
Metal cutting is one of the most significant
manufacturing processes in the area of material
removal (Chen & Smith, 1997).  Black (1979)
defined metal cutting as the removal of metal
chips from a workpiece in order to obtain a
finished product with desired attributes of size,
shape, and surface roughness.  Drilling, sawing,
turning, and milling are some of the processes
used to remove material to produce specific,
high-quality products.

The quality of machined components is
evaluated by how closely they adhere to set
product specifications of length, width,
diameter, surface finish, and reflective
properties. In high-speed turning operations,
dimensional accuracy, tool wear, and quality
of surface finish are three factors that
manufacturers must be able to control (Lahidji,
1997).  Among various process conditions,
surface finish is central to determining the
quality of a workpiece (Coker & Shin, 1996).
Attaining and tracking a desired surface
roughness is more difficult than producing
physical dimensions because relatively more
factors affect surface roughness.  Some of these
factors can be controlled and some cannot.
Controllable process parameters include feed,
cutting speed, tool geometry, and tool setup.
Factors that cannot be controlled as easily
include tool, workpiece, and machine
vibration; tool wear and degradation; and
workpiece and tool material variability (Coker
& Shin, 1996).

Techniques of Surface Roughness
Measurement

Surface measurement techniques are
grouped into contact and noncontact methods.
An amplified stylus profilometer is the most
popular and prevalent contact instrument
used to measure surface roughness in industry
and research laboratories because it is fast,
repeatable, easy to interpret, and relatively
inexpensive (Mitsui, 1986; Shin, Oh, & Coker,
1995).  In addition, stylus profilometers are
used as the standard for comparing most
of the newly invented surface roughness
measurement instruments or techniques.
This instrument uses a tracer or pickup
incorporating a diamond stylus and a
transducer. Running the stylus tip across the

workpiece surface generates electrical signals
corresponding to surface roughness.  The
electrical signals are amplified, converted from
analog to digital, processed according to an
algorithm, and displayed.  The measurement
has a fairly good resolution and a large range
that satisfies the measurements of most
manufactured surfaces.  However, this stylus
profilometer is limited because it requires an
excessive amount of time to scan large areas, it
has a limited range of use on nonflat surfaces,
and it is restricted to off-line use (Shin et al.,
1995).  Off-line and in-process measurements
are compared in the next section.

In-Process Versus Off-Line Measurement
Monitoring can be performed in-process

or off-line using direct or indirect methods
(Cook, 1980).  Critical need for in-process
tool and process monitoring has developed
since computer numerically controlled
(CNC) machines and automated machining
centers have become more widespread
(Koren, 1989).  Monitoring individual
machining processes in real time is critical
to integrating those processes into the overall
machining system.  The in-process
designation for a sensing method means that
it is performed while metal is being removed
(or during normal disengagement) without
interrupting the process.

Off-line methods can be performed on the
machine or away from the machine.  In either
case, off-line methods require either scheduling
idle time or interrupting the process for
measurement.  In-process and off-line methods
are effective in gathering important
information about surface characteristics, but
in-process methods are preferred.  In-process
monitoring provides real-time information
concerning the machining process.  This real-
time feedback enables the machinist or
operator to adjust the appropriate machining
parameters in order to produce the desired
surface roughness, reduce tool wear, and/or
reduce the probability of tool breakage.
However, monitoring or measurement
conducted in-process or off-line would not be
possible without the use of sensory devices.

Sensor technology is playing an ever-
increasing role in the manufacturing
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46 environment for a wide variety of tasks, such
as tool wear assessment, machine tool
condition monitoring, and quantification of
the surface finish.  The demand for
incorporating sensor technology into the
production environment is being driven by
increasing need to minimize manufacturing
costs while simultaneously producing higher
quality products.

Sensor technology can measure surface
characteristics either directly or indirectly.
Direct measurement methods using sensors
include optical, electromagnetic, and ultrasonic
methods.  Direct sensors scan the workpiece
surface directly and obtain surface roughness
information as well as workpiece dimensions.
However, these processes are limited because
the presence of chips and/or cutting fluid
blocks the line of sight they require to measure
the workpiece surface. Indirect methods have
been successfully used (Tsai, Chen, & Lou,
1999) to extrapolate the surface condition from
vibration signals measured by the accelerometer
or dynamometer.  Indirect measurement is not
impeded by the presence of chips and cutting,
and thus is a more robust measurement
method.  For that reason, the present research
employs an accelerometer sensor to indirectly
measure surface roughness in real time.

Purpose of the Study
The purpose of this research was to develop

a multilevel, in-process surface roughness
recognition (M-ISRR) system to evaluate
surface roughness in process and in real time.
To develop this system precisely, the following
key factors related to surface roughness during
the machining process had to be identified:
feed rate, spindle speed, depth of cut of the
process, tool and workpiece materials, and so
on. In addition, the dynamics of the machining
process generate vibration between the tool and
workpiece while the machining process is
taking place. Vibration information was a key
factor in the development of the M-ISRR system.

Research by Lou and Chen (1997)
involving an in-process surface recognition
(ISR) system resulted in the successful
development of a surface recognition system.
Their study attained approximately 93%
accuracy with only one tool type and one work
material.  The M-ISRR system in the present
research extends Lou and Chen’s findings by
using multiple tools and work materials.  The
present M-ISRR system provides a more robust

R
a

prediction system by incorporating multiple
work materials, tools, and setup parameters.
This system will provide the real-time surface
roughness (R

a
) values needed for in-process

decision making in a more realistic industrial
environment.  A multiple regression analysis
approach was used to develop the M-ISRR system.

Experimental Setup and Signal
Processing

In any study, equipment and hardware
play critical roles in conducting a viable
experiment and collecting results consistent
with the purpose of the study.  A fundamental
understanding of computer/machining
equipment and data acquisition devices, which
include proximity sensors, accelerometers, and
signal converters (i.e., analog to digital or
digital to analog), is important in under-
standing the activities conducted in this
research.  Accordingly, hardware and software
used in this research are discussed in the next
two sections.

Hardware Setup
All machining was done in a Fadal VMC

(vertical machining center) with multiple tool-
change capability.  This machine is capable of
three-axis movement (along the x, y, and z
planes).  Programs can be developed in the
VMC directly or downloaded from a 3.5"
diskette or data link.  Information was collected
using a 353B33 accelerometer and a Micro
Switch 922 Series 3-wire DC proximity sensor.
The accelerometer was used to collect vibration
data generated by the cutting action of the
work tool.  The proximity sensor was used to
count the rotations of the spindle as the tool
was cutting.  The proximity information then
was graphed along with the accelerometer data,
which enabled the identification of vibrations
produced during different phases of the cutting
sequence.  Data from both sensors were
converted from analog to digital signals
through an Omega CIO-DAS-1602/12 A/D
converter.  The A/D converter-output was
connected to a Pentium I personal computer
via an I/O interface (see Figure 1).

Two power supplies were used.  One power
supply was used to amplify the signal from the
accelerometer.  This amplified signal was then
sent to the A/D board.  The second power
supply was used to power the proximity sensor
and circuitry.  A signal was produced during
the switched phase of the proximity sensor.
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This signal was sent to the A/D board on
a separate channel from the one used for the
accelerometer signal.

The workpiece material used in this
research was 6061 aluminum and 1018 steel
blocks.  The blocks were cut 1.00" x 1.00" x
1.00".  Various feed and spindle speeds, depths
of cut, work materials, tool materials and types,
and tool diameters were tested.

The Federal PocketSurf stylus profilometer
was used off-line to measure the surface
roughness value of the machined samples.  The
surface finish measurements were made off-line
with the roughness average R

a
values rated in

microinches (µi).

Software Setup
The software setup consisted of a CNC

machining program, an A/D converting
program, and a rotational average calculation
program.  The CNC machining program was
written for cutting the workpieces at different
spindle speeds, feed rates, and depths of cut.
The A/D converting program was developed
in C programming language.  The rotational
average calculation program calculated the

vibration average per revolution.  The Statistical
Package for the Social Sciences (SPSS) version
8.0 software was used for computation and in
the development of the multiple regression model.

Experimental Design of MR-M-ISRR
The multiple regression model contained

seven independent variables.  The seven
independent variables were comprised of three
categorical parameters and four interval
parameters.  The four interval parameters were
(F) feed rate (X

1i
), (D) depth of cut (X

2i
), (S)

spindle speed (X
3i
), and (V) vibration average

per revolution (X
4i
) of the accelerometer sensor.

The three categorical parameters were (TD)
tool diameter (CX

1i
), (TM) tool material (CX

2i
),

and (WM) work material (CX
3i
).  The regression

equation for each design did not include TD,
TM, or WM. These were categorical variables
and could not be used as predictors.

The vibration average per revolution from
the accelerometer was collected and converted
to digital data through the A/D converter and
stored.  Figure 2 displays an example of the
proximity and accelerometer data collected
with a 1.00" cutting tool at a feed rate of

Figure 1. Experimental setup.
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coefficient, or R2.
3. Determine whether the value of multiple

R is statistically significant.  For multiple
correlation, one can test the null
hypothesis H

o
: R = 0.  An F statistic can

be used to test this hypothesis by the
following :

where R = the multiple correlation
coefficient and k = the number of
predictor variables.  If the computed
value of F exceeds the critical value of F
for a given level of significance, then H

o
:

R = 0 is rejected.
4. Determine the significance of the

predictor variables.  The regression
coefficient can be tested for statistical
significance by the value:

where ßi =  the regression coefficient and
S

ßi
 = the standard error of the respective

coefficient.
In this proposed model, the dependent

variable was the surface roughness average
value, R

a
 (Y

i
).  The structure of the multiple-

regression, multilevel in-process surface
roughness recognition (MR-M-ISRR) model
is depicted in Figure 3.  The proposed multiple-
regression model was a two-way interaction
equation:

Y
i
 = ß

0
 + ß

1
X

1i
 + ß

2
X

2i
 + ß

3
X

3i
 + ß

4
X

4i

+ ß
5
X

1i
X

2i
 + ß

6
X

1i
X

3i
 + ß

7
X

1i
X

4i

+ ß
8
X

2i
X

3i
 + ß

9
X

2i
X

4i
 + ß

10
X

3i
X

4i
 + ß

i

Three methods were used in developing

Figure 2. Sample vibration and proximity signal.
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+ ß
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r

Y2
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K
r

YK
= R

yyP

20 ipm.  The following equation indicates the
method of calculating the five average vibration
data:

where k represents the total number of data in
each revolution, as indicated in Figure 2.  For
example, if i = 1, then the V

i
was calculated

through the vibration data points from point
number 0 to point number k (to have a total
of k data in one revolution).  Vibration (V

i
)

was measured in units of voltage.
Four steps were used in developing the

regression model:
1. Determine the regression model (Kirk,

1995):
Y

i
=ß

0
+ß

1
X

il
+ß

2
X

i2
+...+ß

h-l
X

i,h-l
+ß

i
  (i,...,N)

where Y
i
=the predicted R

a
value,

ß0,...,ß
h-1

 are the partial regression
coefficients, X

i1
,...,X

i,hi
  are the

independent variables, and ß
i
is the

random error term with mean equal to
zero and variance equal to «2

ß.
2. Determine R, R2, Adjusted R2.  The

multiple correlation coefficient R is a
Pearson product-moment correlation
coefficient between the criterion variable
Y and the predicted score on the criterion
variable, Y. R can be expressed as:

The proportion of the variation in the
criterion variable that can be attributed
to the variation of the combined
predictor variables is represented by the
square of the multiple correlation

ˆ

ˆ

F = R2 / k2

(1 - R2)/(n - k - 1)

t =
ß

i

S
ßi
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the multiple-regression equations.  First was
the enter method, which entered all
independent variables into the regression
model regardless of the their significance.
Second was the forward method, which entered
the independent variables one at a time based
on their significance.  This method was built
using only significant independent variables.
Third, the forward method was used again
except that the dependent variable R

a
was

transformed with the natural log function (ex).
This method was used to smooth the
dispersion of the R

a
 values.

Analysis and Results
Eight multiple-regression equations were

developed from the training data collected.  A
total of 384 experimental runs were carried out

in order to develop the regression equation for
the eight designs.  Table 1 shows the parameters
and settings of samples collected for developing
the multiple-regression equations for each
design.  Within these experimental runs, some
data were used for testing as well.  In addition
to these experimental runs, a total of 64 runs
(as shown in Table 2) were performed to gather
testing data for evaluating the accuracy of the
proposed model.  From each sample, five R

a

readings were taken with the profilometer and
five (V

i
) averages were collected.  The two-way

interaction equation was used for each design
in order to develop the best-fit model for
surface roughness recognition.

The accuracy of the proposed MR-M-
ISRR system was determined by calculating the
deviation of the proposed regression model

Figure 3. The structure of the MR-M-ISRR model.

Table 1. Parameters and Settings for
the Training Data

Table 2. Parameters and Settings for
the Testing Data
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(Ra
ij
) from the actual profilometer

measurement (Ra
ij
) taken from each sample.

The deviation for each testing sample under
design j was denoted by  ¯

kj
and was defined

as follows:

After the deviation of each testing sample under
design j was determined, the average deviation
of each design (j) was calculated as follows:

where m =  number of samples with each design
(in this case, m = 8).  After the deviation of
each design was calculated, the overall average
for the MR-M-ISRR system was defined as
follows:

where n is the number of designs (in this case,
n = 8).

Results and Summary
Eight multiple regression designs were

developed successfully with the resultant
equations displayed in Table 3.  The
recognition accuracy of this proposed MR-M-
ISRR system is summarized in Table 4.
Designs 2 and 7, both using the forward
method, resulted in the least deviation from
the actual R

a
value.  Design 4 had the third

least deviation from the R
a
value. The method

used for Design 4 was the forward method with
R

a
 transformed.

The overall MR-M-ISRR system
demonstrated 82% accuracy of prediction
average, establishing a promising step to further
development in in-process surface roughness
recognition systems.  In consideration of the
MR-M-ISRR systems’ less-than-exceptional
recognition accuracy, this research does support
the use of regression analysis techniques to
model dynamic machining processes.
Improved accuracy utilizing regression analysis
techniques is achievable but will require a
dramatic increase in experimental sample sizes
involving the use of multiple tools and
materials.  Furthermore, an alternative method
for developing an in-process prediction system
should be considered.  Alternative methods
demonstrating learning capability within the
prediction system are most desirable.  The use

ø
kj

= |Ra
ij
 - Ra’

ij
|

Ra
ij

Table 3. Multiple Regression Equations for Design (j )

ø
j
=-

ø
kjJ

m

k=1
m

ø ==

ø
jJ

n

j=1
n
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of neural network algorithms or fuzzy net
methodologies provides feasible alternatives for
surface roughness recognition model
development.  In the development of an ISRR
system, similar research utilizing neural
networks and fuzzy nets has demonstrated
commendable results.  Therefore, continued
research focused in ISRR system development
is promising.
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