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In the 21st century asset management and
resource allocation will be key technologies for
the successful management of many public and
private enterprises. In teaching asset manage-
ment techniques in construction management
and manufacturing courses in industrial
technology programs, there is a challenge of
finding enhancements to textbook-based
instruction.  Software tools to simulate real-
world style  problems in asset management are
a valuable enhancement to this classical style
of pedagogy.  This article describes a number
of such currently available tools.  It also
evaluates them according to such factors as cost,
ability to solve complex problems, and
suitability for use by nonspecialist students.
The issue of using such tools to teach
optimization techniques for asset management
in the classroom setting using artificial
intelligence methods of optimization is also
explored.  Finally, an overview of a real-world
asset management case study  as an instruc-
tional concept for classroom use is presented.

What Is Asset Management?
Asset management combines and

integrates the acquisition, evaluation, storage,
and distribution of assets and resources
required by an organization.  A tremendous
amount of management control can be exerted
through a properly designed asset management
and resource allocation system that is operated
by trained management personnel.  But, there
are costs involved with developing and
implementing an asset management system.
Organizations using such systems must
dedicate resources for funding their
implementation.  The costs and benefits of
asset management systems vary greatly,
depending on the type of systems
implemented, the scope of the systems put into
service, and a number of other factors. Rapid
changes in existing technologies require
frequent updating of asset management
systems. In many cases, the changes are so
significant that completely new systems must
be developed.

Software to Simulate and Optimize Asset
Management in Construction and Manufacturing
by M.D. Salim and Marc. A. Timmerman

Figure 1. Asset and Resource Management Paradigm.
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11Capital investment is the key stimulus for
updating existing and developing a new asset
management system as indicated in Figure 1.
Capital investment enables research and
development, which leads to improved
technology for asset management and resource
allocation. The figure also suggests that  cost/
benefit analysis on the practical applications
of this improved technology is usually relevant.
A computer-based asset management system
will track what equipment and other resources
are to be issued for a specific project including
personnel composition and personnel
assignments.  Studies have shown that
personnel are much more productive when an
asset management system tracks assets and
other allocated resources in real-time.

The recent literature on the importance
of asset management to construction,
manufacturing, and other industrial
technology education areas is enormous.  Some
highlights would include the work of Satter,
Wood, and Ortiz (1998) on the use of asset
management in petroleum industry related
construction. Curtis and Molnar (1997) have
described the use of asset management in
public works construction.  Carpenter (1997)
has written about the use of asset management

in manufacturing, specifically in the area of
machining. Gibson (1998) and Van Rijn
(2000) have described the use of asset
management tools for the maintenance aspects
of manufacturing.  Finally Stys (1997) has
written about the use of asset management for
maintenance in the utility industry.

Artificial Intelligence
Authors define artificial intelligence (AI) in

different ways. For example, Kurzweil (1990)
defined AI as the art of creating machines that
perform functions that require intelligence when
performed by people. According to Lugar and
Stubblefield (1993), AI is the branch of computer
science that is concerned with the automation of
intelligent behavior. In the past decade there have
been numerous articles about the application of
AI as “expert systems,” which are  also called
“knowledge-based systems” by some
investigators.

The architecture of an expert system is
presented in Figure 2. It shows that knowledge
engineering is the first step in creating an expert
system. The knowledge engineer usually
acquires and places the knowledge into the
expert system’s knowledge base. In other words,
the knowledge engineer is the interface between

Figure 2. Artificial Intelligence Concepts.
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the human expert and the expert system. In
an expert system the knowledge base is kept
separate from the control mechanism known
as the inference engine, which directs or
controls the system when it searches its
knowledge base in a dynamic environment.
The expert system can be integrated with other
programs and/or databases to solve specific
problems. In the following paragraphs, we
describe a  model of an expert system to
optimize asset management.   It is an AI-based
system that uses a Geographic Information
System (GIS) database for attributes and values
to optimize asset/resource management.

Selecting an Artificial Intelligence
Shell

A computer software that is very often
utilized for the development of an expert
system is known as  an “AI shell.”   These AI
shells are generic software environments to
implement expert systems, much in the same
way as a word processor is a software environ-
ment to edit text.  However, selection of the
correct shell to meet specific needs is becoming
increasingly critical, considering the ever-
growing use of computers and the availability
of  diverse shells to build expert systems.  The
fundamental issues of choosing “shells” for
asset/resource management applications are
offered  beginning with a  six-step plan of
action for selecting a shell:  (1) define the
selection criteria; (2) find all available shells

that might fit the needs or criteria chosen; (3)
narrow the list obtained from the second step
down to a revised or a short list; (4) try to
shorten the list even more by researching  those
shells in much greater detail; (5) test the
remaining shells; and (6) select and purchase
the most suitable shell.

We began our study on available shells with
the creation of a list of criteria as in Step 1.  These
requirements can vary greatly depending on the
task and the size of job. It is important to note
that selection of shells is always need-driven.  We
listed the criteria as follows:
• Platform it runs on (Windows, Unix).

Windows is preferred for instructional use.
• Limitation on the number of rules.

Must have more than 100 rules for planned
scope of class projects.

• Limitations on database size. Must be able
to use large GIS databases 100 MEG+ for
planned class projects.

• Speed of execution. Must be fast enough
to be able to run several complex cases in
the space of a two-hour lab session.

• Internet interface capabilities.
Very desirable in a distributed network
environment such as  a teaching lab.

• Compatibility with GIS package.
Must be able to read data from desired
databases for class projects.

• Cost and licensing issues. Must be
available in a multi-used academic version
at reasonable cost.

Table 1. Commercial AI Shell Packages.
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13For Step 2 we considered shells advertised
on the Internet and in computer trade
magazines and professional journals and
periodicals. Because there are literally hundreds
of shells that deal with different types of
applications and users, this is a daunting tasks.
A short list of the shells is created based upon
the selection criteria is created under Steps 3
and 4. In the final steps the shells are tested,
resulting in the final list presented in Table 1.
The ideal result will be the selection of one
shell. This may not always be the case because
more than one shell may perform the needed
tasks. In this case cost becomes the key factor
in deciding what shell to select.  In this
particular case, the final step was to examine
demonstration versions of the selected shells.

Optimization
Optimization is the search for better

solutions. Many problems in industry have
non-unique solutions, and optimization is a
systematic way of generating these non-unique
solutions and finding the best solution of the
set. The term best can refer to cost, time, energy
usage, product quality, or some other beneficial
quality of interest. A monograph by Traub and
Wozniakowski (1980) summarized opti-
mization techniques.  Lau’s  (1986) standard
reference of optimization techniques expressed
them in the form of computer programs.
Khan and Hayhurst (2000) and Suh and Shin
(1996) described the application of
optimization techniques to problems in
manufacturing in great detail.

Optimization methods can be thought of
as falling in two categories: heuristic and non-
heuristic.  Non-heuristic techniques involve the
application of complex mathematical methods
from an area of mathematical analysis known
as the calculus of variations. These methods
include the dynamic programming method of
Bellman, the optimal principle of Pontryagin,
the time-dependent Lagrange multiplier
method, and derivatives of these methods such
as the Hamilton-Jacobi-Bellman method; all
are described in detail by Bryson and Ho
(1975).  These methods require extremely
complex calculations and are generally best
suited for highly specialized applications such
as the design of NASA’s space missions and
nuclear weapons research. They are
pedagogically unsuited for industrial
technology education, and they are, in general,
too computationally demanding for use in day-

to-day industrial problems.
Heuristic optimization methods are based

on concepts from AI.  They are based on
general observations or “rules” about the
qualities of an optimal solution.  These rules
are programmed into the “shell” and are used
repeatedly to generate, improve, and test the
solution. Heuristic optimization techniques are
pedagogically suitable for industrial technology
education and are easily studied using
computing resources usually found in
industrial technology departments.  The
relative ease of use and simplicity of these rules
also make them useful in the solution of day-
to-day industrial problems.

A Case Study: Snow Removal Asset
Management

Both manufacturing and construction
industries have embraced AI techniques to
optimize resource allocation, manage assets,
and  improve productivity. For example, in
manufacturing, as fully automated machinery
increases in capability, the assignment of
individual jobs to such automated machinery
becomes very complex. AI-based optimization
techniques have been widely deployed to solve
such challenging “shop management”
manufacturing problems.  To study the
manufacturing optimization techniques used
for these shop management problems,
industrial technology students need some
familiarity with the type of automated
machines involved, the process times of
machining tasks, and similar parameters. The
same observations hold true for construction
management studies.

The deployment of snow plows in a
municipality for the purpose of snow removal
is our example of a case study of a problem in
optimized asset management.  The object is to
plan routes for the plows so as to remove the
most snow using the least amount of resources
such as driver time, plows, sand, and salt.   The
main reason for selecting snow plowing as our
case study is that it is very familiar to students
in colder climates from daily life and is also
familiar to others from television and cinema
depictions.  Snow plowing contains all of the
needed elements of a good case study in a
format that is well suited for instruction.

This problem is an enhanced version of a
classical textbook problem in optimization
called the traveling salesman problem or the
TSP. The idea of the TSP is that a salesman
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has to make a number of sales calls in different
cities. He needs to plan a trip that will allow
him to visit the largest number of these cities
possible in the least amount of time and
traveling distance.   Burkard, Deineko, and van
Dal (1998) have contributed an excellent
summary of solved TSP problems for
instructional purposes.  The TSP has many
applications in real-world industrial problems
such as material delivery in manufacturing
settings.  Chalasani and Motwani (1999) and
Bertsimas, Chervi, and Peterson (1995) have
also described applications of the TSP to real-
world industrial problems.

For our purposes let’s assume then that an
idealized community has one snow plow, a
personnel budget of 100 man-hours, and 1,000
tons of road salt. The optimization problem
would be to maximize the miles of road
plowed, minimize the cost to the city of the
work, stay within the available resources, and
respect the physical reality of the problem.

Stated mathematically this would mean
that we want to make this expression LARGE:

   Miles plowed Road 1
+ Miles plowed Road 2
+ Miles plowed Road 3
... and so on for all roads ...
——————————————
Total miles of road plowed.

To  make this expression SMALL:
  Man-hours Road 1 x salary rate

+Man-hours Road 2 x salary rate
+Man-hours Road 3 x salary rate
+... and so on for all roads ...
+Man Hours Deadheading x salary rate
+ Salt used on Road 1 x salt cost
+ Salt used on Road 2 x salt cost
+ Salt used on Road 3 x salt cost
+ ... and so on for all roads ...
——————————————
Total cost of plowing.
While obeying the physical realities of the

problem:
• Salt on Road 1 = length of Road 1 x

needed salt rate
• Time on Road 1 = length of Road 1/

maximum plowing rate
• Salt rate Road 1 = function of road

surface, snow depth, temp, etc.
• Plow rate Road 1 = function of road

surface, snow depth, temp, etc.
• Road 1 connects to Road 3 only.
• Etc....

And also while staying within the limits
of the available resources:

  Man-hours Road 1
+Man-hours Road 2
+Man-hours Road 3
... and so on for all roads ...
+Man-hours Deadheading
——————————————
Less than 100 hours.

  Salt used on Road 1

Figure 3. Asset Management Case Study.
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+Salt used on Road 2
+Salt used on Road 3
... and so on for all roads ...
——————————————
Less than 1,000 tons.

Figure 3 presents an overview of the
software tasks that the students would perform
in solving this case. The “shell” would be used
to implement the heuristic rules to first
generate solutions to the problem and then to
improve on these solutions.  Typically this is
done in iterations with the program only
stopping when an acceptable solution has been
reached.  Other tasks would be to write C/C++
programs to format the input and output data
in user-friendly forms and to use database
software to implement database of the assets
involved and of the geography of the city in
GIS format.

The heuristic rules involved in creating a
snow plowing path are quite interesting.  In
order to generate an optimal solution, a
number of heuristic techniques are available.
For illustration purposes, a single snowplow is
considered as plowing the streets of a small
community.   Figures 4, 5, and 6 depict the
street map. The boxes represent city blocks,
the dotted lines represent city streets, and the
black circles represent the intersections. The
snowplow begins plowing from a fixed starting
point.  The heuristic rules are presented in
terms of this imaginary model.

Figure 4 presents an example of the nearest

neighbor heuristic rule.  In this rule, the
snowplow driver stops at each intersection and
picks the shortest street to the next intersection.
If there are two or more equally short streets,
the plow driver uses the “first clockwise rule.”
The driver imagines that the minute hand of
an imaginary clock is sweeping clockwise from
due North at 12 o’clock.  The first of the two
or more equally short streets to be swept over
by the minute hand of this imaginary clock is
selected  by the driver.  As can be seen in the
diagram, this heuristic rule results in a relatively
short and efficient path, but creates the
situation of the same streets being plowed more
than once.  In contrast, Figure 5 presents the
furthest neighbor heuristic rule.  In this case
the plow driver stops at each intersection and
picks the longest street to the next intersection.
Again, the driver uses the first clockwise rule
to select from two or more equally long streets.
This heuristic rule creates a much longer and
more winding path than the nearest neighbor
heuristic rule.  This path also requires some
streets to be plowed more than once.  Figure 6
presents the circular route heuristic rule.  In
this rule the driver creates a mental picture of
an imaginary clock whose minute hand is
centered at the geographic center of the city.
The driver imagines the minute hand of this
clock sweeping over the plow’s starting point
at 6 o’clock  and towards the next clockwise
intersection.  The plow driver follows this
imaginary minute hand and plows the streets
in the same order that the intersections are

Figure 4. Nearest Neighbor Heuristic Rule.
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swept over by the imaginary clock’s minute
hand.  In contrast to the furthest neighbor and
the nearest neighbor heuristic rules, the circular
route rule never requires that the same street
be plowed more than once.  However, the
circular route rule does not result in the interior
streets of the city being plowed.

Of course, the plowing route of a real city
would be far too complicated for a driver to
use the nearest neighbor, furthest neighbor, and
circular route heuristic rules while actually
driving the plow through the community.
Instead, an expert system shell would
implement these heuristic rules on a database
of the streets and intersections to generate the
plowing path.

More complex heuristic rules exist that an
expert system shell can use to make even better
path selections.  The one-opt heuristic rule
examines each street in a plowing path and sees
if substituting another street available at the
same intersection would reduce the overall path
length.  By systematically considering the
“option” (the origin of “opt”) of replacing each
street by a shorter street, the one-opt heuristic
rule helps an expert system shell create a shorter
overall plowing path. The two-opt heuristic
rule does exactly the same thing as the one-
opt heuristic rule except that two streets are

considered at a time rather than one at a time.
The nearest insertion heuristic rule works like
the one-opt heuristic rule with the difference
that the intersections rather than the streets in
the plowing path are considered. Using the
nearest insertion heuristic rule, the expert
system shell looks at each intersection visited
in the plowing path and sees if swapping this
intersection for another neighboring
intersection would result in a shorter overall
path. Finally, a very sophisticated method
called the Lin-Kernighan heuristic rule looks
at removing both intersections and streets from
the plowing path and examines if substituting
other intersections and streets into the plowing
path results in an improvement.  The ultimate
object of the expert system shell is to plow all
the streets of the city on the plowing schedule
with the minimum number of duplicate
plowings of the same streets.   All of these
heuristic rules-nearest neighbor, furthest
neighbor, circular route, one opt, two opt,
nearest insertion, and Lin-Kernighan-can easily
be implemented on an expert system shell.  The
choice of which rule or rules to use and in what
order is up to the imagination and ingenuity
of the students.

Pedagogically, such a problem could be
assigned either as a single group project for a

Figure 5. Furthest Neighbor Heuristic Rule.
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term project experience or could be divided
up into smaller tasks to be used as weekly
assignments.  There are many examples of this
type in the literature and on the Web, and
library or Internet components could be added
to help hone the student’s research skills as well.
This type  of case study is a good candidate for
AI-based solutions as indicated in Figure 3.

Conclusions
In order to keep industrial technology

education timely and interesting, it is desirable
to supplement the traditional lecture-
homework pattern of student experiences with
real-world case studies.   We have presented
two concepts of contemporary interest to
industry, the use of asset management concepts
and the use of AI  tools, to solve real-world
problems.  The steps needed in selecting an AI

“shell” or programming tool were also
presented.  A case study of the real-world task
of snow plowing was also presented as an
example of a student project that vividly
illustrates the use of these industrial problem-
solving tools in a pedagogical context.

Dr. M.D. Salim is currently serving as an
Associate Professor of Construction Management
in the Industrial Technology Department of the
University of Northern Iowa, Cedar Falls, Iowa,
USA.

Dr. Marc A. Timmerman is currently an Assistant
Professor of Electrical Engineering Technology at
the University of Arkansas at Little Rock, Little
Rock, Arkansas, USA.

References
Bertsimas, D., Chervi, P., & Peterson, M. (1995). Computational approaches to stochastic vehicle routing

problems. Transportation Science, 29, 342-352.

Bryson A. E., & Ho, Y. C. (1975). Applied optimal control. New York: Wiley.

Burkard, R. E., Deineko, V. G., & van Dal, R. (1998). Well solvable special cases of the traveling salesman

problem. SIAM Review, 40(3), 496-546.

Carpenter, D. M. (1997). Asset management strategy for managing risk and investment. Modern Machine Shop, 69,

100-114.

Figure 6. Circular Route Heuristic Rule.



T
h

e
 J

o
u

rn
a

l 
o

f 
T

e
c

h
n

o
lo

g
y 

S
tu

d
ie

s

18 Chalasani, P., & Motwani, R. (1999). Approximating capacitated routing and delivery problems. SIAM Journal on

Computing, 28(6),  2133-2149.

Curtis, F. A., & Molnar, G. S. (1997). A municipal infrastructure management systems model. Canadian Journal

of Civil Engineering, 24, 1040-1049.

Gibson, W. D. (1998). Maintenance: Finding the right medicine. Chemical Engineering, 105(5), 119-120.

Khan, W. A., & Hayhurst, D. R. (2000). Two and three dimensional path optimization for production

machinery. Journal of Manufacturing Science and Engineering, 122(1), 244-252.

Kurzweil, R. (1990).  The age of intelligent machines. Cambridge, MA: MIT Press.

Lau, H. T. (1986). Combinatorial heuristic algorithms with FORTRAN. New York: Springer-Verlag.

Lugar, G. F, & Stubblefield, W. A. (1993). Artificial intelligence: Structures and strategies for complex problem

solving (2nd ed.). Redwood City, CA:  Benjamin/Cummings.

Satter, A., Wood, L. R., & Ortiz, R. (1998). Asset optimization concepts and practice. Journal of Petroleum

Technology, 50(8), 62-67.

Stys, R. D. (1997). Creating new opportunities for utilities. Pipeline and Gas Journal, 22(4), 148.

Suh, S. H., & Shin, Y. S. (1996). Neural network modeling for tool path planning of rough cut in complex

pocket milling.  Journal of Manufacturing Systems, 15(5), 295-304.

Traub, J. F., & Wozniakowski, H. (1980). A general theory of optimal algorithms.  New York: Springer-Verlag.

Van Rijn, C. F. H. (2000). Effective asset management tool helps underscore the crucial role of maintenance

function in platform design, operation. Oil and Gas Journal, 98(10), 51-56.


