Suppose program P is executed under Model A, B, or C using
the nonstarving stochastic solver ssolv and the usage strategy U . If P,A |=
∃̃G, then there is a nonzero probability that there is a successful derivation
of the form 〈G true〉 ⇒∗ 〈2 c〉.
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Proof of Theorem 2 From Proposition 1, there exists a successful deriva-
tion using a correct solver. Employing the reasoning above, the probability
of this derivation failing using a nonstarving usage strategy and a stochastic
solver is nonzero.

Proof of Theorem 2 2

For the Models A, B, and C, we would like to ensure a greater degree of
completeness. There exist usage strategies that can ensure this. Suppose

Prff (〈G true〉
(1)
⇒m 〈Gm cm〉, U) ≤ (

1
2
)m+k

for all derivations containing m derivation steps of type 1, where k ≥ 1. Then
the probability that a derivation with l steps of type 1, where all constraints
are satisfiable and the derivation is failed, is less than

(
1
2
)k+1 + (

1
2
)k+2 + . . . + (

1
2
)k+l

In other words, the derivation will succeed using ssolv and a usage strategy
U with at least probability 1− (1

2)
k.

Consider the following stochastic solver, which is based on the stochastic
solver described in the beginning of the previous section.

Bool solve(c, n)
for i := 1 to n

guess a truth assignment θ for c
if Fθ is true return (true, i, θ)

endfor
return (unknown, n, θ)

For each constraint solve, the probability of an unknown answer for a
satisfiable formula c is (from [WT92b]):

ε = (1− (1− 1/m)m)n

where m is the size of c in terms of the number of clauses. We will assume
that each primitive constraint is a single clause; thus the size of constraint cm

is less than or equal to m. Now 0.25 ≤ (1 − 1/m)m < 0.5, hence ε < 0.75n.
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If the usage strategy U chooses resources to be used at the mth step in a
derivation as

n > (m + k) ln(1/2)/ ln(3/4)
e.g., n > 2.5(m + k)

Then
Prff (〈G|true〉 ⇒m 〈Gm|cm〉, U) ≤ (

1
2
)m+k

Thus we can expect6 a probability of at least 1−(1
2)

k of finding any derivation
that should succeed. Note that the overall resources used by a derivation are
quadratic in its length when using this strategy.

4.2 Finite Failure

Unfortunately, because of the nature of the solvers, we are unable to have
any soundness result for finite failure for Models A, B, and C. This is because
we cannot ensure that there is no false failure.

Definition 2 A goal G is falsely failed for a usage strategy U and a stochastic
solver ssolv if there is a sequence of states

〈G true〉 ⇒ . . .⇒ 〈2 cn〉

where each ci is satisfiable, but the execution of this derivation using ssolv
and U fails.

Because a program P is only made up of implications, it has no negative
consequences. To reason about failure logically, we need to consider the
program as defining each predicate as equivalent to the disjunction of its rule
bodies. This is the role of the program completion P ∗, which is originally
due to Clark [Cla78].

The definition of the n-ary predicate symbol p in the program P is the
formula:

∀x1 . . .∀xn p(x1, . . . , xn)↔ B1 ∨ . . . ∨Bm

where each Bi corresponds to a rule in P of the form:

p(t1, . . . , tn) :- L1, . . . , Lk

6We have not taken into account the dependencies between successive constraint solves
in this simplistic analysis.
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and Bi is:

∃y1 . . .∃yj (x1 = t1 ∧ . . . ∧ xn = tn ∧ L1 ∧ . . . ∧ Lk)

where y1, . . . , yj are the variables in the original rule and x1, . . . , xn are vari-
ables that do not appear in any rule. Note that if there is no rule with head
p, then the definition of p is simply:

∀x1 . . .∀xn p(x1, . . . , xn)↔ false

as
∨ ∅ is naturally considered to be false. The completion, P ∗, of a constraint

logic program P is the conjunction of the definitions of the user-defined
predicates in P .

For Model D, of course, we obtain the usual “soundness of finite failure”
result for CLP.

Proposition 2 (Jaffar and Lassez [JL87]) Using a correct solver, if ev-
ery derivation for the goal 〈G true〉 is finitely failed, then P ∗,A |= ¬∃̃G.

In contrast to Models A and C, we do have strong completeness results for
finite failure, provided the usage strategy satisfies a basic condition: a usage
strategy is eventually failing if for each infinite or finite derivation D, for each
finite prefix Di of D there is a longer prefix Dj where U(Dj) = (false,−).
That is, eventually on every derivation the strategy will consider an unknown
answer by the solver to be false.

The key to the result is the following result for complete solvers (see
[JMMS96]).

Lemma 1 If solv is a complete solver with regard to A, P is a canonical
program, and P ∗,A |= ¬∃̃G, then every fair derivation for G is finitely failed.

A canonical program is one where the immediate fixpoint operator TA
P

corresponding to P reaches its greatest fixpoint at the first infinite ordinal,
i.e., gfp(TA

P ) = TA
P ↓ ω. This is a technical condition that holds for all

realistic programs (see [JS86] for more information).
Note that the following result does not usually hold for CLP systems,

because the solvers are incomplete.

Theorem 3 Let P be a canonical program. If P ∗,A |= ¬∃̃G, then for Mod-
els A and C, if we use a fair selection strategy, then any derivation for G
using the stochastic solver ssolv and the eventually failing usage strategy U
is finitely failed.
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Proof of Theorem 3 Suppose, to the contrary, there is a successful or in-
finite derivation

〈G true〉
(1)
⇒∗ 〈Gi ci〉

(1)
⇒∗ 〈Gj cj〉 ⇒∗ . . .

Using Lemma 1 and a complete solver, the derivation is finitely failed; hence
there exists state 〈Gi ci〉 where A |= ¬∃̃ci. Because the usage strategy is
eventually failing, there exists state 〈Gj cj〉 where U(〈G true〉 ⇒∗ 〈Gj cj〉 =
(false,−). Since |= cj → ci and the stochastic solver must return unknown
at this state, the derivation fails.

Proof of Theorem 3 2

We can remove the technical restriction on P if we use just the theory of
the constraint domain, th(A), that is, all first-order sentences true in A.

Theorem 4 If P ∗, th(A) |= ¬∃̃G, then for Models A and C, if we use a fair
selection strategy, then any derivation for G using the stochastic solver ssolv
and the eventually failing usage strategy U is finitely failed.

Proof of Theorem 4 As for Theorem 3, since an appropriate version of
Lemma 1 holds for th(A) without the canonicality condition.

Proof of Theorem 4 2

4.3 Iterative Deepening

For Models A, B, and C, the possibility of false failure on all successful deriva-
tions means that a goal that has a solution may falsely fail. In particular,
given a derivation-limit usage strategy for Models A or C, we may expect to
falsely fail on all successful derivations if the limit is too small. This leads
to the idea of reexecuting the goal with more resources, to avoid the false
failure and find a success. Thus we consider a form of the iterative-deepening
approach.

Iterative deepening works by reexecuting a finitely failed goal, using greater
resources. For example, we can double the limits in the usage strategy. So
when a goal G fails using the fixed-limit strategy Ufl(1000), we reexecute the
goal using the usage strategy Ufl(2000). If that execution fails to find an
answer, then we reexecute with the usage strategy Ufl(4000), etc.

22

The Journal of Functional and Logic Programming 1998-2



Stuckey and Tam Stochastic Constraint Solver Semantics §4.3

The idea driving this approach is that a solution will be found quicker if
we automatically use the minimal number of resources required to avoid false
failure. If we give too many resources to solve a problem, execution will be
slowed, because failure is determined by resource exhaustion; hence, giving
too many resources slows down execution. Iterative deepening automatically
determines the (nearly) least number of resources required to find a solution.
When using an iterative-deepening approach, there is no possibility of finite
failure, because a goal with no solutions will run infinitely.

Technically, we also need to ensure that no infinite derivations are possi-
ble, so that, for example, when using usage strategy Ufl(R), we never consider
derivations of length greater than R. Otherwise, we cannot guarantee a goal
will either succeed or fail. In practice, the resource limits will usually man-
age this, but in theory, we must use a depth-bounded usage strategy. A
depth-bounded strategy is such that there exists a monotonically increasing
function l(R) in terms of the argument of the usage strategy (or arguments,
if there are more than one), such that for any derivation of length m ≥ l(R),
U(〈G true〉 m⇒ 〈Gm cm〉) = (false,−1). In other words, after some length of
derivation, the strategy allows only negative resources to the solver, ensuring
it returns unknown, and this causes failure. For example, we can define a
depth-bounded fixed-limit strategy as

Udbfl(R)(〈G true〉
(1)
⇒m 〈Gm cm〉) = (false, R) if m < R

= (false,−1) if m ≥ R

Thus any derivation of length ≥ R will be failed.
Using an iterative-deepening approach, we can ensure that eventually we

will find a success if one exists. Note that iterative deepening does not make
sense in the context of Model D, because it never falsely fails.

Theorem 5 If P,A |= ∃̃G, then executing goal G under Models A or C using
iterative deepening and a nonstarving and depth-bounded usage strategy U
and the solver ssolv will yield a successful derivation.

Proof of Theorem 5 Because the usage strategy is depth bounded, every
derivation tree for G is finite; after some finite limit, all derivations fail. The
only way the iterative-deepening procedure terminates is through success;
hence it remains to show that a successful derivation is eventually found.
Such a derivation exists by Proposition 1, and eventually, because the bound
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limit is monotonically increasing, the successful derivation will be within the
depth bound. By Theorem 2, this derivation has a nonzero probability of
being a successful derivation for U and ssolv. Execution continues until it
becomes a successful derivation.

Proof of Theorem 5 2

5 A Constraint Solver: GENET

We have used GENET [WT92a, WT91], a generic neural network simulator,
to demonstrate the feasibility of our proposal. GENET is used to solve
binary CSPs with finite domains. A GENET network consists of a cluster of
nodes for each domain variable in a CSP. Each node denotes a value (label)
in the corresponding domain variable, and each constraint is represented
by a set of inhibitory connections between nodes with incompatible values.
GENET works by updating each variable using the min-conflict heuristic
until a valuation that is a local minimum in terms of conflict is found. It
then applies a heuristic learning rule which penalizes constraints that are
violated in the current local minimum. Updating of variables proceeds as
before. We count one resource as a single update to each variable.

In the original GENET model, the entire network must be constructed be-
fore computation starts. However, a constraint solver in a CLP system must
support efficient incremental execution, because new primitive constraints are
being added to an existing solvable constraint during a derivation. Therefore,
an efficient incremental version of GENET is necessary. A naive but efficient
incremental GENET, called I-GENET, adds new primitive constraints and
variables to the network as they are collected. Its incrementality originates
from the re-use of the connection weights, which are computed using the
heuristic learning rule in previous cycle. Thus, the network is trained while
it is being built incrementally. A more detailed discussion of the incremental
GENET is contained in [Tam95].

The I-GENET model only allows a monotonic increase to the constraint
represented by the network. It cannot “remove” the primitive constraints
added to the network; hence it cannot be used to solve CSPs that require
a tree search on constraints, such as the disjunctive scheduling problem
in [Hen89] (although disjunctive constraints can be directly encoded into
the GENET network [LLW95]). To obviate this shortcoming, we extend I-
GENET to “undo” the effect of a most-recently added primitive constraint.
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This is done by disconnecting the inhibitory connections made for that prim-
itive constraint. In this way, we backtrack on the primitive constraints added
to the GENET network in a chronological order. We use a trailing stack to
keep track of the most recently added primitive constraints for backtracking.

6 Experimental Results

To compare the different models of stochastic solvers, we have used ECLiPSe
version 3.5.1 and the GNU C Compiler version 2.6.3, running under SunOS
5.3. To build prototypes for Models A, B, and C, we used the backtrackable
I-GENET as the stochastic constraint solver, and the ECLiPSe fd library
as a propagation solver. Note that the first-fail principle (i.e., choose the
variable with the smallest domain to be instantiated first) is used with for-
ward checking to improve the performance of the search in the ECLiPSe
system. We also include another example of Model A, using a version of
GENET that is extended to incorporate lazy arc consistency [ST96] to re-
duce the domains of variables. The lazy arc consistency is a “lazy” notion
of arc consistency [Tsa93] that is most natural for GENET. Essentially, it
enforces arc consistency only on the current variable assignments obtained
by the GENET solver. Any arc-inconsistent label (Xi = v) found by the lazy
arc-consistency technique will be removed from the domain of the variable
Xi. Using this solver (denoted as Model A′) has an effect similar to Model
C, where the reduction of domains comes from the propagation solver.

Owing to the difficulty of implementing parallel asynchronous procedures
within ECLiPSe, the Model D solver is simulated. At each constraint solve
we execute the propagation solver and the stochastic solver, and take as the
solver time the minimum of the times if both return true or false, the time of
the solver that returns true or false if only one does so, and the maximum if
both return unknown. This provides an optimistic time for Model D because,
for example, we do not take into account when a solver may still be running
from the previous constraint solve.

We give results of preliminary experiments comparing the different mod-
els using usage strategy Ufl(1000), and compare our systems versus a tradi-
tional propagation-based CLP approach on a set of CSPs with and without
disjunctive constraints. The Hamiltonian path calculation and disjunctive
graph coloring are examples of CSPs with disjunctive constraints, while N-
queens and permutation-generation problems are examples of CSPs without
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disjunctive constraints. In all the test cases, the CPU times for the different
models are the medians over 10 successful runs to find a solution. All CPU
times are measured in seconds. For the different models each run was ter-
minated if the constraint solvers used 1,000,000 resources without finding a
solution. Also, we aborted the execution of any ECLiPSe program if it took
more than 10 hours. In any case, we use a “—” symbol to mean there were
no successful runs and a “?” symbol to denote that an execution took more
than 10 hours.

6.1.1 Hamiltonian Path Problems

Given a graph G of n vertices, the Hamiltonian path problem is to find the
Hamiltonian path of G, in which each of n vertices in G is visited once and
only once [Pra76]. The Hamiltonian path problem is a practical CSP that is
very similar to the route-planning problems faced by many circus, traveling
road companies, and traveling salespeople. In any case, it can be regarded
as a nonoptimizing version of the well-known “traveling salesman problem,”
in which the salesman does not need to return to the original city.

The following shows the relevant clauses in an ECLiPSe program for
ordering the vertices from 1 to n in a graph to calculate the Hamiltonian
path.

ordering([], ).
ordering([arc(X,L)|T], CLimit) :-

before(X, L, CLimit),
ordering(T, CLimit).

before(X, [], CLimit) :- addConstraint([X = 1], CLimit).
before(X, [H|T], CLimit) :- addConstraint([X = H + 1], CLimit)

;
before(X, T, CLimit).

The variables X and H stand for different vertices in the graph. The CLimit
denotes the convergence cycle limit for the GENET solver. The arc(X,L)
specifies a relation between the variable X and a list L of variables, in which
the vertex denoted by X has an arc with the other vertex denoted by any
element in the list L. The ordering predicate takes a list of arc relations
together with the resource CLimit, and assigns a value from 1 to n to each
variable X. The before predicate specifies that the vertex denoted by variable
X is either the first one (X = 1) in the ordering, or it is preceded by some
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Times ECLiPSe A B C D A′

10 0.040 4.195 0.085 2.565 0.04 0.460
20 1090 58.27 1825 50.65 — 31.75
30 ? 5493 ? 4287 — 2687

Table 1: Hamiltonian path CPU times

Backtracks ECLiPSe A B C D A′

10 11 11 11 15.5 11 11
20 276012 21 276012 20 — 20
30 ? 46 ? 46 — 46

Table 2: Hamiltonian path backtracks

element in the list L. The addConstraint(CL, CLimit) is a predicate that
makes an external function call to add the list CL of constraints into the
GENET solver with the resource CLimit, which may return either true, false,
or unknown.

Tables 1 and 2 show the performance of ECLiPSe and the different models
on Hamiltonian path problems using fixed-limit strategies with limits set at
1,000; Table 1 shows CPU seconds for each benchmark under the different
models, and Table 2 shows the average number of backtracks in the search.
The first two problems are coded from some interesting real-life examples
in graph theory [Pra76]. The last problem is a modified example obtained
from [LLW95].

In general, the stochastic Models A and C outperform ECLiPSe and
Model B on all but the smallest example. This is because Models A and
C determine unsatisfiability much earlier than does the ECLiPSe. Also, the
number of possible branches visited by Models A and C in the search tree
is much smaller than that for the ECLiPSe, because of this early resource
exhaustion. Models B and D fail to improve on ECLiPSe, because in this
example no labeling is required. For these problems, Model C betters Model
A, showing that the propagation solver can provide useful information for the
stochastic solver during the search. In these problems, the improved stochas-
tic solver (Model A′) finds useful domain reduction information without the
overhead of communication with the propagation solver.
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Graph CPU Time
Nodes Colors ECLiPSe A B C D A′

10 3 19.96 1.580 — 1.645 5.235 1.820
20 4 1362 0.690 — 0.770 1135 0.770
30 5 0.050 0.115 0.095 0.210 0.080 0.120
40 5 0.070 0.145 0.105 0.220 0.110 0.155
50 5 0.090 0.200 0.140 0.345 0.160 0.225

Table 3: Disjunctive graph-coloring CPU times

Graph Backtracks
Nodes Colors ECLiPSe A B C D A′

10 3 6428 4 — 4 6428 4
20 4 65535 1 — 1 65535 1
30 5 0 0 0 0 0 0
40 5 0 0 0 0 0 0
50 5 0 0 0 0 0 0

Table 4: Disjunctive graph-coloring backtracks

6.1.2 Disjunctive Graph-Coloring Problems

The disjunctive graph-coloring problem is to color a (possibly nonplanar)
graph with a number of hyper-arcs that connect nodes. A hyper-arc of
the form {(i1, j1), (i2, j2)} specifies that at least one of the pairs of nodes
(ik, jk), 1 ≤ k ≤ 2 must be colored differently. The disjunctive graph-coloring
problem has wide applicability in assembling timetables, schedules, and pro-
duction plans.

Tables 3 and 4 show results for ECLiPSe and the different models on a
set of small-sized disjunctive graph-coloring problems. In general, each of
the approaches where the stochastic solver controls the search (Models A
and C) outperforms ECLiPSe when the problem requires backtracking. This
is because these models do much less backtracking by avoiding unpromising
branches with early resource exhaustion. Also, Models A and C do not
require a backtracking enumeration search. This is an example where no
useful domain reduction information is discovered by Model C or model A′;
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Number of Queens ECLiPSe A B C D A′

10 0.040 0.200 0.195 0.320 0.205 0.290
20 0.220 3.665 2.195 4.200 3.540 4.020
30 0.880 23.79 10.11 27.43 21.67 23.91
40 0.810 93.12 33.58 96.04 82.96 95.82
50 63.42 253.3 73.09 268.8 234.8 257.1
60 3.580 594.0 146.4 625.5 552.4 605.8
70 66.67 1172 273.9 1242 1124 1231

Table 5: N -queens problem

hence they do not improve on Model A, and suffer some overhead. Model
D just beats ECLiPSe for the cases where there is a lot of backtracking, but
this may be owing to the optimistic simulation.

6.1.3 The N -Queens Problem

The N -queens problem is to place N queens onto an N ×N chess board so
that no queens can be attacked. A queen can be attacked if it is on the same
column, row, or diagonal as any other queen. It is a standard benchmark for
CSPs, since the size N can be increased without limit.

Table 5 shows the CPU time of ECLiPSe and the different models on
N -queens problems where N ranges from 10 to 70. In general, ECLiPSe
outperforms the stochastic approaches, because the problems do not require
backtracking on constraints, plus, using the first-fail principle significantly
improves the performance of the enumerative search strategy. Model B per-
forms best among all the models, because the problem does not involve any
search on constraints and it does not need to expend resources on derivation
steps, except for the last one. Model D in this case is essentially a slightly
faster version of Model C, because for almost all of the computation, the
stochastic solver is the slower solver. Again, Models A′ and C do extra work
without gaining any useful information for these problems. Thus, they are
slower than Model A.
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Length of List ECLiPSe A B C D A′

9 0.010 0.210 0.075 0.190 0.185 0.210
10 0.020 0.325 0.145 0.455 0.375 0.355
20 8.440 6.470 1.210 6.295 5.665 7.035
30 ? 50.61 5.880 45.69 43.22 52.77

Table 6: Permutation generation

6.1.4 Permutation Generation

Given a permutation f on the integers from 1 to n, we define the monotonies
of f as a vector (m1, m2, . . . , mn−1), where mi equals 1 if the value of the
i + 1-th element in the permutation is greater than that of the i-th element
and 0 otherwise, and the vector (a1, a2, . . . , an−1) of advances of f such that
ai = 1 if the integer f(i) + 1 is placed in the permutation on the right of
f(i), and 0 otherwise. The problem is to construct all the permutations of
a given range that admit a given vector of monotonies and a given vector of
advances.

The following monotonie(M, L, CLimit) predicate shows how to ensure
monotony in the permutation list L, given a vector M with 0s and 1s and the
resource CLimit to the GENET solver.

monotonie([], [X], ).
monotonie([1|Lm], [X1, X2|Lv], CLimit) :-

addConstraint([X2 ¿ X1], CLimit),
monotonie(Lm, [X2|Lv], CLimit).

monotonie([0|Lm], [X1, X2|Lv], CLimit) :-
addConstraint([X2 ≤ X1], CLimit),
monotonie(Lm, [X2|Lv], CLimit).

Table 6 shows the performance of ECLiPSe and the different models on
the permutation generation, given a number of vectors of different sizes for
monotonies and advances. The first example is taken from [Hen89], while
the others are arbitrary examples of permutation lists with lengths from
10 to 30. For the first two test cases, ECLiPSe performs better than our
models because the search space is relatively small. However, when the length
of the permutation list grows larger, the stochastic approaches outperform
ECLiPSe. In particular, Model B performs best, because the problems do
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not require backtracking on constraints. Model D again essentially acts as a
slightly faster version of Model C. For these problems, Model C, in general,
performs better than Models A and A′, as it gains useful information from
the propagation solver, which cannot be deduced by Model A′.

7 Conclusion

The integration of relaxation-based search methods and enumerative search
methods is an important aim, because each method has advantages over
the other in solving different forms of CSPs. In this paper we propose one
approach to such an integration: stochastic constraint solvers represent the
relaxation-based search methods, while CLP with a propagation solver and
some kind of labeling program represents enumerative search.

Using a stochastic solver within a constraint logic programming system
relies upon inferring failure information from the solvers’ inability to find a
solution. This inference which may be false immediately gives rise to ques-
tions about what semantics results continue to hold. In this paper we have
shown which results continue to apply.

We have also demonstrated the benefits that can arise from using stochas-
tic constraint solvers within CLP. First, the stochastic constraint solvers may
be able to be applied to a larger class of problems, because disjunction can
be handled by the built-in search mechanism of CLP. Second, empirical re-
sults confirm the advantages of using stochastic methods, in particular in
conjunction with other constraint-solving approaches.

Summarizing the empirical results, we have that using a stochastic solver
to control search (Models A and C) is of benefit for disjunctive problems
where the search space of constraints is large. For nondisjunctive problems,
Model B is most effective and outperforms enumerative search in many in-
stances. Cooperating solvers (Models C and D) can result in significant
improvements, and usually do not add too much overhead. Model D is prob-
ably only advantageous over both Model B and Model C in a few cases.
Improving underlying stochastic solvers (Model A′) is another worthwhile
approach. No model is uniformly better, and the user should be prepared to
experiment.

This paper certainly does not complete the question of what is the best
approach to integrating relaxation-based and enumerative searches. There
are other approaches that need to be examined. Another obvious area re-
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quiring further investigation is the use of stochastic methods to improve the
finding of optimal or good solutions in CLP systems.
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