This article provides a perspective of the past and present roles of the manufacturing supervisor with a specific focus on new skills requirements. Within the structure of manufacturing management, the supervisor plays a key role in implementing today’s complex automated manufacturing technologies. The supervisor is at the bottom of the management pyramid—the one with upfront responsibility for machines, equipment, and tools, and for those who use them to produce a product. In the past, men who held the position were undisputed “bosses of the shop.” Today’s companies refer to supervisors by different job titles, and although women make up a significant portion of the profession, it is not uncommon to hear employees refer to their supervisors as foremen (Walker & Guest, 1952; Walker, Guest, & Turner, 1956). Some refer to the position as first-level supervisor (Marcus & Segal, 1989). But the term team leader has recently come into use with the trend toward a teaming philosophy for workers.

Because many manufacturing firms use automation technologies in their competitive strategy (Skinner, 1996), production employees must know the meaning of the latest acronyms such as CAD-CAM, CIM, FMS, JIT, MRP/MRP II, PPC, SDWT, and TQM (defined later in this article), and they must be technologically literate in them. These complex requirements in employee-technology relationships have made an impact on the role of supervision. It has changed from that of directing and controlling employees to that of effectively leading the improvement of employee performance (Marckland, Vickery, & Davis, 1998; Polakoff, 1990; Skinner, 1996, Stevenson, 1999).

This new leadership role for supervisors can best be understood in a historical context of evolving manufacturing technologies, workforce characteristics, and skills used. This is presented in two parts. The first is a historical perspective of the supervisor’s job and how it has changed during the 20th century. The second section describes the supervisor’s job in the context of modern-day complexities.

Historical Perspective

In the early part of the 20th century, the Industrial Revolution was well on its way to creating a highly profitable system of mass production. Factories had become significantly larger in contrast to the relatively small job shops of the late 1800s. Production emphasized very large lot sizes. As opposed to single structures, most factories were made up of several buildings. The “American System” (Marcus & Segal, 1989, p. 72) of manufacturing now stressed precision and exactness in production so that parts could be interchanged easily during assembly. The early 20th century factories were characterized by large-scale production machine tools for such processes as sheet metal stamping, grinding, milling, and complex systems of organized mechanical assembly processes utilizing specialized jigs and fixtures. However, on the downside was the working environment. Many rotating shafts, pulleys, and belts used for drive mechanisms in these production machines of the early 20th century were fully exposed and in proximity to the worker who, by the way, was expected to work longer and harder than what is expected today. Worker fatigue and these types of dangerous conditions were undoubtedly a significant safety factor to be considered in those days (Kohl & Mraz, 1997; Marcus & Segal, 1989, Williams, 1987).

At the turn of the century, the face of manufacturing in the United States was almost universally white and male. This was because highly skilled machinists and mechanics were initially needed to operate machinery and perform assembly processes. Minorities and women were hard-pressed to gain access to apprentice- ships in these relatively high-paying jobs. However, industrialists such as Henry Ford and efficiencies experts such as Frederick W Taylor revamped ways in which production jobs were performed. Jobs that required highly skilled worker performance were simplified. Complex tasks were broken down into repetitively small sequential steps that could be documented and measured. These simpler tasks were then able to be performed by lesser skilled workers (Marcus & Segal, 1989; Williams, 1987).

Some men who excelled at their jobs and mastered many different tasks were promoted to foremen (supervisors) with responsibilities for performing and overseeing the day-to-day production tasks on the shop floor. The early 20th century foreman was the undisputed boss of the shop, with considerable authority to make decisions regarding the work of his men. He was responsible for increased volume and capacity and lowered unit and labor costs. He was trained in the practice of scientific management (Taylor, 1947) to methodically measure, monitor, direct, and control the manufacturing system. However, to stimulate productivity in his workers and influence efficiency in the way in which materials flowed through his shop, he at times used supervisory methods that would be thought of as backward and abusive today. The supervisor of the early 20th century sometimes revved his tired workers with “stimulants furnished for each shift, such as a good belt of whiskey” (Grosson, 1998, p. 98). To punish and/or scare his insubordinates, he at times resorted to the use of threats and actual physical violence (Child & Partridge, 1982; National Industrial Conference Board, 1967; Patten, 1968). “So I hit him on the jaw. He knew who was boss now. He picked himself up and walked back to his job laying tracks” (Parker & Kleemeier, 1951, p. 1).

Forces for Change

With corporate growth and prosperity, brought on by an accelerated Industrial Revolution, came a stronger push by workers to be ensured a better quality of work life. Workers united, forming bargaining units to help guarantee fair wages and better working conditions. The formation of these labor unions consequently transferred much of the factory foreman’s authority up to higher levels of management. Disagreements concerning shop-floor issues escalated to the plant manager, who now controlled what was previously within the worker-supervisor relationship. Formalized negotiations, something for which the typical supervisor was not trained and therefore not capable of executing, became more technical in nature between corporate management and labor union representatives. Thus with unions an integral part of the manufacturing environment, some discretionary powers of the supervisor began to wane. Prospective new-hires were now selected from the prescribed union list. All disciplinary actions, firings, suspensions, etc., had to follow the letter of the law as indicated in the union contract. Most company layoffs became controlled by union seniority and not by productivity standards. In addition, and what may have been most disheartening for the first-level supervisor, was that labor unions were now beginning to win major concessions in wage increases, job security, and working conditions—something the first-level supervisor had tried to do for years but had not succeeded in doing. These increased limitations on the first-level supervisor continued to refine and narrow the scope of the supervisor’s job responsibilities (Kerr, Hill, & Brodiling, 1986, Young, 1983).

The Great Depression and 1930s disappeared as manufacturing began working to support the efforts of World War II. In 1940, 28% of the machine tools in use were less than 10 years old. By 1945, 62% were less than 10 years old, the quickest advancement in capital investment known to have occurred in any developed country to this date (Patten, 1968). The rapid introduction of new technologies into manufacturing made World War II a different kind of war from its predecessor and was undoubtedly responsible for the outcome of that war. With research generated by defense needs, new machine tools were developed that could cut, shape, and form metal faster, with greater precision, and at lower cost. Materials and processes used in the assembly of auto and aerospace products continued to advance as well (Benes, 1998).

World War II likewise changed the face of the workforce of the middle 20th century. While men fought on the battlefront, women filled the millions of civilian and defense positions created as the United States shifted to wartime production. In 1942, women were recruited to work in the factories. “War gave women access to skilled higher-paying industri- al jobs . . . ” (Haxandall & Gordon, 1995, p. 245). As the war ended, most women gave up their wartime jobs to the men coming home from the war (Amott & Matthaeus, 1991).

Undoubtedly, the introduction of women in the workforce and the better educated, better organized worker home from the war left a lasting impact on supervisory practices in American industry (Fair, 1957).
Manufacturing Systems and Information Technology

To be successful in today’s complex work environments, most supervisors become technologically literate in many of the following ways:

- **Computer-aided design (CAD)** is the use of computer software and hardware in interactive engineering drawing and storage of designs for manufacturing. Designers use CAD software to create the layout, geometric dimensions, proportions, rotations, magnifications, and cross-section views of a part and its relationship with other parts. The software allows designers to design, build, and test (in a virtual sense) production prototypes under given parameters as three-dimensional computerized objects. It compiles parts and quantity lists for a product, outlines fabrication and assembly procedures, and transmits the final design directly to production machinery such as milling and rolling machines (Goetsch, 1992; Markert, 1997; Markland et al., 1998; Stevenson, 1999; Turban, McLean, & Wetherbe, 1996).

- **Computer-aided manufacturing (CAM)** software uses the digital output from a CAD system to directly control programs in production equipment such as robotics and numerical control machining centers. When CAD is feeding information to CAM, the combined system is referred to as CAD-CAM. CAD-CAM encompasses the computer-aided techniques that facilitate planning, operation, and control of a manufacturing facility. Such techniques include computer-aided process planning, computer-generated work drawings and standards, MRP II, capacity requirements planning, and shop floor control that are direct responsibilities of the supervisor (Goetsch, 1992; Markert, 1997; Markland et al., 1998; Stevenson, 1999; Turban et al., 1996).

- **Computer-integrated manufacturing (CIM)** is a term that originated in the 1960s, a concept that encompasses a manufactured product are integrated. This includes the initial design of parts and those that undergo rapid changes in specifications (Markert, 1997; Volti, 2001).

Flexible manufacturing systems (FMS) are fully automated, computer-controlled manufacturing systems that perform substantial advantages in comparison to a conventional job shop. An FMS is a set of machines linked by an automated materials handling system—all under central computer control. Flexible machining centers (called cells) can produce a variety (or family) of parts with a simple change of software. Instead of using special-purpose machines and tooling to perform a single operation, FMS may use computerized machines that can be quickly reprogrammed to do a variety of things, which could be unfitted to machining several different types of parts to performing multiple operations on a single piece of work. This is especially important for manufacturing small lot sizes of products and those that undergo rapid changes in specifications (Markert, 1997; Volti, 2001).

Materials requirements planning (MRP) is a calculation technique that deals with production inventory and scheduling. It is used for planning future manufacturing lots and purchase orders according to what is required to complete a master production schedule. MRP provides the benefit of accurately forecasting the demand for like items in different products that are interdependent, which is generally the case in a just-in-time manufacturing system. For instance, a company may make three types of widgets that all use the same type of screws, bolts, and nuts. Thus, the demand for the bolts, for example, depends on the shipment schedule of all three types of widgets. MRP is typically computerized because of complex interrelationships between products and their subparts, and the often need to change plans when delivery dates or order quantities are changed (Markert, 1997; Turban et al., 1996).

Manufacturing resource planning (MRP II) is an application software arrangement used by the line organization. Essentially, MRP II creates a closed-loop management system that integrates the regular MRP with all other major functional areas of the organization such as forecasting and sales, design engineering, purchase and receiving, production activity planning and maintenance, and distribution planning and cost accounting. Furthermore, it coordinates activities toward the goals of a JIT system, producing the right product at the right time (Markert, 1997; Turban et al., 1996).

Statistical process control (SPC) is a quality-control method that provides information helpful in the reduction of defective parts or products by statistically monitoring manufacturing processes, typically through the use of computer-aided charts and graphs. To manufacture products within specifications, processes producing the parts need to be stable and predictable. A process is considered to be under control when SPC charts show that variability from one product to the other is stable and predictable. If and when a process becomes unstable and about to go out of control, SPC charts will show evidence of such in far enough time so that adjustments can be made to prevent the process before defects are produced (Deming, 1994; Grant & Leavenworth, 1988; Juran, 1988).

Organizational Changes

Changes in the manufacturing environment and in technology induce organizations to change the manner in which they operate. It has long been recognized that there are strong relationships among the environment, technology, and organizational structure. The following are examples of organizational changes that also call for reformation of first-level supervision.

Total quality management (TQM) is an integrative management approach that emphasizes continuous process and system improvement as a means to achieve customer satisfaction and long-term company success. Simply stated, TQM utilizes the strengths and expertise of everyone in the company as well as scientific methods for problem analysis and decision making. Quality is the concern and responsibility for everyone in the organization and is built into every product and business process. TQM is based on the premise that customers (internal, external, or both) are the focus of all activities of an organization, and relies on all members of the organization to continuously improve everything they make and do as well as the culture in which they work. Most important, TQM is a philosophy for work.
Just-in-time (JIT) is a complete inventory control and production scheduling system that attempts to reduce costs and improve work flow by scheduling parts and materials to arrive at a manufacturing work station precisely at a time when they are needed. Such a system saves space by reducing inventories, and minimizes waste, and by doing so saves considerable capital. JIT utilizes a pull system for moving goods (where control of materials and parts movement is established in reverse of the work flow, from the last work station to previous stations) and several other technologies and management techniques that enable production to move as fast as possible without disruption. The major components of a JIT system are few but reliable suppliers, small lot sizes, low inventories, high-quality materials, fixed production rates and standardized outputs, extensive preventive maintenance and quick repairs, quick machine setups, and moderately utilized capacity. Perhaps the most significant elements to a successful JIT system are multiskilled employees and participative supervision that encourage continuous innovation and improvements (Markland et al., 1998; Stevenson, 1999; Iurvan et al., 1996).

Self-directed work teams (SDWTs) are a functional group of employees (usually between 8 and 15 members) who share responsibilities for a particular unit of production. Technically, the team consists of individuals who are trained, empowered (with authority), and held accountable to make decisions regarding the quality, cost, and scheduling requirements of their production unit and for the safety of their production processes (Torres & Spiegel, 1990). Each member of a SDWT possesses a variety of technical skills and is encouraged to develop new ones to increase the job flexibility and value of the SDWT (R. Koening, R. Schnack, & R. Marconi, personal communication with respective vice president of operations, director of manufacturing, and production manager, Norand Corporation, Cedar Rapids, IA, August 10, 1995).

Workforce Characteristics

Changes in the characteristics of today's workforce obviously affect the job of the supervisor. According to Rue and Byars (1996), one of the more prevalent changes in today's workforce that affect the supervisor's job is the transformation of manufacturing. Unlike other sectors in the economy, the work of wage employees is becoming increasingly complex as they find themselves having to continuously upgrade their skills to fit the latest manufacturing technologies (Carnevale, 1991; Dean, Dean, & Rebilsky, 1996). For example, compared to their day-to-day operations of the past, employees are now using less manual skills and more intellectual skills as required for operating automated machinery and processes. Their skills have also become more versatile in the variety of manufacturing technologies they apply (Markland et al., 1998; Stevenson, 1999). According to Carnevale (1991), Douglas (1997), and Gupta and Ash (1994), employees are being told less by their supervisors of what to do, as well as when, where, and how to do it, and are expected to autonomously make more decisions as members of self-directed work teams. Researchers agree with two of Deming's (1994) long-standing opinions regarding trends in employee performance: (a) Performance outcomes are being greatly influenced in breadth and depth by the sophistication of manufacturing and organization-al systems, and (b) employees are being empowered to make less reactive and more proactive job-related decisions.

Even in the modern age of automation, the highly diverse, highly skilled, highly motivated, productive employee is still manufacturing's greatest asset. The person best able to make the most efficient and effective use of this asset is the well-trained, knowledgeable supervisor.

Supervisor Characteristics

Historically, supervision has been viewed as a process concerned with accomplishing work through other people, and this concept is still valid. If asked what it is that a supervisor actually does today, most people would still probably respond with an answer that implies that a supervisor oversees the work of wage employees (Berliner, 1979; Deming, 1994; Drucker, 1993). It has been well established that an important skill of a supervisor is to appraise and improve the performance of his or her employees. However, manufacturing has become so technologically dependent that the impact of technology on productivity and on employees cannot be ignored. Supervisors are still responsible for ensuring that employees accomplish their work. Yet, more and more employees are using technology to do their work, and technology is becoming increasingly sophisticated. Employees are to become increasingly complex. In a symbiotic relationship, the employee depends on technology and technology depends on the employee (Dean, 1995; Rothwell, 1996; Rummel & Brache, 1995).

Supervisors must be able to bring out the best from both employee and technology, and learn to make optimum use of the employee-technology relationship. To do so supervisors must understand technology as a concept, be familiar with the latest developments in manufacturing technology, appreciate the impact of technology on the employee's work, be familiar with employee-technology relationship problems and know how to deal with them, and be prepared to deal with the rapid and continual changes associated with modern manufacturing technology (Goerlich, 1992; Peterson, 1989). In short, the modern supervisor should be a technically oriented team coach (Deeprose, 1995).

Research Gaps

We know what the human resource, academic, and management authors think supervisors should do. However, what is missing from most of the extant literature is perspective of the line organization—what they think supervisors should actually be doing on the production floor. Ahire et al. (1995), Crutchfield (1998), and Douglas (1997) implied that further research is needed in identifying the leadership elements required of supervisors and their roles and responsibilities in a highly technical and complex manufacturing organization. With regard to the job of supervisor in today's work team environment, Gupta and Ash (1994) stated:

Although many operators and mechanics welcomed the promise of input into the plant's work, lower level supervisors felt extremely threatened by the changes. Of all the employees at [the company], these supervisors are experiencing the most uncertainty about the effect the work teams would have on their work and livelihood. They were told their jobs would change drastically, but no one seemed able to articulate how. (p. 198)

Skinner (1996), referring to supervision of highly skilled employees and the use of modern manufacturing technologies as a competitive...
advantage, wrote:

One conclusion seems clear: we are now in a totally new industrial era in which the performance required for competitive success is orders of magnitude greater than in the past. But in the face of these heightened requirements, high-priced production managers appear to be trying for competitive parity principally by concentrating on adopting the latest tactical controls and planning techniques . . . but . . . typical industrial managers do not seem to know what to do differently ... the urgent need is to improve performance. (p. 16)

There are many textbooks and other literature on what seems to make the modern supervisor a good supervisor, and most agree that the supervisor plays a key role in managing today's manufacturing operations. However, there is very little sound research in what people in the line organization believe supervisors actually do that is most important.

The evolutionary role of the manufacturing supervisor has gone from autocratic boss to human relations overseer to technical team coach. Now, when employee performance must be enhanced to accommodate organizational changes and ever-increasing sophisticated manufacturing technologies, supervisors need to do more than simply train their employees. If supervisors knew everything about today's complex organizational systems and automated manufacturing technologies, they could tell their employees what to do, how to do it, and when to do it. They could get by with the traditional supervisor's skills of bossing and controlling employees, making all of the decisions. But when supervising a diverse group of self-directed and well-educated employees who are highly skilled in modern manufacturing technologies, such an approach would be a mistake. Hence, there is a declining need for directive supervision.

However, contrary to a vision of factories run by robots, successful manufacturing systems today depend more than ever on the skills of the first-level supervisor. An increase in breadth and depth of employee performance both on the factory floor and in business decision making has called for a transformation of skills used by supervisors. Studies by Crutchfield (1998), Douglas (1997), and Hynds (1997) show that in order for supervisors to make the transformation, from that of directing and controlling employees to that of leading and improving employee performance, it is important for them to obtain unique leadership skills. Many believe the primary skills of a supervisor today are in managing what Rummel and Brache (1995) referred to as the "human performance system" (p. 71). Supervisors need skills in applying performance technology (Hotel & White, 1999), a more complete and continuous approach to improving the system in which they and their employees work.

Douglas R. Hotel is a professor of Technology Education in the Department of Industrial Technology at the University of Northern Iowa, Cedar Falls. He is a member of Pi Chapter of Epsilon Pi Tau.

References

Young, L. H. (Ed.). (1983, April 25). *The old foreman is on the way out and the new one will be more important*. *Business Week* (Special Report), pp. 97-110.

Notes

1 Because I focus on the skills of the supervisor that are changing, more traditional skills that fall in the category of people skills and business skills are not given much attention. However, these skills are still integral and necessary for effective supervision.