
The Journal of Functional and
Logic Programming

The MIT Press

Volume 1999, Article 2
15 March, 1999

ISSN 1080–5230. MIT Press Journals, Five Cambridge Center, Cambridge,
MA 02142-1493, USA; (617)253-2889; journals-orders@mit.edu, journals-info
@mit.edu. Published one article at a time in LATEX source form on the
Internet. Pagination varies from copy to copy. For more information and
other articles see:

• http://www.cs.tu-berlin.de/journal/jflp/

• http://mitpress.mit.edu/JFLP/

• gopher.mit.edu

• ftp://mitpress.mit.edu/pub/JFLP

c©1999 Massachusetts Institute of Technology. Subscribers are licensed to
use journal articles in a variety of ways, limited only as required to insure fair
attribution to authors and the journal, and to prohibit use in a competing
commercial product. See the journal’s World Wide Web site for further
details. Address inquiries to the Subsidiary Rights Manager, MIT Press
Journals; (617)253-2864; journals-rights@mit.edu.



Nadathur Fine-Grained Notation for λ Terms (Info)

The Journal of Functional and Logic Programming is a peer-reviewed and
electronically published scholarly journal that covers a broad scope of topics
from functional and logic programming. In particular, it focuses on the
integration of the functional and the logic paradigms as well as their common
foundations.

Editor-in-Chief: G. Levi

Editorial Board: H. Aı̈t-Kaci L. Augustsson
Ch. Brzoska J. Darlington
Y. Guo M. Hagiya
M. Hanus T. Ida
J. Jaffar B. Jayaraman
M. Köhler∗ A. Krall∗

H. Kuchen∗ J. Launchbury
J. Lloyd A. Middeldorp
D. Miller J. J. Moreno-Navarro
L. Naish M. J. O’Donnell
P. Padawitz C. Palamidessi
F. Pfenning D. Plaisted
R. Plasmeijer U. Reddy
M. Rodŕıguez-Artalejo F. Silbermann
P. Van Hentenryck D. S. Warren

∗ Area Editor

Executive Board: M. M. T. Chakravarty A. Hallmann
H. C. R. Lock R. Loogen
A. Mück

Electronic Mail: jflp.request@ls5.informatik.uni-dortmund.de

[ii]

The Journal of Functional and Logic Programming 1999-9



A Fine-Grained Notation for Lambda Terms
and Its Use in Intensional Operations

Gopalan Nadathur

15 March, 1999

Abstract

We discuss issues relevant to the practical use of a previously pro-
posed notation for lambda terms in contexts where the intensions of
such terms have to be manipulated. This notation uses the “name-
less” scheme of de Bruijn, includes expressions for encoding terms
together with substitutions to be performed on them, and contains a
mechanism for combining such substitutions so that they can be ef-
fected in a common structure traversal. The combination mechanism
is a general one and consequently difficult to implement. We propose
a simplification to it that retains its functionality in situations that
occur commonly in β-reduction. We then describe a system for an-
notating terms to determine if they can be affected by substitutions
generated by external β-contractions. These annotations can lead to
a conservation of space and time in implementations of reduction by
permitting substitutions to be performed trivially in certain situations
and can also foster a greater sharing in reduction. The use of the re-
sulting notation in the reduction and comparison of terms is examined.
Notions of head normal forms and head reduction sequences are de-
fined in context and shown to be useful in equality computations. Our
head reduction sequences generalize the usual ones for lambda terms
so that they subsume the sequences of terms produced by a variety
of graph- and environment-based reduction procedures for the lambda
calculus. They can therefore be used in correctness arguments for such
procedures. This fact and the efficacy of our notation are illustrated
in the context of a particular reduction procedure that we present.
The relevance of the present discussions to the unification of lambda
terms is also outlined.

1

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §1

1 Introduction

We are concerned in this paper with a representation for lambda terms that
might be employed when these terms are used as data structures. There
are significant reasons for interest in this matter: lambda terms provide a
convenient means for representing objects whose structures incorporate the
notion of binding [Chu40] and are used for this purpose in a number of com-
puter systems and programming languages that support the manipulation
of formulas, programs, proofs, and other similar objects [Bru80, CAB+86,
CH88, GMW79, HHP93, NM88, Pau90, Pfe89]. In a sense specifically per-
tinent to this paper, objects are represented directly by lambda terms in
systems like Lλ [Mil91], λProlog [NM88], Isabelle [Pau90] and Elf [Pfe89], to
be manipulated by some form of higher-order unification [Hue75, Nip93]. The
considerations here are motivated by implementation questions that arise in
the context of such systems, particularly in the context of λProlog.

The choice of a suitable representation for lambda terms is obviously gov-
erned by the operations that need to be performed on them in the intended
realm of application. The comparison of the structures of terms is intrinsic to
several of these operations and a satisfactory representation must, therefore,
make these readily available. At a level of detail, such comparisons must
ignore differences between terms that are based on the names of bound vari-
ables. Thus, equality of lambda terms up to α-convertibility must be easy
to determine. Finally, an operation of special significance is β-reduction —
this operation provides an encoding of substitution and is useful in realizing
several higher-level operations. An acceptable representation must enable
this operation to be performed efficiently.

In a previous paper [NW98], we have described a notation for lambda
terms called the suspension notation that provides a basis for meeting these
various requirements.1 This notation is similar in spirit to those proposed
in [ACCL91] and [Fie90], based on the Categorical Combinators of Curien
[Cur86]. It also shares features with data structures that have been used
in implementing β-reduction, most notably those in [AP81]. At a level of
detail, the suspension notation uses a scheme suggested by de Bruijn [Bru72]
for eliminating variable names from lambda terms. Further, it incorporates a
generalized notion of an environment as a mechanism for delaying substitu-

1This paper and [NW98] represent a complete development of ideas first presented in
[NW90].

2

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §1

tions.2 The ability to perform substitutions lazily, and the reflection of this
ability into the notation, has several potential advantages. First, delaying
substitutions arising from different β-contractions makes it possible to com-
bine them and hence to perform them in one structure traversal.3 Second,
carrying substitutions out incrementally can lead to conservation of work in
situations where their effects do not have to be computed in entirety. Finally,
the explicit treatment of the substitution process in the notation makes it
easy to describe a wide variety of reduction procedures and to verify the
correctness of these procedures.

In this paper we describe modifications to the suspension notation with
an eye to its practical use. This notation includes a mechanism for com-
bining substitutions that is quite general but also difficult to implement as
such. We therefore propose a simplification of this mechanism that retains its
functionality in situations that occur commonly in β-reduction while mak-
ing it more implementable. We then refine the resulting notation by adding
annotations to terms that indicate whether or not they can be affected by
substitutions generated by external β-contractions. These annotations are
intended to be added to terms at the outset by a preprocessing phase. Our
rewrite rules then conspire to use the annotations and to preserve them in
the course of reducing expressions. One virtue of the annotations is that
they permit substitutions to be carried out trivially in certain situations.
Effecting substitutions in this manner can also have other benefits: it can
lead to a conservation of space and can foster a greater sharing of work in
a graph-based implementation of reduction that uses our notation. These
benefits can be significant in practice, e.g., in the implementation of λProlog
[BR91].

This paper also considers the use of the notation developed in the com-
parison of lambda terms. This task is of special significance to us because it

2As discussed in [NW98], the main difference between the suspension notation and
those in [ACCL91] and [Fie90] is in the way they encode the changes that must be made
to a term in an environment when this term is actually substituted into a particular
context. We also conjecture that our notation preserves strong normalization, unlike the
other calculi [Mel95].

3The suspension notation is more general than other recently proposed calculi such as
λυ [BBLRD96], λζ [Muñ96], and λse [KR97] in that it has mechanisms for realizing such
combinations. (With respect to the λse calculus, we observe that the suspension notation
can be augmented with metavariables over terms without affecting its known confluence
and strong normalization properties.) The simplification studied in this paper retains
some of this generality, at least in comparison with λυ and λζ.

3

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §1

is a part of several operations on lambda terms that become important when
they are employed as representational devices. The comparison of lambda
terms is usually based on their head normal forms. As a first step, we lift the
notion of a head normal form to the new notation and show that it can be
used instead in carrying out comparisons. Following this course permits the
benefits of laziness in substitution to be realized more fully in the comparison
process. We also describe the idea of head reduction sequences that are in-
tended to produce head normal forms for terms in our notation, and we show
that these sequences terminate whenever the usual head reduction sequences
on the underlying lambda terms do. Our notion of head reduction sequences
is actually of independent interest. It generalizes the usual notion in such a
way that it subsumes the sequences produced by a variety of graph-based and
environment-based reduction procedures for lambda terms and can therefore
be used in proving the correctness of these procedures. We illustrate this
capability by using our notion to establish the correctness of a particular re-
duction procedure that we present. This procedure is similar to interpreters
for the lambda calculus proposed by Henderson and Morris [HM76] and Field
[Fie90]; it differs from these mainly in that it finds head normal forms instead
of only weak head normal forms. It is also closely related to the simplifier
presented by Aiello and Prini [AP81]. With respect to the latter, we note
that our notation facilitates a complete proof of correctness of our reduction
procedure and also permits an intermingling of normalization operations with
operations such as comparisons of terms. Benefits such as these have also
been noted for the λσ-calculus [ACCL91] and ΛCCL [Fie90] and have been
exploited recently in the description of a higher-order unification procedure
[DHK95].

The rest of this paper is structured as follows. The next two sections sum-
marize notions pertaining to rewrite systems, the de Bruijn notation, and the
suspension notation that are relevant to this paper; the presentation of the
full suspension notation here is justified by its usefulness in understanding
the nature of later refinements and in proving properties about them. In Sec-
tion 4, we describe our simplification of the suspension notation. In Section 5
we propose a notion of closedness for lambda terms that is intended to cap-
ture independence from external abstractions and show how it can be used in
the reduction process. We incorporate the discussions of the preceding two
sections into the suspension notation in Section 6 and establish a correspon-
dence between the resulting rewrite system and β-reduction. In Section 7 we
consider the use of our notation in comparing lambda terms. We conclude

4

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §2.1

the paper in Section 8 with remarks on the pertinence of the discussions here
to a situation where the unification of lambda terms is considered.

2 Preliminaries

We outline in this section the “nameless” notation for lambda terms proposed
by de Bruijn [Bru72] and describe notions pertaining to it that are used in
subsequent discussions. The mechanism of rewrite systems is employed in
presenting operations on terms in this and other notations, and we therefore
first recapitulate the relevant vocabulary.

2.1 Terminology pertaining to rewrite systems

The rewrite systems that we shall be concerned with in this paper are each
specified by a set of rule schemata. A rule schema has the form l → r
where l and r are expression schemata referred to as the lefthand side and
the righthand side of the rule schema, respectively. Such a schema typically
contains occurrences of metalanguage variables that range over indicated
categories of expressions. Particular rules may be obtained from the schema
by choosing suitable instantiations for these variables. All our rule schemata
satisfy the property that any syntactic variable appearing in the righthand
side already appears in the lefthand side.

Given a notion of subexpressions within the relevant expression language,
a rule schema defines a relation between expressions as follows: t1 is related
to t2 by the rule schema if t2 is the result of replacing some subexpression s1

of t1 by s2, where s1 → s2 is an instance of the schema. The relation defined
by a collection of rule schemata is the union of the relations defined by each
schema in the collection. Let � denote such a relation. We express the fact
that t is related to s by virtue of � by writing t � s. We refer to occurrences
in expressions of instances of the lefthand sides of the rule schemata defining
� as �-redexes. The correspondence to a particular rule schema may also
be expressed by referring to the subexpression as a redex occurrence of the
schema. The reflexive and transitive closure of � is denoted by �∗, a relation
that is, once again, written in infix form. Intuitively, t�∗s signifies that t
can be rewritten to s by a (possibly empty) sequence of applications of the
relevant rule schemata. Accordingly, we refer to the relation � as a rewrite
or reduction relation, and we say that t �-reduces to s if t�∗s.

5

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §2.2

Suppose that we are given a collection of expressions and that � is a
rewrite relation on this collection. We refer to an expression t as a �-normal
form just in case there is no expression s such that t � s. A �-normal form
of an expression r is an expression t such that r�∗t and t is a �-normal form.
A collection of rewrite rule schemata is often intended as a set of equality
axioms in some logical system. Using them to rewrite expressions is useful in
determining equality in the case that a unique normal form exists for every
expression relative to the reduction relation defined by the rule schemata:
the equality of two expressions can be checked in this situation by reducing
them to their normal forms and then examining these for identity.

Certain properties of reduction relations are pertinent to determining
the existence and uniqueness of normal forms. The rewrite relation � is
noetherian if and only if every sequence of rewritings relative to � terminates.
If � is noetherian, a �-normal form must exist for every expression. The
relation � is said to be confluent if, given any expressions t, s1, and s2 such
that t�∗s1 and t�∗s2, there must be some expression r such that s1�

∗r and
s2�

∗r. The following proposition, whose proof is straightforward, explains
the interest in this property:

Proposition 1 If � is a confluent reduction relation, then an expression
has at most one �-normal form.

2.2 The de Bruijn notation for lambda terms

Definition 1 The collection of de Bruijn terms, denoted by the syntactic
category 〈DTerm〉, is given by the rule

〈DTerm〉 ::= 〈Cons〉 | #〈Index〉 |
(〈DTerm〉 〈DTerm〉) | (λ 〈DTerm〉)

where 〈Cons〉 is a category corresponding to a predetermined set of constant
symbols and 〈Index〉 is the category of positive numbers. A de Bruijn term
of the form (1) #i is referred to as an index or a variable reference, (2) (λ t)
is called an abstraction and is said to have t as its scope, and (3) (t1 t2) is
referred to as an application. The subterm or subexpression relation on de
Bruijn terms is given recursively as follows: Each term is a subterm of itself.
If t is of the form (λ t′), then each subterm of t′ is also a subterm of t. If t is
of the form (t1 t2), then each subterm of t1 and of t2 is also a subterm of t.

6

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §2.2

Lambda terms in the notation described, for instance, in [HS86] can be
translated into de Bruijn terms by the following process. Let the level of a
subterm in a term be the number of abstractions in the term within which
the subterm is embedded. Further, assume that there is a fixed listing of
variable names with respect to which we can talk of the n-th variable name.
Then, an occurrence of the k-th variable name at level j is transformed into
the index #(j − i) if it is bound by an abstraction at level i and into #(i+k)
if it is free. It is easily seen that, under the translation just outlined, lambda
terms that are α-convertible in the conventional notation correspond to the
same de Bruijn term. Thus, the de Bruijn notation obviates α-conversion in
the comparison of terms.

Definition 2 Let t be a de Bruijn term and let s1, s2, s3, . . . represent an in-
finite sequence of de Bruijn terms. Then the result of simultaneously substi-
tuting si for the i-th free variable in t for i ≥ 1 is denoted by S(t; s1, s2, s3, . . .)
and is defined recursively as follows:

1. S(c; s1, s2, s3, . . .) = c, for any constant c,

2. S(#i; s1, s2, s3, . . .) = si for any variable reference #i,

3. S((t1 t2); s1, s2, s3, . . .) = (S(t1; s1, s2, s3, . . .) S(t2; s1, s2, s3, . . .)), and

4. S((λ t); s1, s2, s3, . . .) = (λ S(t; #1, s′
1, s

′
2, s

′
3, . . .)), assuming that, for

i ≥ 1, s′
i = S(si; #2, #3, #4, . . .).

We shall use the expression S(t; s1, s2, s3, . . .) as a meta-notation for the term
it denotes.

The main complexity in the above definition is in the last case. Towards
understanding this case, we note that within a term of the form (λ t), the first
free variable is, in fact, denoted by the index #2, the second by #3, and so
on. This requires that the indices for free variables in the terms s1, s2, s3, . . .
being substituted into (λ t) be “incremented” by 1 prior to substitution into
t. Further, the index #1 must remain unchanged within t and it is the indices
#2,#3,. . . that must be substituted for.

Definition 3 The β-contraction rule schema is the following

((λ t1) t2) → S(t1; t2, #1, #2, . . .)

7

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §2.2

where t1 and t2 are schema variables for de Bruijn terms. The relation (on
de Bruijn terms) defined by this rule schema is denoted by �β and is called
β-contraction. The corresponding reduction relation is also referred to as
β-reduction.

The following proposition is an easy consequence of the discussions in
[NW98].

Proposition 2 Let t0, t1, t2, . . . be de Bruijn terms.

1. If l → r is a β-contraction rule, then

S(l; t1, t2, t3, . . .) → S(r; t1, t2, t3, . . .)

is also a β-contraction rule.

2. If ti�
∗
βt′i for i ≥ 0, then S(t0; t1, t2, t3, . . .)�∗

βS(t′0; t
′
1, t

′
2, t

′
3, . . .).

The following proposition is proved (for de Bruijn terms) in [Bru72].

Proposition 3 The relation �β is confluent.

Propositions 1 and 3 provide the basis for a procedure for comparing de
Bruijn terms in a situation where two terms are considered to be equal if one
β-contracts to the other: we attempt to reduce the two terms to a �β-normal
form and, if we succeed in doing so, we compare the resulting terms for
identity. The outlined procedure becomes a decision method in the case that
�β-normal forms exist for the given terms. Although this property does not
hold for arbitrary de Bruijn terms, it usually holds for subcollections of these
terms that are used for representational purposes. It holds, for instance, for
the class of (de Bruijn) terms restricted by a typing scheme based on simple
types [And71, Chu40] that underlie the λProlog language.

The notion of a head normal form provides a means for interleaving the
reduction to �β-normal form with the checking for identity in determining
the equality of terms.

Definition 4 A head normal form relative to �β or a �β-hnf is a de Bruijn
term of the form (λ . . . (λ (. . . (h t1) . . . tn)) . . .), where h is either a constant
or a variable reference. The number of abstractions at the front of such a
term is referred to as its binder length, h is called its head, and the terms

8

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3

t1, . . . , tn are said to be its arguments; in particular instances, there may be
no arguments and the binder length may be 0, i.e., the binder may be empty.
A de Bruijn term is said to be a weak �β-hnf if it is a �β-hnf or if it is of
the form (λ t). We say t is a �β-hnf of a de Bruijn term s if t is a �β-hnf
and s�∗

βt.

It is easily seen that two �β-hnfs are equal in the sense being considered
if and only if their binder lengths and heads are identical, they each have the
same number of arguments and their arguments, taken pairwise, are equal.
Further, a de Bruijn term has a �β-normal form only if it has a �β-hnf.
Thus, in determining if two de Bruijn terms are equal, we may proceed by
first reducing them to �β-hnfs, then checking the binder lengths, the heads,
and the number of arguments of these for identity and, finally, comparing
the arguments of the �β-hnfs if this is still relevant.

A procedure for reducing de Bruijn terms to �β-hnfs is, thus, of interest.
There are certain kinds of reduction sequences that are guaranteed to produce
such a form from a given term whenever one exists. The following definition
identifies a sequence of this kind.

Definition 5 The head �β-redex of a de Bruijn term that is not a �β-hnf
is identified as follows: If t is a �β-redex, then it is its own head �β-redex.
Otherwise t must be of the form (t1 t2) or (λ t1). In either case, the head
�β-redex of t is identical to that of t1. The weak head �β-redex of a de Bruijn
term that is not a weak �β-hnf is defined similarly, except that the term in
question cannot be an abstraction. The head �β-reduction sequence of a de
Bruijn term r is the sequence r = r0, r1, r2, . . . , rn, . . ., where, for i ≥ 0, there
is a de Bruijn term succeeding ri if ri is not a �β-hnf and, in this case, ri+1

is obtained from ri by rewriting the head �β-redex using a β-contraction rule.
Such a sequence is obviously unique and terminates just in case there is an
m ≥ 0 such that rm is a �β-hnf.

The following proposition is proved for lambda terms in the conventional
notation in, for instance, [Bar81], and this proof can be readily adapted to
de Bruijn terms.

Proposition 4 A de Bruijn term t has a �β-hnf if and only if the head
�β-reduction sequence of t terminates.

9

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.1

3 The suspension notation

Head �β-reduction sequences permit β-contractions to be performed lazily in
determining the equality of terms. There are practical benefits to permitting
a laziness in the substitution operation inherent in β-contraction as well. For
example, consider the task of determining whether the two de Bruijn terms

((λ (λ (λ ((#3 #2) s)))) (λ #1)) and ((λ (λ (λ ((#3 #1) t)))) (λ #1))

are equal modulo the β-contraction rule; s and t denote arbitrary de
Bruijn terms here. It can be seen that they are not, simply by observing that
these terms have as �β-hnfs the terms (λ (λ (#2 s′))) and (λ (λ (#1 t′))), re-
spectively, where s′ and t′ result from s and t by appropriate substitutions.
This conclusion can, in fact, be reached without explicitly carrying out the
potentially costly operation of substitution on the arguments. Along a dif-
ferent direction, laziness in substitution can be utilized to combine structure
traversals needed in β-reduction, leading to gains in efficiency [AP81].

The suspension notation for lambda terms [NW98] refines the de Bruijn
notation so as to support laziness in substitution. We summarize the impor-
tant aspects of this notation in this section, thereby providing a background
to later discussions concerning its enhancement and use.

3.1 Informal description of the notation

We provide first an intuition into the structure of the suspension notation
towards making the technical definitions that follow more accessible. In
essence, this notation enhances de Bruijn terms by including one new cat-
egory of terms: those that encode terms with a pending substitution. The
mechanism used for this purpose is similar in spirit to that of a closure that
is employed in implementations of functional programming languages. How-
ever, the suspension notation reflects this mechanism into the syntax of terms
and also generalizes the notion of an environment to permit the propagation
of substitutions and the rewriting of β-redexes inside abstractions.

The precise structure of terms in the new category is based on the in-
formation that is to be recorded in them. In the simplest case, such terms
are to encode the alterations that must be made to the variable references
within a term t to account for the rewriting of a β-redex inside whose “left”
subterm t is embedded. Thus, suppose that the β-redex in question has the
shape ((λ . . . (λ . . . (λ . . . t . . .) . . .) s). Rewriting this term produces one of

10

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.1

the form (. . . (λ . . . (λ . . . t′ . . .) . . .). The objective is to represent the term t′

that appears in the latter expression as the term t together with the substi-
tutions that are to be performed on it.

The variable references within t can, from the perspective of interest,
be factored into two groups: those corresponding to variables that are free
relative to the given β-redex and those corresponding to variables bound by
one of the abstractions occurring within the β-redex. Let us refer to the
number of abstractions enclosing a term in a given context as its embedding
level in that context. Thus, the embedding level of t relative to the β-redex
depicted above is 3. Rewriting the β-redex eliminates an abstraction and
hence changes the embedding level of t to 2. Let us refer to the embedding
levels before and after the rewriting step as the old and new embedding levels
and denote them by ol and nl, respectively. Now, the variable references
in t that are in the first group are precisely those of the form #i, where
i > ol. Further, these references need to be rewritten to #j, where j =
(i − ol) + nl, to reflect the fact that they are now free variables relative to
a new embedding level. Thus, the variable references in this group and the
substitutions to be made for them are determined simply by recording the
old and new embedding levels with t.

Substitutions for variable references in the second group are recorded
explicitly in an environment. At a concrete level, the term t′ in the situation
considered is represented by an expression of the form [[t, ol, nl, e]], where e
is a list of length ol of substitutions, presented in reverse order to the (old)
embedding levels of the abstractions binding the relevant variable references.
Such an expression is called a suspension. The elements of the environment
in a suspension pertain, in general, to two different kinds of abstractions:
those that persist in the new term and those that disappear as a result
of a β-contraction. The information present must suffice, in the first case,
for computing a new value for a variable reference bound by the relevant
abstraction and, in the second case, for determining the term to replace it
with. One quantity that is maintained in either case is the new embedding
level at the relevant abstraction, this being interpreted as that just within
its scope in the case of an abstraction that persists. This quantity is called
the index of the corresponding environment element. Certain “consistency”
properties hold over the list of indices of environment elements: they form a
non-increasing sequence and none of them is greater than the new embedding
level at the term into which the substitutions are being made. Now, for an
abstraction that is not eliminated by a β-contraction, the index is the only

11

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.1

information that is retained, the environment element taking the form @l
where l + 1 is the value of the index. The new value of a variable reference
bound by this abstraction is then given simply by #(nl−l). The environment
element for an abstraction that disappears due to a β-contraction has, on the
other hand, the form (s, l), where s is a term and l is the index. Such an
entry signals that a variable reference that corresponds to it is to be replaced
by s. However, the indices corresponding to the free variables in s will have
to be renumbered prior to this replacement. The needed renumbering is, in
fact, completely captured in the expression [[s, 0, (nl − l), nil]], in which nil
represents the empty environment.

The addition of suspensions to de Bruijn terms permits β-contraction to
be realized through atomic steps that generate and propagate substitutions
over terms. These steps, whose content should already be intuitively clear,
are presented in detail in Section 3.3. In the course of using these steps, it
is possible that two suspensions “meet” each other. For example, consider
the term ((λ ((λ t1) t2)) t3). We might rewrite the two β-redexes in this
term to produce the expression [[[[t1, 1, 0, (t2, 0) :: nil]], 1, 0, (t3, 0) :: nil]]. An
expression of this kind can be transformed into a de Bruijn term by first
reducing the inner suspension to such a form and then repeating this process
with the outer one. However, following this course could lead to repeated
walks over the structure of the term being substituted into. Thus, in the
example considered, two walks would be made over the structure of t1, one
for substituting in each of t2 and t3.

Towards supporting the combination of substitution walks, the suspension
notation provides a means for rewriting a term of the form

[[[[t, ol1, nl1, e1]], ol2, nl2, e2]]

into one of the form [[t, ol′, nl′, e′]]. In understanding the shape of the new
term, it is useful to note that e1 and e2 represent substitutions for overlapping
sequences of abstractions within which t is embedded. The generation of the
two suspensions can, in fact, be visualized as follows: First, a walk is made
over ol1 abstractions immediately enclosing t, recording substitutions for each
of them and leaving behind nl1 enclosing abstractions. Then a walk is made
over ol2 abstractions immediately enclosing the suspension [[t1, ol1, nl1, e1]] in
the new term, recording substitutions for each of them in e2 and leaving
behind nl2 abstractions. Notice that the ol2 abstractions scanned in the
second walk are coextensive with some final segment of the nl1 abstractions

12

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.1

left behind after the first walk and includes additional abstractions if ol2 >
nl1.

Based on the image just evoked, it is clear that the two suspensions
together represent a walk over ol1 enclosing abstractions in the case that
ol2 ≤ nl1 and ol1 +(ol2 −nl1) abstractions otherwise. Accordingly, ol′ should
be the appropriate one of these values. Similarly, the number of abstractions
eventually left behind is nl2 or nl2 +(nl1 − ol2) depending on whether or not
nl1 ≤ ol2, and this determines the value of nl′.

Thus, only the structure of the “merged” environment e′ remains to be
described. We denote this environment by the expression {{e1, nl1, ol2, e2}} to
indicate the components of the inner and outer suspensions that determine
its value. Notice that, in this expression, ol2 is identical to the length of
e2 and the indices of the elements of e1 are bounded by nl1. Clearly e′ has
a length greater than ol1 only if ol2 > nl1 and, in this case, its elements
beyond the ol1-th one are exactly the last (ol2 − nl1) elements of e2. As for
the first ol1 elements of e′, these must be the ones in e1 modified to take
into account the substitutions encoded in e2. To understand the shape of
these elements, suppose that e1 has the form et :: e′

1. The first element of
the merged environment will then be a modified form of et that we write
as 〈〈et, nl1, ol2, e2〉〉. Let the difference between nl1 and the index of et be
h. Now, et represents a substitution in e1 for an abstraction that lies within
the scope of those scanned in generating the substitutions in e2 only when
h < ol2. Thus, only when this condition is satisfied must et be changed before
inclusion in the merged environment. The nature of the change depends on
the kind of element et is. If it is of the form @l, then it corresponds to
an abstraction that persists after the walk generating the inner suspension
and the substitution for this abstraction in the merged environment must be
the one contained for it in e2. However, the index of this element of e2 will
have to be “normalized” if the merged environment represents substitutions
for a longer sequence of abstractions than does the outer abstraction: in
particular, if nl1 > ol2, then the index must be increased by nl1 − ol2. If
et is an element of the form (t, l), then it represents a component of e1

that is obtained from rewriting a β-redex that is within the scope of the
outermost ol2 − h abstractions considered in generating e2. Removing the
first h elements from e2 produces an environment that encodes substitutions
for these abstractions in the outer suspension. Let us denote this truncated
part of e2 by eh and let the index of the first entry in it be l′. Then the
“term” component of the relevant element in the merged environment is t

13

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.2

modified by the substitutions in eh and is given precisely by the expression
[[t, ol2 − h, l′, eh]], and the index of this element is l′, normalized as before if
nl1 > ol2.

The description above assumes that the final forms of expressions are
calculated in one step. Such a viewpoint runs counter to the overarching goal
of providing a fine-grained control over β-reduction and substitution. The
actual suspension notation corrects this situation by permitting the various
computations to be broken up into a sequence of genuinely atomic steps.

3.2 The syntax of suspension expressions

We now make precise the syntax of the various expressions discussed infor-
mally above.

Definition 6 The categories of suspension terms, environments and envi-
ronment terms, denoted by 〈STerm〉, 〈Env〉, and 〈ETerm〉, are defined by
the following syntax rules:

〈STerm〉 ::= 〈Cons〉 | #〈Index〉 | (〈STerm〉 〈STerm〉) |
(λ 〈STerm〉) | [[〈STerm〉, 〈Nat〉, 〈Nat〉, 〈Env〉]]

〈Env〉 ::= nil | 〈ETerm〉 :: 〈Env〉 | {{〈Env〉, 〈Nat〉, 〈Nat〉, 〈Env〉}}
〈ETerm〉 ::= @〈Nat〉 | (〈STerm〉, 〈Nat〉) |

〈〈〈ETerm〉, 〈Nat〉, 〈Nat〉, 〈Env〉〉〉.
We assume that 〈Cons〉 and 〈Index〉 are as in Definition 1 and that 〈Nat〉
is the category of natural numbers. We refer to suspension terms, environ-
ments, and environment terms collectively as suspension expressions.

The class of suspension terms obviously includes all the de Bruijn terms.
By an extension of terminology, we shall refer to suspension terms of the
form #i, (λ t), and (t1 t2) as indices or variable references, abstractions, and
applications, respectively.

Definition 7 The immediate subexpression(s) of a suspension expression x
are given as follows: (1) If x is a suspension term, then if (i) x is (t1 t2),
these are t1 and t2, (ii) if x is (λ t), this is t, and (iii) if x is [[t, ol, nl, e]],
these are t and e. (2) If x an environment, then (i) if x is et :: e, these
are et and e, and (ii) if x is {{e1, i, j, e2}}, these are e1 and e2. (3) If x
is an environment term, then (i) if x is (t, l), then this is t, and (ii) if x
is 〈〈et, i, j, e〉〉, then these are et and e. The subexpressions of a suspension

14

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.2

expression are the expression itself and the subexpressions of its immediate
subexpressions. Subexpressions that are suspension terms are also referred
to as subterms. A proper subexpression is any subexpression that is distinct
from the given suspension expression.

The syntax of environments and environment terms includes complex
forms that are used in merging suspensions. Part of the objective in this
paper is to eliminate these forms while still permitting substitutions to be
combined. The simpler syntax for suspension expressions is identified below.

Definition 8 A simple suspension term, environment and environment term
is an expression of the appropriate category that does not have subexpressions
of the form 〈〈et, j, k, e〉〉 or {{e1, j, k, e2}}. Note that a simple environment e
is either nil or of the form et1 :: et2 :: . . . :: etn :: nil. In the latter case, for
1 ≤ i ≤ n, we write e[i] to denote eti.

The following definition formalizes an already encountered notion. The
symbol . used here denotes the subtraction operation on natural numbers.

Definition 9 The length of an environment e, denoted by len(e), is given
as follows: (1) if e is nil then len(e) = 0; (2) if e is et :: e′ then len(e) =
len(e′) + 1; and (3) if e is {{e1, i, j, e2}} then len(e) = len(e1) + (len(e2) . i).

By the l-th index of an environment we shall mean the index of the l-th
element of the environment if there is such an element, and the quantity 0
otherwise. This notion is formalized below, together with the notion of the
index of an environment term. For expressions of the form {{e1, i, j, e2}} and
〈〈et, i, j, e〉〉, this definition reflects the simple environments and environment
terms to which they are intended to correspond, according to the earlier
informal description.

Definition 10 The index of an environment term et, denoted by ind(et),
and, for each natural number l, the l-th index of an environment e, denoted
by indl(e), are defined simultaneously by induction as follows:

1. If et is @m, then ind(et) = m + 1.

2. If et is (t′, m), then ind(et) = m.

3. If et is 〈〈et′, j, k, e〉〉, let m = (j . ind(et′)). Then

15

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.3

ind(et) =
{

indm(e) + (j . k) if len(e) > m
ind(et′) otherwise.

4. If e is nil, then indl(e) = 0.

5. If e is et :: e′, then ind0(e) = ind(et) and indl+1(e) = indl(e′).

6. If e is {{e1, j, k, e2}}, let m = (j . indl(e1)) and l1 = len(e1). Then

indl(e) =




indm(e2) + (j . k) if l < l1 and len(e2) > m
indl(e1) if l < l1 and len(e2) ≤ m
ind(l−l1+j)(e2) if l ≥ l1.

The index of an environment, denoted by ind(e), is ind0(e).

Certain constraints were noted to hold of suspension expressions when
these are used as intended. These constraints are formalized as wellformed-
ness conditions.

Definition 11 A suspension expression is well formed if the following con-
ditions hold of every subexpression s of the expression: (1) if s is of the form
[[t, ol, nl, e]], then len(e) = ol and ind(e) ≤ nl, (2) if s is of the form et :: e,
then ind(e) ≤ ind(et), (3) if s is of the form 〈〈et, j, k, e〉〉, then len(e) = k
and ind(et) ≤ j, and (4) if s is of the form {{e1, j, k, e2}}, then len(e2) = k
and ind(e1) ≤ j.

The qualification of wellformedness is henceforth implicitly assumed of sus-
pension expressions.

3.3 Reduction relations on suspension expressions

Three categories of rewrite rules on suspension expressions, called the βs-
contraction rules, the reading rules and the merging rules, are presented
through the schemata in Figures 1, 2, and 3, respectively. The βs-contraction
rules generate suspended substitutions corresponding to β-contractions, the
reading rules propagate these substitutions, and the merging rules facili-
tate the combination of substitutions. The following tokens, used in these
schemata, perhaps with subscripts or superscripts, are to be interpreted as
schema variables for the indicated syntactic categories: c for constants, t for

16

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.3

(βs) ((λ t1) t2) → [[t1, 1, 0, (t2, 0) :: nil]]

Figure 1: The βs-contraction rule schema

(r1) [[c, ol, nl, e]] → c,
provided c is a constant.

(r2) [[#i, 0, nl, nil]] → #(i + nl).

(r3) [[#1, ol, nl, @l :: e]] → #(nl − l).

(r4) [[#1, ol, nl, (t, l) :: e]] → [[t, 0, (nl − l), nil]].

(r5) [[#i, ol, nl, et :: e]] → [[#(i − 1), (ol − 1), nl, e]],
provided i > 1.

(r6) [[(t1 t2), ol, nl, e]] → ([[t1, ol, nl, e]] [[t2, ol, nl, e]]).

(r7) [[(λ t), ol, nl, e]] → (λ [[t, (ol + 1), (nl + 1), @nl :: e]]).

Figure 2: Rule schemata for reading suspensions

suspension terms, et for environment terms, e for environments, i for posi-
tive numbers, and ol, nl, l, and m for natural numbers. The applicability
of several of the rule schemata are dependent on “side” conditions that are
presented together with them. In determining the relevant instance of the
righthand side of some of the rule schemata, simple arithmetic operations
may have to be performed on components of the expression matching the
lefthand side. By a harmless abuse of notation, these operations are indi-
cated by including them in the schema for the expression to be produced.

Definition 12 The reduction relations defined by the rule schemata in Fig-
ures 1, 2, and 3 are denoted by �βs, �r, �m, respectively. The union of the
relations �r and �m is denoted by �rm, the union of �r and �βs by �rβs, and
the union of �r, �m, and �βs by �rmβs.

The following proposition, proved in [NW98], establishes the legitimacy
of the above definitions.

17

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.3

(m1) [[[[t, ol1, nl1, e1]], ol2, nl2, e2]] → [[t, ol′, nl′, {{e1, nl1, ol2, e2}}]],
where ol′ = ol1 + (ol2 . nl1) and nl′ = nl2 + (nl1 . ol2).

(m2) {{nil, nl, 0, nil}} → nil.

(m3) {{nil, nl, ol, et :: e}} → {{nil, (nl − 1), (ol − 1), e}},
provided nl, ol ≥ 1.

(m4) {{nil, 0, ol, e}} → e.

(m5) {{et :: e1, nl, ol, e2}} → 〈〈et, nl, ol, e2〉〉 :: {{e1, nl, ol, e2}}.

(m6) 〈〈et, nl, 0, nil〉〉 → et.

(m7) 〈〈@m, nl, ol, @l :: e〉〉 → @(l + (nl . ol)),
provided nl = m + 1.

(m8) 〈〈@m, nl, ol, (t, l) :: e〉〉 → (t, (l + (nl . ol))),
provided nl = m + 1.

(m9) 〈〈(t, nl), nl, ol, et :: e〉〉 → ([[t, ol, l′, et :: e]], m),
where l′ = ind(et) and m = l′ + (nl . ol).

(m10) 〈〈et, nl, ol, et′ :: e〉〉 → 〈〈et, (nl − 1), (ol − 1), e〉〉,
provided nl 6= ind(et).

Figure 3: Rule schemata for merging environments

18

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §3.3

Proposition 5 Let x be a well-formed suspension expression and let y be
such that x�ry, x�my, x�βsy, x�rmy, x�rβsy, or x � rmβsy. Then y is a
well-formed suspension expression.

Some useful properties of our reduction relations are stated below. Proofs
of these properties, where omitted, may be found in [NW98].

Proposition 6 The relation �rm is noetherian and confluent. Further, a
suspension expression is in �rm-normal form just in case (1) it is a de Bruijn
term, (2) it is an environment term of the form @l or (t, l), where t is a de
Bruijn term, or (3) it is an environment of the form nil or et :: e, where
et and e are, respectively, an environment term and an environment in �rm-
normal form.

Propositions 1 and 6 justify the following definition:

Definition 13 The �rm-normal form of a suspension expression t is denoted
by |t|.

A suspension term is intended to encapsulate a de Bruijn term with a
“pending” substitution. The following proposition shows that this corre-
spondence is as expected.

Proposition 7 Let t = [[t′, ol, nl, e]] and e′ = |e|. Then

|t| = S(|t′|; s1, s2, s3, . . .)

where

si =




#(i − ol + nl) if i > ol
#(nl − m) if i ≤ ol and e′[i] = @m
|[[ti, 0, nl − m, nil]]| if i ≤ ol and e′[i] = (ti, m).

The following ordering relation on suspension expressions will be used in
inductive arguments.

Definition 14 Let = be the following relation on suspension expressions:
x = y just in case x�rmy or y is a proper subexpression of x. The relation
� is then the transitive closure of =.

Theorem 1 � is a well-founded partial ordering relation on suspension ex-
pressions.

19

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

Proof of Theorem 1 Clearly, � is a partial ordering relation. Suppose
that there is an infinite sequence of the form x1 � x2 � . . . � xn � . . ..
It is easy to see that there then is an infinite sequence y1, y2, . . . , ym, . . . of
suspension expressions such that either yi+1 is a proper subexpression of yi

for all i ≥ 1 or yi�rmyi+1 for all i ≥ 1. Neither is possible, and so � must be
well founded.

Proof of Theorem 1 2

A consequence of Proposition 7 is the following correspondence between
the β- and βs-contraction rule schemata:

Proposition 8 If l → r is an instance of the βs-contraction rule schema,
then |l| → |r| is an instance of the β-contraction rule schema.

The above proposition implies also a correspondence between �β and �βs :

Proposition 9 Let t be a de Bruijn term and let t�βs. Then there is a
suspension term r such that t�βsr and |r| = s.

Proposition 9 states only part of the relationship between �rmβs and �β.
A complete statement requires the notion of β-reduction to be extended to
suspension terms.

Definition 15 The relation on suspension expressions defined by the β-
contraction rule schema is denoted by �β′.

The soundness and relative completeness of �rmβs-reduction is then stated
as follows:

Proposition 10

1. If x and y are suspension expressions such that x�∗
rmβs

y, then |x|�∗
β′|y|.

2. If x and y are suspension expressions in �rm-normal form such that
x�∗

β′y, then x�∗
rmβs

y.

Proposition 10 and the confluence of �β′ can be used to show that �rmβs

is confluent. We refer the reader to [NW98] for details.

20

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

4 Eliminating the merging rules

The suspension notation for lambda terms is a general one that permits β-
reduction to be realized through a variety of rewriting sequences. However,
the full generality of this notation may not be useful in practice and imple-
mentation considerations favor a simpler notation. In this spirit, we consider
the elimination of the merging rules and the restriction of the syntax to only
simple suspension expressions. We note first that the merging rules can be
dispensed with if the sole purpose is to simulate �β-reduction. This observa-
tion is a special case of the following lemma:

Lemma 1 Let x be a simple suspension expression and let y be such that
x�∗

rmβs
y. Then there is a suspension expression z such that x�∗

rβs
z and

y�∗
rmz.

Proof of Lemma 1 We use two observations about the rules for rewriting
suspension expressions. First, a simple suspension expression that is not a
�rm-normal form can always be rewritten by a reading rule. Second, rewriting
a simple suspension expression by means of a reading rule or a βs-contraction
rule produces another simple expression.

Now, since x�∗
rmβs

y, it follows from Proposition 10, that |x|�∗
β′|y|. We

claim that x�∗
r|x| and that |x|�∗

rβs
|y|. These facts yield the lemma: letting

z = |y|, we see that x�∗
rβs

z and y�∗
rmz.

The first claim, that x�∗
r|x|, follows immediately from the fact that x is

a simple suspension expression. For the second claim, we note that if r is a
�rm-normal form and r�β′s, then there is some t such that r�βst and s = |t|;
this can be seen by using Proposition 9 and an induction on the structure of
r. Thus, using the observations about the rewrite rules, r�∗

rβs
s. An induction

on the length of the sequence by which |x| �β′-reduces to |y| now shows that
|x|�∗

rβs
|y|.

Proof of Lemma 1 2

While the merging rules and the more complex forms for suspension ex-
pressions are not needed for implementing �β-reduction, it is only through
these that substitutions embodied in different environments are combined. It
is possible, however, to recognize useful sequences of applications of merging
rules and to devise new rules over simple suspension expressions that encode

21

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

these sequences. The use of such derived rules can have the additional ad-
vantage of reducing a sequence of rewritings into a single step. We identify
two kinds of situations in which merging rules are useful below and we codify
these into new rules that preserve the underlying equality relation.

The first kind of situation arises when an attempt is made to reduce
a given term to a �rmβs-normal (or �β-normal) form using the strategy of
rewriting the outermost and leftmost redex at each stage and merging rules
are employed in combining environments that are generated by multiple uses
of the βs-contraction rule schema in this process. For example, consider the
term ((λ ((λ (λ ((#1 #2) #3))) t2)) t3), in which t2 and t3 are arbitrary de
Bruijn terms. Based on the process described, the first step would be to use
the βs-contraction rule schema to rewrite the given term to

[[((λ (λ ((#1 #2) #3))) t2), 1, 0, (t3, 0) :: nil]].

The reading rules will then be used repeatedly, culminating in the production
of the term

((λ [[(λ ((#1 #2) #3)), 2, 1, @0 :: (t3, 0) :: nil]]) [[t2, 1, 0, (t3, 0) :: nil]]).

At this stage, the βs-contraction rule schema would be used again to produce
the term

[[[[(λ ((#1 #2) #3)), 2, 1, @0 :: (t3, 0) :: nil]], 1, 0,
([[t2, 1, 0, (t3, 0) :: nil]], 0) :: nil]].

This term corresponds to the term (λ ((#1 #2) #3)) embedded within two
suspensions. The rule schema (m1) will now be employed to merge these
suspensions, yielding the term

[[(λ ((#1 #2) #3)), 2, 0,
{{@0 :: (t3, 0) :: nil, 1, 1, ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: nil}}]].

The term displayed above is not a simple suspension term. However, it can
be reduced to the simple suspension term

[[(λ ((#1 #2) #3)), 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: (t3, 0) :: nil]]

by repeatedly using the merging rule schemata. While the production of this
term calls for a deviation from the strategy of rewriting only the outermost
and leftmost redex, there is benefit to doing this: subsequent “lookups” of
the environment are simplified.

22

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

The sequence of rewriting steps starting from the second use of the βs-
contraction rule schema and ending in the final simple suspension term
shown can be collapsed into one use of a more “powerful” βs-contraction
rule schema.

Definition 16 Let t1 and t2 be schema variables for suspension terms, e for
environments, and ol and nl for natural numbers. Then the β′

s-contraction
rule schema is

((λ [[t1, ol + 1, nl + 1, @nl :: e]]) t2) → [[t1, ol + 1, nl, (t2, nl) :: e]],

with the proviso that the index of the environment instantiating e is less than
or equal to the natural number instantiating nl.

The proviso associated with the above rule schema cannot at the moment
be easily verified. However, we shall restrict our attention in Section 6 to
a class of expressions all of which satisfy this condition. The β′

s-contraction
rule schema will then be applicable in a genuinely atomic fashion.

The soundness of the βs-contraction rule schema is shown through the
following lemmas.

Lemma 2 Let t → s be an instance of the β′
s-contraction rule schema. Then

there are suspension terms r and u such that t → r is a βs-contraction rule
and s�∗

rmu and r�∗
rmu.

Proof of Lemma 2 Since t → s is an instance of the β′
s-contraction rule

schema, t is a suspension term of the form ((λ [[t1, ol + 1, nl + 1, @nl :: e]]) t2),
s is, correspondingly, of the form [[t1, ol + 1, nl, (t2, nl) :: e]], and, further, e is
such that ind(e) ≤ nl. Now let r be the suspension term

[[[[t1, ol + 1, nl + 1, @nl :: e]], 1, 0, (t2, 0) :: nil]].

Clearly, t → r is a βs-contraction rule. Thus, the lemma will follow if it
can be shown that s and r �∗

rm-reduce to a common expression. We do this
assuming that the subexpression e of s and r is a simple environment. If this
is not true, then there are suspension terms s′ and r′ such that s�∗

rms′ and
r�∗

rmr′ that have forms similar to s and r and that also satisfy the mentioned
condition. The argument we provide here can be applied to these, eventually
yielding the desired conclusion with respect to s and r. Now, by virtue of
rule schemata (m1), (m5), and (m8), we see that

23

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

r�rm[[t1, ol + 1, nl, (t2, nl) :: {{e, nl + 1, 1, (t2, 0) :: nil}}]].

An induction on the length of e using rule schemata (m2), (m5), (m6), and
(m10) and the facts that e is a simple environment and ind(e) ≤ nl shows
that {{e, nl + 1, 1, (t2, 0) :: nil}}�∗

rme. From these observations it follows that
both r and s �∗

rm-reduce to s.

Proof of Lemma 2 2

Lemma 3 Let r result from the suspension expression s by a use of the β′
s-

contraction rule schema. Then there is a suspension expression u such that
s�∗

rmβs
u and r�∗

rmu.

Proof of Lemma 3 By induction on the structure of suspension expres-
sions using Lemma 2.

Proof of Lemma 3 2

The following could also have been chosen for the more powerful βs-
contraction rule schema:

([[(λ t1), ol, nl, e]] t2) → [[t1, ol + 1, nl, (t2, nl) :: e]].

This rule schema is in keeping with the behavior of reduction procedures
that use environments [AP81, CCM87, HM76] and also parallels the auxiliary
rule described in conjunction with the λσ-calculus in [ACCL91]. The rule
schema that we have actually chosen is better suited to the use made of
our notation in Section 7, where reduction procedures will be expected to
return suspension terms that are constants, variable references, abstractions
or applications at the top-level.

There is an interaction between the use of the merging rules and the
sharing of work in reduction that is worth understanding. Towards this
end, we examine an alternative reduction sequence for the term consid-
ered earlier, namely ((λ ((λ (λ ((#1 #2) #3))) t2)) t3). Suppose that, as be-
fore, the outermost βs-redex in this term is rewritten first to produce the
term [[((λ (λ ((#1 #2) #3))) t2), 1, 0, (t3, 0) :: nil]]. At this point, the embed-
ded �βs-redex ((λ (λ ((#1 #2) #3))) t2) may be rewritten in contrast to the
choice exercised earlier, producing the term

[[[[(λ ((#1 #2) #3)), 1, 0, (t2, 0) :: nil]], 1, 0, (t3, 0) :: nil]].

24

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §4

Assuming that a graph-based implementation of reduction is being used, fol-
lowing this course has the apparent advantage that ((λ (λ ((#1 #2) #3))) t2)
is rewritten before the propagation of the substitution “breaks” a possible
sharing relative to it. Notice, however, that the full benefit of such a sharing
of reduction is realized only if the substitutions encoded in the two suspen-
sions in the resulting term are performed in separate walks over the structure
of (λ ((#1 #2) #3)). Further, opportunities for a different kind of sharing
in reduction can be missed if the merging (or the derivative β′

s-contraction)
rules are not used. In the case being considered, t3 has eventually to be
substituted into t2. If the merging rules are not used, then this substitution
would have to be carried out separately in the different copies that might be
made of t2. In general, the trade-off between different reduction strategies
is more complex than it initially appears to be. A notation such as the one
considered here provides the basis for a careful analysis of this issue.

We now consider the second kind of situation in which the merging rules
are useful. These situations arise when suspensions have to be substituted
into particular contexts and the indices within the de Bruijn terms they
represent have to be adjusted as a result. We continue with the reduction of
the term ((λ ((λ (λ ((#1 #2) #3))) t2)) t3) to provide an illustration. This
term had been rewritten to

[[(λ ((#1 #2) #3)), 2, 0, ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: (t3, 0) :: nil]].

Using the reading rules repeatedly in a leftmost-outermost fashion, it can
be further transformed into

(λ ((#1 [[[[t2, 1, 0, (t3, 0) :: nil]], 0, 1, nil]])
[[#3, 3, 1, @0 :: ([[t2, 1, 0, (t3, 0) :: nil]], 0) :: (t3, 0) :: nil]])).

The subterm [[[[t2, 1, 0, (t3, 0) :: nil]], 0, 1, nil]] of this term corresponds to t2
embedded within two suspensions. The inner suspension represents the result
of substituting t3 for the first free variable within t2 and arises from the
use of a βs-contraction rule. The outer suspension represents the “bumping
up” of the indices for the free variables in the resulting term by 1 and is
necessitated by the substitution of the term in question into an abstraction.
The merging rules provide a means for combining these different substitutions
and thereby performing them in the same walk over the structure of t2. In
particular, these rules can be used to rewrite [[[[t2, 1, 0, (t3, 0) :: nil]], 0, 1, nil]]
into [[t2, 1, 1, (t3, 0) :: nil]]. Such uses of the merging rules can also be codified
in a new rule schema.

25

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §5

Definition 17 The (bump) rule schema is the following

[[[[t, ol, nl, e]], 0, nl′, nil]] → [[t, ol, nl + nl′, e]],

where t is a schema variable for a suspension term, e is a schema variable for
an environment and ol, nl, and nl′ are schema variables for natural numbers.

The following lemma justifies the use of the above rule schema in reduc-
tion sequences.

Lemma 4 Let r result from the suspension expression s by a use of the
(bump) rule schema. Then there is an expression u such that s�∗

rmu and
r�∗

rmu.

Proof of Lemma 4 It suffices to show the lemma assuming that s is an
instance of the lefthand side of the rule schema being considered. Thus, s is
a term of the form [[[[t, ol, nl, e]], 0, nl′, nil]]. As in the proof of Lemma 2, we
may assume that e is a simple environment. Now, using rule schema (m1),
s�∗

rm[[t, ol, nl + nl′, {{e, nl, 0, nil}}]].
By an induction on len(e) and using rule schemata (m2), (m5), and (m6),

it can be seen that {{e, nl, 0, nil}}�∗
rme. Letting u be r, the lemma follows.

Proof of Lemma 4 2

The new rule schemata presented in this section encapsulate certain pat-
terns of application of the merging rules that are likely to find use within a
particular scheme for reducing expressions to �∗

rmβs
-normal form. They do

not, of course, capture all potential uses of the merging rules. If subterms of a
term are rewritten in arbitrary order using the βs-contraction rules, then two
environments that can be merged only by using the general rules may appear
in juxtaposition. Such “mixed” orders of rewriting can occur in reasonable
reduction procedures; they might occur, for instance, within an implementa-
tion that permits a sharing of subterms and, consequently, of reduction steps.
It can sometimes be recognized that the substitutions in an outer suspen-
sion have no effect on an inner one, thereby obviating the merging of these
suspensions. These situations are discussed in the next section. Moreover,
missing some opportunities for combining substitution walks is arguably an
acceptable trade-off for a simpler syntax and set of reduction rules.

26

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §5

5 Some rules for simplifying suspensions

It can sometimes be recognized that the substitution embodied in a suspen-
sion does not affect the term being substituted into. The suspension can,
in such cases, be rewritten directly to its term component. We identify two
kinds of such situations in this section. The first of these corresponds to
the case where the term being substituted into does not contain variable oc-
currences that could be bound by abstractions external to it. The idea of
closedness that is defined below approximates this property of terms.

Definition 18 Given natural numbers i and nl, the notions of being i-closed
for a suspension term and (i, nl)-closed for an environment are defined si-
multaneously by structural recursion as follows: A suspension term t is said
to be i-closed if (1) t is a constant or of the form #k, where k ≤ i; or (2) t
is of the form (t1 t2), where t1 and t2 are i-closed; or (3) t is of the form
(λ t1), where t1 is (i+1)-closed; or (4) t is of the form [[t1, ol, nl, e]], where t1
is (max(ol, i − (nl − ol)))-closed and e is (i, nl)-closed. An environment e is
said to be (i, nl)-closed if (5) it is nil, or (6) it is of the form @j :: e′ where
(nl − j) ≤ i and e′ is (i, nl)-closed, or (7) it is of the form (t, j) :: e′ and t is
(i . (nl − j))-closed and e′ is (i, nl)-closed. A suspension term is said to be
closed if it is 0-closed.

The assessment of closedness is, by definition, restricted to simple sus-
pension terms. Even within this context, the judgment can be conservative.
It is possible, for example, to manifest a term of the form [[t, ol, nl, e]] that
is not deemed to be closed but whose �rm-normal form is a de Bruijn term
that does not contain unbound variable references. However, an assessment
of closedness is sound. This is a special case of the following lemma.

Lemma 5 If t is an i-closed suspension term, then so is |t|.

Proof of Lemma 5 Since t is i-closed, it must be a simple suspension term.
As noted in the proof of Lemma 1, this implies that t�∗

r|t|. The lemma will
therefore follow if we can show that if x is a (simple) i-closed suspension term
such that x�ry, then y is also i-closed.

It is actually more convenient to prove a stronger form of the required
observation: (1) if x is an i-closed suspension term such that x�ry, then y
is also i-closed, and (2) if x is an (i, nl)-closed environment such that x�ry,
then y is also (i, nl)-closed. An inspection of the reading rules verifies the

27

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §5

truth of (1) and (2) in the case that x → y is an instance of one of these
rules. A straightforward induction on the structure of x extends this to the
general situation.

Proof of Lemma 5 2

We now present the simplification rules of the first kind.

Definition 19 The (cl) rule schema is

[[t, ol, nl, e]] → t

where t is a schema variable for closed suspension terms, e is a schema
variable for environments, and ol and nl are schema variables for natural
numbers.

The proviso on the use of the (cl) rule schema is difficult to verify at the
moment. However, Section 6 describes an annotation system whose purpose
is to identify closed suspension terms.

The following lemma justifies the use of the (cl) rule schema in reduc-
tions.

Lemma 6 Let r result from the suspension expression s by an application
of the (cl) rule schema. Then there is an expression u such that s�∗

rmu and
r�∗

rmu.

Proof of Lemma 6 It suffices to show the lemma assuming that s is an
instance of the lefthand side of the rule schema in question. Further, if
s is of the form [[t, ol, nl, e]], we may assume that t is a �rm-normal form.
Observing that [[t, ol, nl, e]]�∗

rm[[|t|, ol, nl, e]], t�∗
rm|t| and that, by Lemma 5,

|t| is closed if t is, the lemma is easily extended to the general case.
For the case being considered, we actually make a slightly stronger claim.

Let i be a natural number. Letting @(nl + i − 1) :: . . . :: @nl :: e stand for e
in the case that i = 0 and assuming that t is an i-closed �rm-normal form,
we claim that

[[t, ol + i, nl + i, @(nl + i − 1) :: . . . :: @nl :: e]]�∗
rmt.

The claim is proved by induction on the structure of t. It is obviously true if
t is a constant. Let t be of the form #j. Since t is i-closed, j ≤ i. (Clearly,
i > 0 in this case.) Thus

28

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §5

[[t, ol + i, nl + i, @(nl + i − 1) :: . . . :: @nl :: e]]�∗
rm

#(nl + i − (nl + i − j)) = t.

In the case that t is an abstraction or an application, the claim is shown by
a straightforward recourse to the inductive hypothesis.

Proof of Lemma 6 2

The second kind of situation where a suspension can be simplified to
its term component is one in which the substitution involved is vacuous.
Such substitutions can arise in practice from attempts to renumber variable
references. The following definition presents the relevant simplification rule
schema.

Definition 20 The (nulle) rule schema is the following

[[t, 0, 0, nil]] → t

where t is a schema variable for a suspension term.

This rule schema is shown to be sound by the following lemma.

Lemma 7 Let s be a suspension expression and let r result from s by an
application of the (nulle) rule schema. Then there is a suspension expression
u such that s�∗

rmu and r�∗
rmu.

Proof of Lemma 7 Let i be a natural number and let @i :: @(i − 1) ::
. . . :: @0 :: nil denote nil if i is 0. We claim that if t is a �rm-normal
form, then [[t, i, i, @i :: @(i − 1) :: . . . :: @0 :: nil]]�∗

rmt. The lemma is an easy
consequence of this claim. The claim itself is proved by a structural induction
on t.

Proof of Lemma 7 2

Using the rule schemata (cl) and (nulle) whenever they are applicable
obviously reduces the work involved in producing a �rmβs-normal form. Less
obvious consequences of using these schemata are the conservation of space
and the possibility for a greater sharing of work in the context of a graph-
based implementation of reduction. To appreciate these aspects, let us con-
sider the reduction to �rmβs-normal form of the term [[((λ t1) t2), ol, nl, e]],
assuming that ((λ t1) t2) is known to be a closed term. Using the (cl) rule

29

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.1

schema, this term can be rewritten directly to ((λ t1) t2). This rewriting
step preserves any sharing that might exist with respect to ((λ t1) t2) and,
consequently, leaves unaltered the possibility of sharing the reduction work
pertaining to this subterm. Additionally, no new structures are created as a
result of the rewriting. In contrast, if the (cl) rule schema is not available,
then the given term would be rewritten to ([[(λ t1), ol, nl, e]] [[t2, ol, nl, e]]), as-
suming a leftmost-outermost reduction strategy. Proceeding in this fashion
destroys the sharing with regard to the outermost �βs-redex and thus pre-
cludes its reduction from providing a benefit in some other context. Further-
more, the propagation of the substitution eventually results in the replication
of the entire structure of the term ((λ t1) t2). The unnecessary use of space
and time in computing such substitutions has been noted to be significant in
practice [BR91], and the simplification rules presented in this section are of
value from this perspective.

6 A refinement to the suspension notation

We now modify the suspension notation to take into account the discussions
of the last two sections. One aspect of this modification is a restriction to
simple suspension expressions and the elimination of merging rules. The sec-
ond change that is considered is that of including annotations in suspension
expressions to indicate that certain expressions do not contain variables that
could be bound by abstractions in whose scope they appear. In particular,
our annotation scheme categorizes abstractions, applications, and suspen-
sions as either closed expressions or expressions that could contain unbound
variable references. These annotations permit the (cl) rule schema to be uti-
lized in an effective manner. For these annotations to be eventually useful,
the information in them must be preserved in the course of reduction. We
modify the rewrite rules for (simple) suspension expressions to achieve this
effect.

6.1 Annotated suspension expressions and associated
reduction relations

Our refinement to suspension expressions is given by the following definition.

30

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.1

Definition 21 The categories of annotated suspension terms, annotated en-
vironments, and annotated environment terms, denoted by 〈ATerm〉, 〈AEnv〉,
and 〈AETerm〉, respectively, are defined by the following syntax rules:

〈ATerm〉 ::= 〈Cons〉 | #〈Index〉 |
(〈ATerm〉 〈ATerm〉)o | (〈ATerm〉 〈ATerm〉)c |
(λo 〈ATerm〉) | (λc 〈ATerm〉) |
[[〈ATerm〉, 〈Nat〉, 〈Nat〉, 〈AEnv〉]]o |
[[〈ATerm〉, 〈Nat〉, 〈Nat〉, 〈AEnv〉]]c

〈AEnv〉 ::= nil | 〈AETerm〉 :: 〈AEnv〉
〈AETerm〉 ::= @〈Nat〉 | (〈ATerm〉, 〈Nat〉)

We assume that 〈Cons〉, 〈Index〉, and 〈Nat〉 correspond to the same cate-
gories of expressions as in Definition 6. Annotated suspension terms, anno-
tated environments and annotated environment terms are referred to collec-
tively as annotated suspension expressions.

Annotated suspension expressions are structurally similar to simple sus-
pension expressions. The following translation function explicates this simi-
larity.

Definition 22 The suspension expression underlying an annotated suspen-
sion expression t is denoted by t and is given as follows: (1) if t is c, #i or
nil, then t = t, (2) if t is (λo t1) or (λc t1), then t = (λ t1), (3) if t is (t1 t2)o

or (t1 t2)c, then t = (t1 t2), (4) if t is [[t1, ol, nl, e]]o or [[t1, ol, nl, e]]c, then
t = [[t1, ol, nl, e]], (5) if t is @l :: e, then t = @l :: e, and (6) if t is (t1, l) :: e,
then t = (t1, l) :: e.

We exploit the structural similarity to speak of (annotated) abstractions,
applications and suspensions and also to clarify the notion of subexpressions.
The restriction to simple expressions permits several related definitions to be
simplified.

Definition 23 The index of an annotated environment term et, written
ind(et), is (m + 1) if et is @m and m if et is (t, m). The index of an
environment e, written ind(e), is 0 if e is nil and ind(et) if e is of the form
et :: e′. The length of an annotated environment e, written len(e), is 0 if e
is nil and len(e′) + 1 if e is of the form et :: e′. If len(e) = n, then obviously
e is of the form et1 :: et2 :: . . . :: etn :: nil. As before, for 0 < i ≤ n, we write
e[i] to denote the environment term eti.

31

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.1

The restriction in structure also allows us to place a slightly stronger con-
dition of wellformedness on our expressions than is implicit from the transla-
tion. The new requirement ensures that the proviso on (a suitably adapted
version of) the β′

s-contraction rule schema will be satisfied by all relevant
annotated terms.

Definition 24 An annotated suspension expression is well formed if the fol-
lowing is true of all its subexpressions: If this is of the form @l :: e or
(t, l) :: e, then ind(e) ≤ l. If this is of the form [[t, ol, nl, e]]o or [[t, ol, nl, e]]c,
then len(e) = ol and ind(e) ≤ nl.

The following lemma is obvious.

Lemma 8 If t is a well-formed annotated suspension expression, then t is a
well-formed simple suspension expression.

Annotations on suspension expressions are intended to indicate whether
or not they may be considered closed in the sense of Section 5. A require-
ment of consistency can therefore be placed on these annotations. Such a
requirement is spelled out in the following definition.

Definition 25 An annotated suspension term t is said to be c-annotated, or
closed annotated, if it is of the form (λc t1), (t1 t2)c, or [[t1, ol, nl, e]]c. An
annotated suspension expression t is said to be consistently annotated if the
following conditions hold for each c-annotated subterm s of t: (1) s is a closed
term, (2) if s = (s1 s2)c, then, for i = 1 and i = 2, si either is a constant or
is c-annotated, and (3) if s = [[s1, ol, nl, e]]c, then s1 either is a constant or
is c-annotated if ol = 0, and otherwise this property holds for every s′ such
that e[i] = (s′, l) for some i between 1 and ol.

Figures 4 and 5 present rule schemata for rewriting annotated suspen-
sion expressions. The interpretation of these schemata is similar to those for
rewriting suspension expressions with the difference that the tokens t, et, and
e, used, perhaps, with subscripts or superscripts, are now schema variables
for annotated suspension expressions of the relevant categories and that new
“annotation” schema variables u and v appear in these rules that may be re-
placed by either o or c. The choice of rule schemata reflects the discussions in
the preceding two sections. Note, in particular, that the schema (aβ′

s) corre-
sponds to the (β′

s) schema; (ar8), (ar9), and (ar10) correspond to (cl); (ar11)
corresponds to (bump); and (ar12) corresponds to (nulle). An assumption

32

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.1

(aβs) ((λu t1) t2)v → [[t1, 1, 0, (t2, 0) :: nil]]v

(aβ′
s) ((λu [[t1, ol + 1, nl + 1, @nl :: e]]o) t2)v → [[t1, ol + 1, nl, (t2, nl) :: e]]v

Figure 4: The βs-contraction rule schemata for annotated suspension expres-
sions

(ar1) [[c, ol, nl, e]]u → c,
provided c is a constant.

(ar2) [[#i, 0, nl, nil]]u → #(i + nl).

(ar3) [[#1, ol, nl, @l :: e]]u → #(nl − l).

(ar4) [[#1, ol, nl, (t, l) :: e]]u → [[t, 0, nl − l, nil]]u.

(ar5) [[#i, ol, nl, et :: e]]u → [[#(i − 1), ol − 1, nl, e]]u,
provided i > 1.

(ar6) [[(t1 t2)u, ol, nl, e]]v → ([[t1, ol, nl, e]]v [[t2, ol, nl, e]]v)v.

(ar7) [[(λu t), ol, nl, e]]v → (λv [[t, ol + 1, nl + 1, @nl :: e]]o).

(ar8) [[(t1 t2)c, ol, nl, e]]u → (t1 t2)c.

(ar9) [[(λc t), ol, nl, e]]u → (λc t).

(ar10) [[[[t, ol, nl, e]]c, ol′, nl′, e′]]u → [[t, ol, nl, e]]c.

(ar11) [[[[t, ol, nl, e]]o, 0, nl′, nil]]o → [[t, ol, nl + nl′, e]]o.

(ar12) [[t, 0, 0, nil]]u → t.

Figure 5: Rule schemata for reading annotated suspensions

of consistency of annotations is important for (ar8), (ar9), and (ar10) to be
sound implementations of (cl). We envisage that terms are annotated in a
consistent fashion at the outset. The rules then manipulate annotations in a
way that preserves their consistency, a fact we observe in Theorem 2.

Definition 26 The reduction relations on annotated suspension expressions
that are defined by the rule schemata in Figures 4 and 5 are denoted by �aβs

and �ar, respectively. The union of these two relations is denoted by �arβs.

33

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.1

Theorem 2 Let t be a well-formed annotated suspension expression that is
consistently annotated. If t�ars or t�aβss, then s is also well formed and
consistently annotated.

Proof of Theorem 2 Wellformedness. Instances of the lefthand sides of
the rule schemata in Figures 4 and 5 can only be annotated suspension terms.
From this and an inspection of Definition 24 it follows easily that s would
be well formed if whenever an instance of the lefthand side of one of the
relevant rule schemata is well formed, then the corresponding instance of the
righthand side is also well formed. An inspection of the rule schemata verifies
that this is the case.

Consistency of annotations. Let l be the subterm of t that is replaced by
one of the rule schemata in obtaining s, and let r be the term that replaces l.
By assumption, l is consistently annotated. We claim that (a) if l is i-closed
(for any i), then r is i-closed, and (b) r is consistently annotated. If these con-
ditions hold, s must be consistently annotated: the subexpressions of t that
are not affected by the replacement continue to be consistently annotated,
and from (a) and (b) it follows easily that subexpressions that are affected
are changed only in ways that preserve the consistency of annotations.

Claim (a) is established by considering in turn the various possibilities for
the rule schema that is used. If this is (aβs), (ar12) or one of (ar1)–(ar6), the
argument is routine. In the case that the rule schema is one of (ar8)–(ar10),
we need the easily verified observation that if a term t is i-closed for some i,
then it is j-closed for any j > i. The consistency of annotation of the lefthand
side ensures that r is 0-closed in each of the relevant cases and hence it must
be i-closed for any i. For the cases of (aβ′

s) and (ar7), we need an additional
easily confirmed fact: if e is an environment such that ind(e) ≤ nl, then e is
(i + 1, nl + 1)-closed if and only if e is (i, nl)-closed. The remainder of the
argument in these cases is straightforward.

The only rule schema left to be considered is (ar11). In this case, l
and r are of the form [[[[t, ol, nl, e]]o, 0, nl′, nil]]o and [[t, ol, nl + nl′, e]]o, respec-
tively. Since l is i-closed and max(0, i − nl′) = (i . nl′), it follows that t is
max(ol, (i . nl′) − (nl − ol))-closed and that e is (i . nl′, nl)-closed. From
the wellformedness of [[t, ol, nl, e]]o (and the consequent wellformedness of
[[t, ol, nl, e]]) it follows that ind(e) ≤ nl. Now, it is easily seen that if e′ is a
simple environment such that ind(e′) ≤ n and e′ is (j . k, n)-closed, then e′

is (j, k + n)-closed. Thus, it must be the case that e is (i, nl + nl′)-closed.
We further note that ol ≥ 0, and, therefore,

34

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

max(ol, (i . nl′) − (nl − ol)) = max(ol, i − (nl + nl′ − ol)).

But then t is max(ol, i − (nl + nl′ − ol))-closed. It is now easily seen that
[[t, ol, nl + nl′, e]], i.e., r, is i-closed.

Claim (b) follows from a routine inspection of the rule schemata using
claim (a); the only case that requires some consideration is that of rule schema
(ar6), but even here the argument is simple.

Proof of Theorem 2 2

We assume hereafter that all the annotated suspension expressions we
deal with are well formed and consistently annotated.

6.2 Simulation of β-reduction

Conceptually, annotations are to be used in the following fashion: given a
de Bruijn term that is to be reduced to a normal form, annotations are
introduced into this term, reduction on annotated suspension expressions is
used to simulate β-reduction, and eventually annotations are removed. This
“procedure” is not intended literally — in particular, annotations need not be
removed from terms at the end of a reduction sequence to get the necessary
information — but, rather, as a basis for determining the correctness of the
reduction relations on annotated suspension expressions. We observe a series
of properties of these relations below, eventually verifying their soundness
and completeness from this perspective in Theorem 5.

The reading rules have the purpose in the framework described of trans-
forming arbitrary annotated suspension terms into annotated versions of de
Bruijn terms. We see that they actually do this in the following lemma.

Theorem 3 The relation �ar is noetherian. Further, an annotated suspen-
sion expression is a �ar-normal form if and only if it does not contain any
subexpressions of the form [[t, ol, nl, e]]c or [[t, ol, nl, e]]o. In particular, an an-
notated suspension term x is a �ar-normal form if and only if x is a de Bruijn
term.

Proof of Theorem 3 An inspection of the relevant rules shows that if t�ars
then t � s. The noetherianity of �ar then follows from the wellfoundedness
of �. An annotated suspension expression that has a well-formed subpart of
the form [[t, ol, nl, e]]c or [[t, ol, nl, e]]o can be rewritten by one of the rules in

35

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

Figure 5. Such an expression cannot, therefore, be a �ar-normal form. The
last part of the theorem is obvious from Definition 22.

Proof of Theorem 3 2

Although a �ar-normal form exists for every annotated suspension ex-
pression, this form is not necessarily unique. The reason for this is that the
use of certain rules in opposition to others results in more “conservative”
annotations. Thus, consider a term of the form [[(λc #1), ol, nl, e]]o. Depend-
ing on whether rule schema (ar7) or (ar9) is used in rewriting this term, the
�ar-normal form that is produced with be either (λo #1) or (λc #1). How-
ever, the reading rules still induce a satisfactory reduction relation from our
perspective because the �ar-normal forms of a given expression differ at most
in their annotations. We show that this is the case in Theorem 4.

Lemma 9 Let t and s be annotated suspension expressions. If t�ars, then
there is a suspension expression u such that t�∗

rmu and s�∗
rmu. If t �arβss,

then there is a suspension expression u such that t�∗
rmβs

u and s�∗
rmu.

Proof of Lemma 9 It suffices to show the lemma assuming that t → s is
an instance of one of the rule schemata in Figures 4 and 5. The argument is
obvious for all rule schemata other than (aβ′

s) and (ar8)–(ar12). In the case
of (aβ′

s), the desired conclusion follows from Lemma 3; as already noted, the
wellformedness condition on annotated suspension expressions ensures that
t satisfies the proviso on the use of the (β′

s)-contraction rule schema. The
arguments for (ar11) and (ar12) use Lemma 4 and Lemma 7, respectively.
Finally, for the cases of (ar8)–(ar10), use is made of Lemma 6, noting that
the consistency of annotations guarantees that t satisfies the proviso on the
use of the (cl) rule schema in each of these cases.

Proof of Lemma 9 2

Lemma 9 is a soundness observation for single uses of the rule schemata
in Figures 4 and 5. The following permutability property of reductions is
needed in extending this observation to sequences of applications of these
schemata. In diagrams such as the one used in this proof, the dashed arrows
are to be interpreted as assertions of the existence of reductions given by the
labels on them, depending on the reductions depicted by the solid arrows.

Lemma 10 Let t be a suspension expression, let t�∗
rmβs

s, and let t�∗
rmr.

Then there is an expression u such that r�∗
rmβs

u and s�∗
rmu.

36

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

Proof of Lemma 10 Let u = |s|. Then, the following diagram verifies the
lemma:

t
�∗

rm

r |t|
�∗

rm

s |s|
�∗

rm

(1) �∗
β′ (2) �∗

rmβs
�∗

rmβs

Here, the dashed arrow from r to |t| is justified by Proposition 6, the dashed
arrow from |t| to |s| in face (1) is justified by Proposition 10, and the remain-
ing dashed arrow in face (2) is also justified by the same proposition.

Proof of Lemma 10 2

Lemma 11 Let t be an annotated suspension expression. If t�∗
ars, then there

is a suspension expression r such that t�∗
rmr and s�∗

rmr. If t�∗
arβs

s, then there
is a suspension expression r such that t�∗

rmβs
r and s�∗

rmr.

Proof of Lemma 11 The arguments in both cases are similar and so we
consider explicitly only the situation where t�∗

arβs
s. We induce on the length

of the reduction sequence, the details being represented in the following di-
agram:

t
�∗

arβs

s′ s
�arβs

s

us′

r′ rt

�∗
rm

�∗
rm �∗

rm

�∗
rmβs

�∗
rmβs

(1)

(2)

(3)

�∗
rmβs

37

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

The arrows labeled with in this diagram correspond to the use of Defini-
tion 22. The rectangle labeled (1) in this diagram is completed by using the
hypothesis, the rectangle labeled (2) is completed by invoking Lemma 9, and
the rectangle labeled (3) is justified by Lemma 10.

Proof of Lemma 11 2

Theorem 4 Let t be an annotated suspension expression and let s and r be
�ar-normal forms of t. Then s = r. Further, |t| = s.

Proof of Theorem 4 From Proposition 6, Definition 22, Theorem 3, and
Lemma 11, it follows that s and r are �ar-normal forms of t only if s and r
are �rm-normal forms of t. Thus, by Propositions 1 and 6, s = r = |t|.

Proof of Theorem 4 2

Theorem 4 justifies the following definition.

Definition 27 Let t be an annotated suspension expression and let s be a
�ar-normal form of t. Then |t|a denotes s.

We turn now to an explicit consideration of the βs-contraction rules for
annotated suspension expressions. We note first a correspondence between
these rules and the β-contraction rules for de Bruijn terms.

Lemma 12 Let l → r be an instance of one of the βs-contraction rule
schemata for annotated suspension expressions. Then |l|a → |r|a is an in-
stance of the β-contraction rule schema.

Proof of Lemma 12 As already observed, l → r is an instance of either
the βs- or the β′

s-contraction rule schema. By Proposition 8 and Lemma 2
it then follows that |l| → |r| is an instance of the β-contraction rule schema.
By Theorem 4, |l| = |l|a and |r| = |r|a.

Proof of Lemma 12 2

In Lemma 11 we have seen that any �arβs-reduction sequence can, in a
suitable sense, be simulated by a �rmβs-reduction sequence. We now observe
the converse property.

Lemma 13 Let t be an annotated suspension expression and let t�∗
rmβs

s.
Then there is an r such that t�∗

arβs
r and s�∗

rmr.
38

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

Proof of Lemma 13 Clearly t is a simple suspension expression. By Lemma 1
there must therefore be a u such that t�∗

rβs
u and s�∗

rmu. Now, corresponding
to each schema in Figure 1 and Figure 2, there is a rule schema for rewriting
annotated suspension expressions that produces a similar effect. An induc-
tion on the length of �rβs-reduction sequences using this fact allows us to
conclude, as required, that there is some r such that t�∗

arβs
r and r = u.

Proof of Lemma 13 2

The correctness observation for �arβs-reductions desired at the outset is
essentially the restriction of the following theorem to (annotated) de Bruijn
terms.

Theorem 5 1. Let x and y be annotated suspension expressions such that
x�∗

arβs
y. Then |x|a�∗

β′|y|a.
2. Let x and y be suspension expressions in �rm-normal form such that

x�∗
β′y. If x′ is an annotated suspension expression such that x′ = x,

then there is an annotated suspension expression z such that x′�∗
arβs

z
and z = y.

Proof of Theorem 5 (1) By Lemma 11, there is a suspension expression w
such that x�∗

rmβs
w and y�∗

rmw. But then it must be the case that x�∗
rmβs

|y|.
By Proposition 10, it must be the case that |x|�∗

β′||y||. The desired conclusion
now follows from noting that |x|a = |x|, |y|a = |y|, and ||y|| = |y|.

(2) Since x�∗
β′y, by Proposition 10, x�∗

rmβs
y. But then, by Lemma 13,

there must be a z such that x�∗
arβs

z and y�∗
rmz. However, y is in �rm-normal

form. Hence z = y.

Proof of Theorem 5 2

The uniqueness of �arβs-normal forms for any given expression is also a
matter of interest. As in the case of �ar-normal forms, we have uniqueness up
to annotations. This is an immediate consequence of the following “weak”
confluence result.

Theorem 6 Let t be an annotated suspension expression and let s and s′ be
such that t�∗

arβs
s and t�∗

arβs
s′. Then there are annotated suspension expres-

sions r and r′ such that s�∗
arβs

r, s′�∗
arβs

r′, and r = r′.

39

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §6.2

Proof of Theorem 6 The lemma is evident from the diagram below.

t s

|t|a |s|a

s′

|s′|a u

r

r′

(1)

(2)

(3)

(4)

(5)

�∗
arβs

| |a

�∗
β

�∗
arβs

�∗
arβs

�∗
β

�∗
β

| |a

| |a
�∗

arβs

�∗
β

| |a | |a

The arrows labeled with | |a in this diagram correspond to the use of
Definition 27. The dashed arrows in the various faces are justified as follows:
those in (1) and (2) by using Theorem 5, the remaining ones in (3) by an
obvious extension of Proposition 3, and those in (4) and (5) by using, again,
Theorem 5.

Proof of Theorem 6 2

Theorem 6 shows that there is some flexibility in the order of rewriting in
simulating β-reduction. It is well known that not all reduction sequences will
produce a normal form even when one exists and this situation is not altered
in the context of our rewrite system. The particular reduction strategy to
be used must be determined by a consideration of this issue as well as issues
of efficiency and ease of implementation. At a level of detail, our rewrite
system presents some choices in the rule schema to be used even after the
redex to be rewritten has been selected. These choices are between (aβs)
and (aβ′

s), between (ar6) and (ar8), and between (ar7) and (ar9). As already
noted, using rule schemata (ar8) and (ar9) in opposition to (ar6) and (ar7)

40

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.1

reduces the reduction work and preserves any existing sharing of terms and
is therefore the preferred course. This preference can be systematized by
modifying the annotation u in rule schemata (ar6) and (ar7) to o.4 The
choice between (aβs) and (aβ′

s) is somewhat more delicate, posing a dilemma
between possible sharing in reduction and a sharing in substitution walks.

7 Generalized head normal forms and reduc-
tion procedures

We now consider matters relevant to the use of the refined suspension nota-
tion in comparing lambda terms. The de Bruijn representation of these terms
simplifies this comparison operation by eliminating names for variables, and
this attribute obviously carries over to our notation. Our notation addition-
ally permits laziness in substitution. We provide a basis for exploiting this
feature in combination with laziness in β-contraction by suitably generalizing
the head normal forms encountered in Section 2. We also identify a notion
of head reduction sequences as a means for finding such forms. An interest-
ing aspect of our version of this notion is that it permits the simultaneous
rewriting of shared copies of head redexes and thus subsumes the sequences
that might be produced by graph-based and environment-based reduction
procedures. We show that our head reduction sequences terminate whenever
the usual ones do on the underlying lambda terms. This observation, coupled
with the fine-grained nature of the suspension notation, is useful in proving
the correctness of actual reduction procedures. We illustrate this fact rela-
tive to a particular graph-based procedure that we present for finding head
normal forms for annotated suspension terms.

7.1 Head normal forms and head reduction sequences

Our adaptation of the notion of head normal forms to annotated suspension
is as follows:

Definition 28 A head normal form relative to �arβs, or a �arβs-hnf, is an
annotated suspension term of the form

4The more general forms of these rule schemata were chosen initially to simplify the
proof of confluence; they aided, in particular, in the proof of Lemma 13.

41

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.1

(λu1 . . . (λun (. . . (h t1)un+1 . . . tm)un+m) . . .)

where, for 1 ≤ i ≤ (n + m), ui is either o or c and h is either a constant
or a variable reference. We refer to t1, . . . , tm as the arguments of such an
expression, to h as its head, and to n as its binder length. A �arβs-hnf may,
in particular instances, have no arguments and its binder may be empty. An
annotated suspension term is said to be a weak �arβs-hnf if it is a �arβs-hnf
or it is of the form (λc t) or (λo t). A (weak) �arβs-hnf t is a (weak) �arβs-hnf
of an annotated suspension term s if s�∗

arβs
t.

The following theorem, which follows immediately from definitions, states
a correspondence between head normal forms relative to �β and �arβs . An
obvious significance of this theorem is that �arβs-hnfs can be used directly in
the comparison of lambda terms.

Theorem 7 Let t be an annotated suspension term. If t is a �arβs-hnf with
arguments t1, . . . , tm, head h, and binder length n, then |t|a is a �β-hnf with
binder length n and, in fact, |t|a = (λ . . . (λ (. . . (h |t1|a) . . . |tm|a)) . . .).

The reduction of annotated suspension terms to head normal form is
based on the rewriting of head redexes. We relativize this notion to the
collection of rewrite rules currently of interest.

Definition 29 An annotated suspension term t has (weak) head �arβs-redexes
only if it is not a (weak) �arβs-hnf and, in this case, these are given as follows:

1. Let t be of the form (t1 t2)o or (t1 t2)c. If t is a �aβs-redex, then it is its
sole (weak) head �arβs-redex. Otherwise, the weak head �arβs-redexes
of t1 are its (weak) head �arβs-redexes; notice that t1 cannot be a weak
�arβs-hnf here.

2. Let t be of the form (λc t1) or (λo t1). Then the head �arβs-redexes of t
are those of t1. (This case does not arise if t is not a weak �arβs-hnf.)

3. Let t be of the form [[t1, ol, nl, e]]c or [[t1, ol, nl, e]]o. If t is a �ar-redex,
then it has itself as a (weak) head �arβs-redex. Further, every (weak)
head �arβs-redex of t1 is a (weak) head �arβs-redex of t.

We now define our notion of head reduction sequences. We note here that
two subexpressions of a given expression are considered to be non-overlapping
just in case neither is contained in the other. Two redexes of this kind can be

42

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.1

rewritten at the same time without the possibility of interference. In antici-
pation of shared representations of subparts of an expression, our definition
of head reduction sequences allows for such simultaneous rewritings.

Definition 30 A (weak) head �arβs-reduction sequence of an annotated sus-
pension term t is a sequence t = r0, r1, r2, . . . , rn, . . . , where, for i ≥ 0, there
is an annotated suspension term succeeding ri if ri is not a (weak) �arβs-hnf
and, in this case, ri+1 is obtained from ri by simultaneously rewriting a fi-
nite set of non-overlapping subterms that includes a (weak) head �arβs-redex
using the rule schemata in Figures 4 and 5. Such a sequence terminates if,
for some m ≥ 0, it is the case that rm is a (weak) �arβs-hnf. A (weak) head
�arβs-reduction from t to s is a finite initial segment of some (weak) head
�arβs-reduction sequence of t that has s as its last element.

Head �arβs-reduction sequences are not unique for two reasons: a given
term in the sequence may have more than one head �arβs-redex and there
may be a choice in additional redexes to be rewritten at any point. How-
ever, the redundancy is inconsequential in the sense that every head �arβs-
reduction sequence of an annotated suspension term terminates if the term
has a �arβs-hnf. We establish this result through a sequence of observations
that culminate in Theorem 8.

Lemma 14 Let q be a de Bruijn term of the form

(. . . (((λ q1) q2) q3) . . . qm).

Suppose, in addition, that ((λ q1) q2) → r is a β-contraction rule. If q�∗
βp,

then either p is of the form (. . . (((λ p1) p2) p3) . . . pm), where, for 1 ≤ i ≤
m, qi�

∗
βpi, or (. . . (r q3) . . . qm)�∗

βp.

Proof of Lemma 14 Use an induction on the length of the sequence by
which q�∗

βp. The lemma is obvious when the length is 0. If the length is i+1,
we consider the possibilities for the first rewriting step. If this is a replace-
ment of the subterm ((λ q1) q2), then the lemma is again obvious. Otherwise,
the second term in the sequence has the form (. . . (((λ q′

1) q′
2) q′

3) . . . q′
m),

where, for 1 ≤ i ≤ m, qi�
∗
βq′

i. By hypothesis, either p is of the form
(. . . (((λ p1) p2) p3) . . . pm), where, for 1 ≤ i ≤ m, q′

i�
∗
βpi, or, for r′ =

S(q′
1; q

′
2, 1, 2, . . .), it is the case that (. . . (r′ q′

3) . . . q′
m)�∗

βp. In the first case,
the lemma follows from the transitivity of �∗

β and, in the second case, we also
use Proposition 2.

Proof of Lemma 14 2

43

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.1

Lemma 15 Let r be a de Bruijn term that has a (weak) head �β-redex, let
s result from r by rewriting this redex using a β-contraction rule, and let t
be such that s�∗

βt. Further, let e1 and e2 be simple environments such that
|e1|�∗

β′|e2| and the suspension [[r, ol, nl, e1]] is well formed. Then |[[r, ol, nl, e1]]|
has a (weak) head �β-redex, and the term p that results from rewriting this
redex by a β-contraction rule is such that p�∗

β|[[t, ol, nl, e2]]|.
Proof of Lemma 15 From Propositions 7 and 2 and the facts that s�∗

βt and
|e1|�∗

β′|e2| it can be seen that |[[s, ol, nl, e1]]|�∗
β|[[t, ol, nl, e2]]|. Thus, the lemma

would follow if |[[r, ol, nl, e1]]| has a (weak) head �β-redex and rewriting this re-
dex by a β-contraction rule produces |[[s, ol, nl, e1]]|. This is seen to be the case
by induction on the structure of r. If r is a �β-redex, Proposition 2 yields the
desired conclusion. If r is of the form (r1 r2) and is not a �β-redex, then s is of
the form (s1 r2), where s1 results from r1 by rewriting a weak head �β-redex
using a β-contraction rule. Thus, |[[r1, ol, nl, e1]]| has a weak head �β-redex
and rewriting this in the required manner yields |[[s1, ol, nl, e1]]|. But then
(|[[s1, ol, nl, e1]]| |[[r2, ol, nl, e1]]|) results from (|[[r1, ol, nl, e1]]| |[[r2, ol, nl, e1]]|)
by rewriting a (weak) head �β-redex. The lemma follows from noting that
these two terms are identical to |[[s, ol, nl, e1]]| and |[[r, ol, nl, e1]]|, respectively.
A similar argument can be provided when r is an abstraction.

Proof of Lemma 15 2

Lemma 16 Let q be an annotated suspension term that has a (weak) head
�arβs-redex that is also a �aβs-redex and let p result from q by simultaneously
rewriting a set of non-overlapping subterms of q that includes this redex using
the rule schemata in Figures 4 and 5. Then |q|a has a (weak) head �β-redex,
and the de Bruijn term p′ that results from rewriting this redex using a β-
contraction rule is such that p′�∗

β|p|a.
Proof of Lemma 16 Use induction on the structure of q. If q is itself the
(weak) head �arβs-redex in question, then it is the only subterm rewritten
and the desired conclusion follows from Lemma 12. Otherwise, we consider
the cases for the structure of q.

Suppose q is of the form (q1 q2)u, where u is o or c. Then p is of the form
(p1 p2)u, where p1 is obtained from q1 by rewriting some non-overlapping
subterms that include a weak head �arβs-redex of the required kind and
q2�

∗
arβs

p2. By hypothesis, |q1|a has a weak head �β-redex. Further, if p′
1

results from rewriting this redex using a β-contraction rule, then p′
1�

∗
β|p1|a.

44

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.1

Since |q|a = (|q1|a |q2|a), |q|a has a head �β-redex and rewriting this yields
(p′

1 |q2|a). Using Theorem 5 and the fact that q2�
∗
arβs

p2, |q2|a�∗
β|p2|a. Ob-

serving that |p|a = (|p1|a |p2|a), it follows that p′ = (p′
1 |q2|a)�∗

β|p|a.
An argument similar to that above suffices when q is an abstraction. The

only remaining case is that of a suspension. Let q be of the form [[r, ol, nl, e]]u,
where u is o or c. Then p is of the form [[t, ol, nl, e′]]u, where t results from
r by rewriting a (weak) head �arβs-redex that is also a �aβs-redex together
with some other non-overlapping subterms and e�∗

arβs
e′. By Theorem 5,

|e|a�∗
β′|e′|a. By hypothesis, |r|a has a (weak) head �β-redex, and rewriting it

produces a (de Bruijn) term r′ such that r′�∗
β|t|a. By Lemma 15, it follows

that |[[|r|a, ol, nl, |e|a]]| has a (weak) head �β-redex, and rewriting it yields
a term p′ such that p′�∗

β|[[|t|a, ol, nl, |e′|a]]|. The lemma is now seen to hold
in this last case by observing that |q|a = |[[|r|a, ol, nl, |e|a]]| and that |p|a =
|[[|t|a, ol, nl, |e′|a]]|.

Proof of Lemma 16 2

Lemma 17 Let t be an annotated suspension term such that the head �β-
reduction sequence of |t|a terminates. Then any head �arβs-reduction se-
quence of t terminates.

Proof of Lemma 17 Let s be an annotated suspension term and let s′ be
a de Bruijn term such that s′�∗

β|s|a. We then claim the following: if the
head �β-reduction sequence of s′ terminates, then any head �arβs-reduction
sequence of s terminates. The lemma is a consequence of this claim.

We prove the claim by an induction on the length of the head �β-reduction
sequence of s′.

Suppose this length is 1. In this case, |s|a must be a �β-hnf. Thus,
by Lemma 16, s cannot have a head �arβs-redex that is a �aβs-redex. The
noetherianity of �ar now yields the claim.

Suppose the length of the sequence is i + 1. In this case, s′ has the form

(λ . . . (λ (. . . (((λ q′
1) q′

2) q′
3) . . . q′

m+2)) . . .).

Let r′ be the second term in the head �β-reduction sequence of s′. Then r′

has the structure

(λ . . . (λ (. . . (q′ q′
3) . . . q′

m+2)) . . .)

45

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

where q′ = S(q′
1; q

′
2, #1, #2, . . .). Since s′�∗

β|s|a, by Lemma 14, either r′�∗
β|s|a

or |s|a has the form (λ . . . (λ (. . . (((λ p′
1) p′

2) p′
3) . . . p′

m+2)) . . .), where, for
1 ≤ i ≤ (m + 2), q′

i�
∗
βp′

i. The inductive hypothesis yields the claim in the
first case. In the second case, let p′ = S(p′

1; p
′
2, #1, #2, . . .). Since q′

1�
∗
βp′

1 and
q′
2�

∗
βp′

2, by Proposition 2, q′�∗
βp′. Now, by Lemma 16 and the noetherianity

of �ar, any head �arβs-reduction sequence of s must have a (finite) initial
segment s = s0, . . . , sl, where sl is such that

(λ . . . (λ (. . . (p′ p′
3) . . . p′

m+2)) . . .)�∗
β|sl|a.

Thus (λ . . . (λ (. . . (q′ q′
3) . . . q′

m+2)) . . .)�∗
β(λ . . . (λ (. . . (p′ p′

3) . . . p′
m+2)) . . .)

and hence, by the transitivity of �∗
β, r′�∗

β|sl|a. By the inductive hypothe-
sis, any head �arβs-reduction sequence of sl must terminate. But then this
property must hold also for s.

Proof of Lemma 17 2

Theorem 8 An annotated suspension term t has a �arβs-hnf if and only if
every head �arβs-reduction sequence of t terminates.

Proof of Theorem 8 The “if” part is obvious. For the “only if,” suppose
t has a �arβs-hnf. By Theorems 5 and 7, |t|a has a �β-hnf. By Proposition 4,
the head �β-reduction sequence of |t|a terminates. The theorem then follows
from Lemma 17.

Proof of Theorem 8 2

Using Theorem 5, Lemma 17, and Proposition 4, we see that an annotated
suspension term t has a �arβs-hnf if and only if |t|a has a �β-hnf. Suppose,
now, that we wish to determine whether the de Bruijn terms t and s are
equal. Assuming t′ and s′ are annotated suspension terms that are such
that |t′|a = t and |s′|a = s, we may proceed as follows: we reduce t′ and
s′ to �arβs-hnfs, compare the binder lengths and the heads of the resulting
terms for identity, and finally, if this is still relevant, recursively compare the
arguments for equality.

46

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

7.2 A procedure for head normalization

We now present a procedure for finding head �arβs-normal forms of annotated
suspension terms. To lend concreteness to the syntax of programs, we will
use the language SML in this presentation. We assume a basic familiarity
with this language, such as can be obtained from perusing [Har86].

The procedure that we describe employs a graph-based representation for
terms. The details of this representation are given by the following SML type
declarations.

datatype
rawterm = const of string

| bv of int
| ptr of (rawterm ref)
| clam of (rawterm ref)
| olam of (rawterm ref)
| capp of (rawterm ref) * (rawterm ref)
| oapp of (rawterm ref) * (rawterm ref)
| csusp of (rawterm ref) * int * int * (envitem list)
| osusp of (rawterm ref) * int * int * (envitem list)

and
envitem = dum of int

| bndg of (rawterm ref) * int

type term = (rawterm ref)

The declarations of the types rawterm and envitem reflect, for the most
part, the possible structures for annotated suspension terms and environ-
ment items. A term is represented as a pointer to an expression of type
rawterm. SML expressions of type rawterm, envitem, and term can be vi-
sualized as directed graphs. We refer to such expressions as being acyclic if
the graphs they correspond to in this sense are acyclic. An important as-
sumption for us is that all expressions we deal with are acyclic. We expect
that “input” expressions satisfy this acyclicity requirement, and we will show
that our programs preserve this property. The acyclicity condition is made
essential use of in the following definition that states precisely the correspon-
dence between the SML representation and the abstract syntax of annotated
suspension expressions.

47

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

Definition 31 The function ζ from the classes of an acyclic SML expres-
sions of type term, envitem, and (envitem list) to, respectively, the classes
of annotated suspension terms, annotated environment items, and annotated
environments is given recursively as follows:

1. if x is of the form ref(const(c)), then ζ(x) = c,

2. if x is of the form ref(bv(i)), then ζ(x) = #i,

3. if x is of the form ref(ptr(t)), then ζ(x) = ζ(t),

4. if x is of the form ref(clam(t)) or ref(olam(t)), then ζ(x) is, respec-
tively, (λc ζ(t)) or (λo ζ(t)),

5. if x is of the form ref(capp(t1, t2)) or ref(oapp(t1, t2)), then ζ(x) is,
respectively, (ζ(t1) ζ(t2))c or (ζ(t1) ζ(t2))o,

6. if x is of the form ref(csusp(t, ol, nl, e)) or ref(osusp(t, ol, nl, e)), then
ζ(x) is, respectively, [[ζ(t), ol, nl, ζ(e)]]c or [[ζ(t), ol, nl, ζ(e)]]o,

7. if x is of the form dum(i), then ζ(x) = @i,

8. if x is of the form bndg(t, i), then ζ(x) = (ζ(t), i),

9. if x is nil, then ζ(x) = nil, and

10. if x is of the form et::e, then ζ(x) = ζ(et) :: ζ(e).

We have conflated here the SML representation of constants and natural num-
bers and the abstract syntax for these objects.

The purpose of the constructor ptr in our representation of annotated sus-
pension expressions needs to be clarified. At certain points in our programs,
we want to identify (the representations of) terms in a way that makes the
subsequent rewriting of one of these correspond also to the rewriting of the
others. Such an identification is usually obtained by representing both ex-
pressions as pointers to a common location whose contents can be changed
to effect shared rewritings. In SML it is possible to update only references
and so the common location must itself be a pointer. The constructor ptr is
used to encode indirections of this kind when they are needed.

Given the possibility for indirection, functions for looking up the value
of a term and for assigning one term to another are needed. The functions
deref and assign defined below serve these purposes.

48

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

fun deref (term as ref(ptr(t))) = deref(t)
| deref term = term

fun assign (t1,ref(ptr(t))) = assign(t1,t)
| assign (t1,t2) = t1 := ptr(t2)

Invocations of these functions with acyclic expressions as arguments must
obviously terminate. Our programs are, in fact, designed to never introduce
more than one level of indirection and the definitions of these functions can
even be simplified to a non-recursive form. The following additional proper-
ties are easily seen to hold of these functions and will be utilized implicitly
below: (1) ζ(deref(t)) = ζ(t), (2) deref(t) is not of the form ref(ptr(t)), and
(3) if t = ζ(t2) before assign(t1, t2) is invoked, then ζ(t1) = t and ζ(t2) = t
after it terminates.

The head normalization procedure that we describe functions as follows:
it descends through top-level abstractions and applications looking for a head
�arβs-redex that is also a �aβs-redex. If such a redex is found, then it is rewrit-
ten and the process repeats. Otherwise the procedure terminates, having
discovered a head �arβs-normal form. Of course, it is possible to encounter
a suspension at the top-level. In this case, before the basic scheme for the
procedure can be utilized, it is necessary to rewrite this suspension (that is a
head �arβs-redex) so as to expose a structure for the term that corresponds to
a constant, a variable reference, an abstraction or an application. This effect
is realized by the function lazy read whose definition appears in Figure 6.

In dealing with variable references embedded in suspensions, lazy read
combines several rewriting steps into one. Such a combination is justified by
the following lemma:

Lemma 18 Let t be the annotated suspension term [[#i, ol, nl, e]]u, where u
is either c or o. Then there is a (weak) head �arβs-reduction from

t to




#(i + (nl − ol)) if i > ol
#(nl − m) if i ≤ ol and e[i] = @m
[[t, 0, nl − m, e]]u if i ≤ ol and e[i] = (t, m).

Proof of Lemma 18 Use an induction on i using the rule schemata (ar2)–
(ar5).

Proof of Lemma 18 2

49

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

fun nth(x::l,1) = x
| nth(x::l,n) = nth(l,n-1)

fun lazy read(term as ref(csusp(t,ol,nl,env))) =
lazy read aux(term,deref(t),ol,nl,env,true)

| lazy read(term as ref(osusp(t,ol,nl,env))) =
lazy read aux(term,deref(t),ol,nl,env,false)

| lazy read( ) = ()
and

lazy read aux(t,t1 as ref(const( )), , , , ) = t := !t1
| lazy read aux(t,t1 as ref(capp( , )), , , , ) = t := ptr(t1)
| lazy read aux(t,t1 as ref(clam( )), , , , ) = t := !t1
| lazy read aux(t,t1 as ref(csusp( , , , )), , , , ) =

(lazy read(t1) ; assign(t,t1))
| lazy read aux(t,ref(bv(i)),ol,nl,e,closed) =

if (i > ol) then t := bv(i+nl-ol)
else ((fn dum(j) => t := bv(nl-j)

| bndg(t1,nl1) =>
if nl = nl1 then (lazy read(deref(t1)) ; assign(t,t1))
else (fn ref(osusp(ti,oli,nli,ei)) =>

(t := osusp(ti,oli,nli +(nl-nl1),ei) ;
lazy read(t))

| =>
(if closed
then t := csusp(t1,0,nl -nl1,nil)
else t := osusp(t1,0,nl -nl1,nil) ;
lazy read(t)) ) (deref(t1))

) (nth(e,i)))
| lazy read aux(t,ref(oapp(t1,t2)),ol,nl,env,closed) =

if closed
then t := capp(ref(csusp(t1,ol,nl,env)),ref(csusp(t2,ol,nl,env)))
else t := oapp(ref(osusp(t1,ol,nl,env)),ref(osusp(t2,ol,nl,env)))

| lazy read aux(t,ref(olam(t1)),ol,nl,env,closed) =
if closed then t := clam(ref(osusp(t1,ol+1,nl+1,dum(nl)::env)))
else t := olam(ref(osusp(t1,ol+1,nl+1,dum(nl)::env)))

| lazy read aux(t,t1,ol,nl,env,closed) =
(lazy read(t1) ; lazy read aux(t,deref(t1),ol,nl,env,closed))

Figure 6: Exposing a top-level non-suspension structure for a term

50

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

The following obvious property explains the purpose of the function nth
that is used in lazy read:

Lemma 19 Let e be an SML expression of type (envitem list) and let i be a
positive integer such that i ≤ len(ζ(e)). Then nth(e, i) terminates. Further,
if the value returned by it is dum(j), then ζ(e)[i] = @j, and if it is bndg(t, j),
then ζ(e)[i] = (ζ(t), j).

Suppose t is an SML expression of type term such that deref(t)= t. Then
clearly ζ(t) is not a suspension at the termination of lazy read(t). The fol-
lowing lemma, a correctness observation for lazy read, further explains the
relationship between the values of t before and after such a function call.

Lemma 20 Let t be an SML expression of type term and suppose that all
our expressions are acyclic. Then lazy read(t) terminates, preserving the
acyclicity property. Further, if ζ(t) = x prior to the invocation and ζ(t) = y
after the termination, then there is a (weak) head �arβs-reduction from x to y.
Finally, if x is an annotated suspension, then this (weak) head �arβs-reduction
is of length greater than 1.

Proof of Lemma 20 Let s′ and e′ be acyclic SML expressions of type term
and (envitem list) with initial values such that s = ζ(s′) and e = ζ(e′) and let
r′ be an SML expression of type term that is not pointed to from either s′ or e′.
Also assume that s and e are such that [[s, ol, nl, e]]o ([[s, ol, nl, e]]c) is consis-
tently annotated. We then claim that lazy read aux(r′,deref(s′),ol,nl,e′,false)
(lazy read aux(r′,deref(s′),ol,nl,e′,true)) terminates and does not introduce
cycles into expressions and, further, if r = ζ(r′) at termination, then there
is a (weak) head �arβs-reduction of length greater than 1 from [[s, ol, nl, e]]o
([[s, ol, nl, e]]c) to r. The lemma is an immediate consequence of this claim.

The claim is proved by induction on the ordering induced by � on ex-
pressions of the form [[s, ol, nl, e]]o ([[s, ol, nl, e]]c). From the assumption about
r′ and an examination of the function definitions, it is easily seen that no
cycles are introduced into our expressions if there weren’t any to begin with.
The remaining requirements are shown by considering each possibility for the
structure of s in turn.

Termination is obvious in the cases when s is a constant, an abstraction
or an application. Further, in all these cases, [[s, ol, nl, e]]o ([[s, ol, nl, e]]c) is
its own (weak) head �arβs-redex, and the value that r′ is set to is such that
this expression rewrites to ζ(r′) by one of the reading rules for annotated
suspension expressions.

51

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

Lemmas 18 and 19 may have to be used in the case when s is a variable
reference. We illustrate the argument by considering one situation: that
when s is #i for i ≤ ol and e[i] is of the form ([[si, oli, nli, ei]]o, nl′i). Notice
that this situation does not arise if s and e are such that [[s, ol, nl, e]]c is
consistently annotated. Now, from Lemma 18 and rule schema (ar11), we
see that there is a (weak) head �arβs-reduction of length at least 3 from
[[s, ol, nl, e]]o to [[si, oli, (nli + (nl − nl′i)), ei]]o. From this it can also be seen
that

[[s, ol, nl, e]]o � [[si, oli, (nli + (nl − nl′i)), ei]]o.

Suppose now that m′ is an acyclic SML expression that is such that

ζ(m′) = [[si, oli, (nli + (nl − nl′i)), ei]]o

at the invocation of lazy read(m′). By the inductive hypothesis, this call
must terminate and, if m = ζ(m′) at termination, then there is a (weak) head
�arβs-reduction from [[si, oli, (nli + (nl − nl′i)), ei]]o to m. It follows from this
that lazy read aux(r′,deref(s′),ol,nl,e′,false) must also terminate and that r′

must be set at termination to a value that satisfies the requirements of the
claim.

The argument in the case when s is a suspension is similar to that when
s is a variable reference, except that the induction hypothesis may have to
be invoked twice.

Proof of Lemma 20 2

Our head normalization procedure is given by the function head norm de-
fined in Figure 7. Actually, this function serves a twofold purpose, depending
on the value of its second argument. Assuming its first argument (that must
be of type term) is t, then it is expected to find a �arβs-hnf of ζ(t) when its
second argument is false and a weak �arβs-hnf of ζ(t) when this argument is
true. The need for a function with this character is understood by consider-
ing the processing of an SML expression that represents a term of the form
(t1 t2)c or (t1 t2)o. The head �arβs-redex of this term is identical to that of
t1 except in the case that t1 is an abstraction. Thus, the construction of a
head �arβs-reduction sequence for such a term involves looking for a weak
�arβs-hnf of t1.

The purpose of the function beta contract is expressed in the following
lemma whose proof is obvious.

52

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

fun beta contract(t,t1 as ref(osusp(t3,ol,nl,dum(nl1)::e)),t2,true) =
if nl = nl1+1 then t := csusp(t3,ol,nl1, bndg(t2,nl1)::e)
else t := csusp(t1,1,0,[bndg(t2,0)])

| beta contract(t,t1 as ref(osusp(t3,ol,nl,dum(nl1)::e)),t2,false) =
if nl = nl1+1 then t := osusp(t3,ol,nl1, bndg(t2,nl1)::e)
else t := osusp(t1,1,0,[bndg(t2,0)])

| beta contract(t,t1,t2,true) = t := csusp(t1,1,0,[bndg(t2,0)])
| beta contract(t,t1,t2,false) = t := osusp(t1,1,0,[bndg(t2,0)])

fun head norm(term as ref(capp(t1,t2)),whnf) =
(head norm(t1,true) ;
(fn ref(clam(t)) => (beta contract(term,t,t2,true) ;

head norm(term,whnf) )
| => ()

) (deref(t1)))
| head norm(term as ref(oapp(t1,t2)),whnf) =

(head norm(t1,true) ;
(fn ref(clam(t)) => (beta contract(term,t,t2,false) ;

head norm(term,whnf) )
| ref(olam(t)) => (beta contract(term,t,t2,false) ;

head norm(term,whnf) )
| => ()

) (deref(t1)))
| head norm(ref(clam(t)),false) = head norm(t,false)
| head norm(ref(olam(t)),false) = head norm(t,false)
| head norm(term as ref(csusp( , , , )),whnf) =

(lazy read(term) ; head norm(term,whnf))
| head norm(term as ref(osusp( , , , )),whnf) =

(lazy read(term) ; head norm(term,whnf))
| head norm(term as ref(ptr(t)),whnf) =

(head norm(t,whnf) ; assign(term,t))
| head norm( , ) = ()

Figure 7: The head normalization procedure

53

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

Lemma 21 Let t′, t′1, and t′2 be SML expressions of type term and let t1
and t2 be ζ(t′1) and ζ(t′2), respectively. If t = ζ(t′) at the termination of
beta contract(t′, t′1, t

′
2, true), then ((λc t1) t2)c → t is a βs-contraction rule

for annotated suspension expressions. If t = ζ(t′) at the termination of
beta contract(t′, t′1, t

′
2,false), then ((λo t1) t2)c → t and ((λc t1) t2)o → t is

such a rule.

We now prove the correctness of the head normalization procedure.

Theorem 9 Let t′ be an SML expression of type term and suppose that all
our expressions are acyclic. If prior to the function call head norm(t′,false)
it is the case that ζ(t′) = t for some t that has a �arβs-hnf, then (1) the call
terminates, (2) all expressions continue to be acyclic at termination, and
(3) t′ has a value at the end such that ζ(t′) is a �arβs-hnf of t.

Proof of Theorem 9 Since t has a �arβs-hnf, Theorem 8 assures us that
every head �arβs-reduction sequence of t terminates. Let s be an annotated
suspension term, let s′ be an SML expression that is such that s = ζ(s′), and
suppose that all our SML expressions are acyclic. We claim the following:
If every head �arβs-reduction sequence (weak head �arβs-reduction sequence)
of s terminates, then head norm(s′,false) (head norm(s′,true)) terminates,
preserving the property of acyclicity of expressions and setting s′ to a value
such that ζ(s′) is a �arβs-hnf (weak �arβs-hnf) of s. The theorem is an
immediate consequence of this claim.

The two parts of the claim are proved simultaneously by an induction first
on the length of the longest (weak) head �arβs-reduction sequence of s and
then on the structure of s′. Note that the latter induction requires our SML
expressions to be acyclic. The preservation of acyclicity follows easily from
Lemma 20 and by observing that none of the assignments in beta contract
and head norm introduce cycles where these did not exist already. For the
rest, we consider the cases for the structure of s′.

The claim is obviously true if s′ is of the form ref(bv(i)), ref(const(c)), or
ref(ptr(s′

1)). Suppose s′ is of the form ref(clam(s′
1)) or ref(olam(s′

1)). Then
s is of the form (λc s1) or (λo s1), where s1 = ζ(s′

1). Clearly s is its own
weak �arβs-hnf. Further, if r1 is a �arβs-hnf of s1, then (λc r1) or (λo r1) is
a �arβs-hnf of s. Finally, the longest head �arβs-reduction sequence of s1 is
at most as long as that of s and the structure of s′

1 is simpler than that
of s′. Hence, head norm(s′

1,false) terminates setting s′
1 to a value such that

54

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §7.2

ζ(s′
1) is a �arβs-hnf of s1. The claim follows from these observations and an

inspection of the definition of head norm.
Suppose s′ is of the form ref(capp(s′

1, s
′
2)) or ref(oapp(s′

1, s
′
2)). Then s

is of the form (s1
1 s1

2)u, where u is either c or o and, for i = 1 and i = 2,
s1

i = ζ(s′
i). Now, if s1

1, . . . , s
k
1, . . . is a weak head �arβs-reduction sequence

of s1
1 and, for i ≥ 1, si+1

2 is obtained from si
2 by rewriting some of its sub-

terms that are identical as terms to the weak head �arβs-redex of si
1, then

(s1
1 s1

2)u, (s1
2 s2

2)u, . . . , (sk
1 sk

2)u, . . . is an initial segment of a (weak) head �arβs-
reduction sequence of s. Thus, any weak head �arβs-reduction sequence of
s1
1 is at most as long as the longest (weak) head �arβs-reduction sequence

of s. Since the structure of s′
1 is simpler than that of s′, it follows that

head norm(s′
1,true) must terminate. Let r1 = ζ(s′

1) and r2 = ζ(s′
2) at ter-

mination. By the argument already outlined, there is a (weak) head �arβs-
reduction from s to (r1 r2)u. Now, if r1 is not of the form (λc x1) or (λo x1),
then (r1 r2)u is already a (weak) �arβs-hnf. On the other hand, if it is of
either of these forms, then (r1 r2)u has itself as a (weak) head �arβs-redex.
Let (r1 r2)u → r be a βs-contraction rule for annotated suspension expres-
sions. Then the longest head �arβs-reduction sequence of r is shorter than
that of s by at least 1. Hence, if r′ is an acyclic SML expression of type
term that is such that r = ζ(r′) at the invocation of head norm(r′,false)
(head norm(r′,true)), then this invocation terminates. Further, if m = ζ(r′)
at termination, then m is a (weak) �arβs-hnf of r. However, this term is also
a (weak) �arβs-hnf of (r1 r2)u and, thus, of s. The claim follows easily in the
case being considered from these observations, Lemma 21, and an inspection
of the definition of head norm.

Suppose s′ is of the form ref(csusp(s′
1, ol, nl, e′)) or ref(osusp(s′

1, ol, nl, e′)).
As observed already, lazy read(s′) terminates. Let r = ζ(s′) at termination.
By Lemma 20, there is a (weak) head �arβs-reduction from s to r of length
greater than 1. But then the longest (weak) head �arβs-reduction sequence
of r is shorter than that of s. Hence, an invocation head norm(s′,false)
(head norm(s′,true)) that follows lazy read(s′) must terminate. Further, at
the time it does, s′ must have a value such that ζ(s′) is a (weak) �arβs-hnf of
r. This is also a (weak) �arβs-hnf of s and thus the claim must, once again,
be true.

Proof of Theorem 9 2

It is instructive to compare the procedure in [FT90] to head norm when
it attempts only to find weak head normal forms. Ignoring the use of anno-

55

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §8

tations, the main difference between these two procedures is in what they do
when a term of the form [[t, ol, nl, e]]v in which t is not a suspension is encoun-
tered. The procedure in [FT90] tries to reduce t first, thereby permitting a
sharing of this reduction, but leading to a proliferation of structure traver-
sals and possibly preventing other kinds of sharing as noted in Section 4.
In contrast, our procedure usually chooses to first percolate the substitution
embodied in e over the structure of t, thus destroying the possibility of shar-
ing in the reduction of t. The system of annotations attempts to offset this
disadvantage by permitting [[t, ol, nl, e]]v in certain instances to be reduced
directly to t. Even without the benefit of annotations, we believe that the
approach used by our procedure is the preferred one in practice. However,
there is one kind of situation in which it might be relevant to consider the
alternative strategy. This is the case when the suspension encountered is of
the form [[t, 0, nl, nil]]v. A term of this kind arises from substituting t into
some context and corresponds to an adjustment of variable references in it.
Notice that all the adjustments of this kind that arise in the course of reduc-
tion to weak head normal forms are vacuous ones, being given by expressions
of the form [[t, 0, 0, nil]]v. Our procedure recognizes this fact and simplifies
terms of this kind directly to t. It may actually be preferable to reduce t first
even when the adjustment of variable references has content. Such an effect
may be obtained by modifying our procedures to include suitable invocations
of head norm from lazy read.5 We remark that our definition of (weak) head
�arβs-reduction sequences is general enough to encompass the ones produced
by such a strategy as well as the one used in [FT90] and therefore provides
a means for verifying the corresponding reduction procedures as well.

8 Conclusion

In this paper we have presented a refinement to the notation for lambda
terms described in [NW98]. We have also examined properties of the resulting
notation that are relevant to its use in the comparison of lambda terms. In
particular, we have shown the correspondence between this notation and the

5A behavior of this sort is obtained in [AP81] by using a scheme for identifying bound
variables that allows the same “renaming” of free variables to suffice in all contexts. Un-
fortunately, this alternative treatment of bound variables seems not to have the property
of the de Bruijn scheme that is crucial for our purposes: that of obviating (some operation
similar to) α-conversion in the comparison of lambda terms.

56

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms §8

conventional notation for lambda terms. We have then lifted the notion of
head normal forms to its context and have shown how this might be used
in checking terms for equality. Using this approach permits the benefits of
laziness in substitution to be reaped in the comparison operation. Finally,
we have described a procedure for head normalizing terms and have used the
tools of analysis made available by our notation in providing a comprehensive
proof of its correctness. This procedure has been presented recursively here,
but it can be easily rendered into a stack-based form. It has, in fact, been
incorporated in this form into an abstract machine for λProlog [NJW93,
Nad98].

The comparison of lambda terms considered in this paper is intrinsic to
most other operations on the intensions of such terms and the discussions
here are therefore relevant in their contexts as well. An operation that is of
particular interest to us is that of unifying (typed) lambda terms [Hue75]:
this operation is central to λProlog, whose efficient implementation is a major
reason for the investigations undertaken here. In its essence, the problem
of unifying lambda terms is that of finding substitutions for existentially
quantified variables that appear in these terms so as to make the terms
equal by virtue of the rules of lambda conversion. In order to deal with this
unification problem, it is necessary to extend the class of de Bruijn terms
(and, consequently, also the class of suspension terms) with a new category
of atomic symbols corresponding to existentially quantified variables.6 The
standard unification procedure, that of Huet, is based on comparing terms in
the resulting notation and makes use of the notion of head normal forms. The
discussions in this paper are, thus, extremely pertinent to implementing this
procedure. In fact, certain aspects of our notation become especially relevant
in this context. For example, existentially quantified variables and the terms
that are substituted for such variables are closed in the sense that they are
unaffected by contractions of enclosing redexes. Our annotation scheme has
the capability of recognizing this and, therefore, of being genuinely useful.
Similarly, there are benefits to using de Bruijn’s scheme beyond the one
already mentioned. As an example, when the comparison of terms reduces
to that of their arguments, it is technically necessary to carry around a

6These variables are to be interpreted here just as they are in the ordinary lambda
calculus: substitutions that are made for them must respect the usual non-capture restric-
tions. An alternative treatment of unification can be provided based on a view of “meta
variables” similar to that in [DHK95]. Between these two approaches there is a trade-off
whose assessment is beyond the scope of this paper.

57

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms

context given by the binders of the terms. The use of indices permits this
requirement to be realized implicitly. This feature is particularly useful when,
as in the case of λProlog, the task of solving a unification problem may
have to be suspended and later resumed. Finally, the destructive version of
head-normalization that we have presented here is likely to have advantages
even in this context, despite the possibility that reductions may have to be
backtracked over. In particular, the usual benefits of sharing in reduction will
continue to accrue, and the occasional need to trail (and undo) destructive
changes will likely be more than offset by the need not to copy the structure
of the term above the redex.

Our discussions in this paper have assumed a notion of equality that is
based only on α- and β-conversion. It is often desirable to extend this notion
by including also the rule of η-conversion. A run-time treatment of this
rule in a context where the terms are typed can be obtained by relatively
straightforward additions to the discussions in this paper. In essence, the
comparison of terms requires the η rule to be used in conjunction with head
normal forms, and de Bruijn’s scheme and suspensions permit a convenient
implementation of this requirement. A discussion of this aspect may be found
in [NJW93] and [Nad98].

Acknowledgements

Debra Wilson provided input at an early stage of this work. Useful sugges-
tions were obtained by Dale Miller and anonymous reviewers.

Acknowledgment of support: This work has been supported by NSF
grants CCR-89-05825, CCR-92-08465, and CCR-95-96119.

References

[ACCL91] M. Abadi, L. Cardelli, P-L. Curien, and J-J. Lévy. Explicit
substitutions. Journal of Functional Programming, 1(4):375–
416, 1991.

[And71] P. B. Andrews. Resolution in type theory. Journal of Symbolic
Logic, 36:414–432, 1971.

58

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms

[AP81] L. Aiello and G. Prini. An efficient interpreter for the lambda-
calculus. The Journal of Computer and System Sciences,
23:383–425, 1981.

[Bar81] H. P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics. North Holland Publishing Co., 1981.

[BBLRD96] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. λυ,
a calculus of explicit substitutions which preserves strong nor-
malization. Journal of Functional Programming, 6(5):699–722,
1996.

[BR91] P. Brisset and O. Ridoux. Naive reverse can be linear. In Koichi
Furukawa, editor, Eighth International Logic Programming Con-
ference, pages 857–870. MIT Press, June 1991.

[Bru72] N. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to
the Church-Rosser Theorem. Indag. Math., 34(5):381–392, 1972.

[Bru80] N. de Bruijn. A survey of the project AUTOMATH. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages
579–606. Academic Press, 1980.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith.
Implementing Mathematics with the Nuprl Proof Development
System. Prentice-Hall, 1986.

[CCM87] G. Cousineau, P-L. Curien, and M. Mauny. The categorical
abstract machine. The Science of Programming, 8(2):173–202,
1987.

[CH88] T. Coquand and G. Huet. The calculus of constructions. In-
formation and Computation, 76(2/3):95–120, February/March
1988.

[Chu40] A. Church. A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56–68, 1940.

59

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms

[Cur86] P-L. Curien. Categorical Combinators, Sequential Algorithms
and Functional Programming. Pitman, 1986.

[DHK95] G. Dowek, Th. Hardin, and C. Kirchner. Higher-order unifi-
cation via explicit substitutions. In Tenth Annual IEEE Sym-
posium on Logic in Computer Science, pages 366–374. IEEE
Computer Society Press, June 1995.

[Fie90] J. Field. On laziness and optimality in lambda interpreters:
Tools for specification and analysis. In Seventeenth Annual ACM
Symposium on Principles of Programming Languages, pages 1–
15. ACM Press, January 1990.

[FT90] J. Field and T. Teitelbaum. Incremental reduction in the lambda
calculus. In Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, pages 307–322. ACM Press, 1990.

[GMW79] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh
LCF: A Mechanised Logic of Computation, volume 78 of Lecture
Notes in Computer Science. Springer-Verlag, 1979.

[Har86] R. Harper. Introduction to Standard ML. Technical Report
ECS-LFCS-86-14, Laboratory for Foundations of Computer Sci-
ence, University of Edinburgh, November 1986. Revised by Nick
Rothwell, January 1989, with exercises by Kevin Mitchell.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143–184, 1993.

[HM76] P. Henderson and J. H. Morris. A lazy evaluator. In Third
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 95–103. ACM Press, 1976.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinatory
Logic and Lambda Calculus. Cambridge University Press, 1986.

[Hue75] G. Huet. A unification algorithm for typed λ-calculus. Theoret-
ical Computer Science, 1:27–57, 1975.

[KR97] F. Kamareddine and A. Ŕios. Extending the λ-calculus with
explicit substitution which preserves strong normalization into

60

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms

a confluent calculus on open terms. Journal of Functional Pro-
gramming, 7(4):395–420, 1997.

[Mel95] P-A. Mellies. Typed λ-calculi with explicit substitutions may
not terminate. In Typed Lambda Calculi and Applications, vol-
ume 902 of Lecture Notes in Computer Science, pages 328–334.
Springer-Verlag, 1995.

[Mil91] D. Miller. A logic programming language with lambda-
abstraction, function variables, and simple unification. Journal
of Logic and Computation, 1(4):497–536, 1991.

[Muñ96] C. Muñoz. Confluence and preservation of strong normalization
in an explicit substitution calculus. In Eleventh Annual IEEE
Symposium on Logic in Computer Science, pages 440–447. IEEE
Computer Society Press, July 1996.

[Nad98] G. Nadathur. An explicit substitution notation in a λProlog
implementation. Technical Report TR-98-01, Department of
Computer Science, University of Chicago, January 1998.

[Nip93] T. Nipkow. Functional unification of higher-order patterns. In
Eighth Annual IEEE Symposium on Logic in Computer Science,
pages 64–74. IEEE Computer Society Press, June 1993.

[NJW93] G. Nadathur, B. Jayaraman, and D. S. Wilson. Implementa-
tion considerations for higher-order features in logic program-
ming. Technical Report CS-1993-16, Department of Computer
Science, Duke University, June 1993.

[NM88] G. Nadathur and D. Miller. An overview of λProlog. In Ken-
neth A. Bowen and Robert A. Kowalski, editors, Fifth Inter-
national Logic Programming Conference, pages 810–827. MIT
Press, August 1988.

[NW90] G. Nadathur and D. S. Wilson. A representation of lambda
terms suitable for operations on their intensions. In Proceedings
of the 1990 ACM Conference on Lisp and Functional Program-
ming, pages 341–348. ACM Press, 1990.

61

The Journal of Functional and Logic Programming 1999-9



Nadathur Fine-Grained Notation for λ Terms

[NW98] G. Nadathur and D. S. Wilson. A notation for lambda terms: A
generalization of environments. Theoretical Computer Science,
198(1-2):49–98, 1998.

[Pau90] L. C. Paulson. Isabelle: The next 700 theorem provers. In Pier-
giorgio Odifreddi, editor, Logic and Computer Science, pages
361–386. Academic Press, 1990.

[Pfe89] F. Pfenning. Elf: A language for logic definition and veri-
fied metaprogramming. In Fourth Annual Symposium on Logic
in Computer Science, pages 313–322. IEEE Computer Society
Press, June 1989.

62

The Journal of Functional and Logic Programming 1999-9


