Aims

Our aims were to use posturography to see if sway pattern differed between patients with large-fiber peripheral neuropathy and normal control subjects and, if it did, to compare posturography with conventional electromyography (EMG) as screening tools for large-fiber peripheral neuropathy. Thirteen patients who came to our neurophysiology laboratory with a preliminary diagnosis of peripheral neuropathy (made by their referring physicians) were compared with 7 nonmatched control subjects. All subjects received a neurologic examination and underwent posturography and conventional EMG. Results of posturography and conventional EMG were compared. Posturography showed abnormal sway patterns only in patients who had EMG abnormalities consistent with large-fiber peripheral neuropathy. These sway patterns differed significantly from those of the control subjects. Posturography seems to be a useful and well-tolerated screening test for patients with a history suggestive of peripheral neuropathy, and results of posturography agree with those of conventional EMG. Moreover, posturography directly measures increased sway in these patients and may be used as a more direct screen for risk of falls in this population.

Keywords: polyneuropathy, posturography, balance, electromyography (EMG)

Methods

Posturography was used to study 13 patients with a preliminary diagnosis of peripheral neuropathy and 7 control subjects. All subjects were interviewed and received a detailed neurologic evaluation. Patients were randomly selected from those referred to our electrophysiology laboratory for investigation of polyneuropathy. All patients and control subjects received a standard electrophysiologic examination.

Clinical Neurologic Evaluation

For all subjects, a standardized history was obtained, and a physical examination was performed. The specific symptoms of distal symmetric sensory loss, weakness, and autonomic abnormalities were solicited. Questions were also designed to exclude central nervous system disorders (history of stroke, cerebellar disease, or vestibular disease) that may affect balance. Medical or environmental causes of peripheral neuropathy...
thy were screened for. Included in the physical examination were tests of peripheral sensation (position sense, vibration sense, pinprick sensation) and deep-tendon reflexes.

Findings that were abnormal in 2 of 3 categories—neuropathic symptoms, sensory deficits on examination, and impaired reflexes on examination—and that were attributable to a distal symmetric neuropathy constituted a definite abnormal neurologic examination indicating clinical neuropathy.

Electrophysiologic Examination

Nerve conduction studies and needle EMG were performed on each patient according to the standard protocol (Oh, 1984). A handheld infrared thermometer was used to monitor temperature closely throughout the test, and temperature was kept above 32°C. We used the normal nerve conduction values for our laboratory (Table 1). Nerve conduction studies included but were not limited to sural amplitudes and latencies; peroneal motor amplitudes, distal latencies, and F responses and tibial motor amplitudes, distal latencies, F responses, and H reflexes. The needle EMG was performed to document the presence or absence of a gradient pattern of denervation–reinnervation in which distal muscles were more affected than proximal muscles. A patient was considered to have electrophysiologic evidence of polyneuropathy if abnormalities (decreased or absent amplitudes, increased late responses, evidence of denervation on needle EMG) were bilateral and involved at least 2 anatomically distinct nerves. Using this definition, we classified patients either as having or not having polyneuropathy. We did not address the quantitative nature of the polyneuropathy.

Table 1. Normal Nerve Conduction Values for Our Laboratory*

<table>
<thead>
<tr>
<th>Nerve</th>
<th>Latency, ms (upper limit of normal)</th>
<th>Amplitude, mV</th>
<th>Velocity, m/s (lower limit of normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor nerve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>4.5</td>
<td>4.5–17.5</td>
<td>49</td>
</tr>
<tr>
<td>Ulnar</td>
<td>4</td>
<td>5.0–17.5</td>
<td>47</td>
</tr>
<tr>
<td>Tibial</td>
<td>7.0</td>
<td>2.5–14</td>
<td>37</td>
</tr>
<tr>
<td>Peroneal</td>
<td>6.5</td>
<td>2.5–11</td>
<td>39</td>
</tr>
<tr>
<td>Sensory nerve (orthodromic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>6–26</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Ulnar</td>
<td>4–24</td>
<td></td>
<td>45</td>
</tr>
<tr>
<td>Sural</td>
<td>4–26</td>
<td></td>
<td>39</td>
</tr>
</tbody>
</table>

*All sensory studies are orthodromic. Latencies depend on distances used, and upper limits of normal for motor studies in our laboratory are reported (there is no lower limit of normal for latencies).

Posturographic Examination

Postural sway was measured using an AMTI Accusway force platform (Advanced Mechanical Technology, Inc, Watertown, Mass) interfaced with a 486/33 computer and BEDAS-2 data acquisition and analysis software. COP data were collected during quiet standing with feet together and feet apart and with eyes open and eyes closed.

In the feet-together position, subjects stood barefoot with their heels together and with their medial sides forming a 20° angle; in the feet-apart position, subjects’ heels were 10 cm apart, and their medial sides formed a 20° angle. For these trials, the force platform was marked to ensure that the positions were consistent. In the eyes-open trial, subjects focused on an eye-level mark made on a blank wall approximately 1 meter away; in the eyes-closed trial, subjects closed their eyes.

The resulting 4 positions were eyes open and feet apart (OA), eyes closed and feet apart (CA), eyes open and feet together (OT), and eyes closed and feet together (CT). Each trial lasted 30 seconds, and a 30-second rest period was allowed between trials. Longer rest periods were allowed between position changes. Data were sampled at a frequency of 50 Hz. Six to 10 trials were collected at each position. Position order was randomized. Descriptive analysis and diffusion analysis were performed to assess postural sway.

Descriptive Analysis

Total displacement (TotDisp), the total distance traveled by the COP trajectory was measured for each trial (Fig. 1). (For details, see Lehman et al, 1990.) COP was under the feet of the subjects and was measured relative to the surrounding environment.

Diffusion Analysis

Diffusion plots (plots of mean squared displacement of COP against increasing time intervals) were also measured for each trial (Fig. 2). Mathematical formul-
Neurology and Clinical Neurophysiology

Volume 2002, Number 4

Figure 2 (a) Method for measuring average squared planar displacement, $\text{AvgDisp}(t)$, as a function of time interval t for center of pressure of N data points $(x_1, y_1; x_2, y_2; \ldots; x_N, y_N)$. (b) Diffusion plot resulting from plotting $\text{AvgDisp}(t)$ over all intervals (0–10 seconds). The critical point (Ctime, Cdisp) is located at the intersection of the straight lines fitted to the 2 regions of the diffusion plot.

Diffusion plots have 2 regions. In the region over short-term time intervals, mean squared displacement COP changes rapidly with increasing time intervals; in the region over long-term time intervals, changes are slower with increasing time intervals (Collins and De Luca 1995; Collins et al, 1995). Straight lines were fitted over each of these regions. The point at which they intersected was defined as the critical point. Trials in which the critical point could not be clearly defined were discarded. We examined Ctime and Cdisp—the coordinates of the critical point—in detail.

Diffusion parameters have been used as indicators of neuromuscular function in posture (Collins and De Luca, 1995; Collins et al, 1995; Mitchell et al, 1995). Diffusion analysis considers the dynamic nature of COP, relating displacement to time. Location of the critical point is used to indicate the region in which postural control switches from a short-term open-loop control scheme to a long-term closed-loop control scheme (Mitchell et al, 1995). The temporal-and-spatial location of the critical point is used to differentiate patients and control subjects. Data were grouped by subject type and position. Analysis of variance was used to test for statistical significance. In addition, the eyes-open position was compared with the eyes-closed position, and the feet-together position was compared with the feet-apart position. $P < .05$ was used to describe significant differences.

Results (Table 2)

Clinical and Electrophysiologic Results

Of the 13 randomly selected patients referred to our laboratory for investigation of peripheral neuropathy, 4 had both electrophysiologic and clinical evidence of large-fiber polyneuropathy, 2 had electrophysiologic but no clinical evidence of large-fiber polyneuropathy, and 7 had no electrophysiologic or clinical evidence of large-fiber polyneuropathy (see Methods section for definitions used for electrophysiologic and clinical evidence of polyneuropathy). These were the conclusions after examination and neurophysiological testing by us in the laboratory, even though each of the subjects had been referred for work-up of a peripheral neuropathy.

Posturographic Results

Patients With Both Electrophysiologic and Clinical Evidence of Polyneuropathy Versus Control Subjects

Cdisp (amount of displacement before critical point is reached) was significantly greater in these patients than in the control subjects in all positions. Ctime (time before critical point is reached) did not differ statistically in any position. TotDisp (total displacement) was significantly greater in these patients than in the control subjects in all positions. (The control subjects’ Cdisp and Ctime means and standard deviations were similar to those reported in other studies; Collins and De Luca, 1993, 1995.)

Patients With Electrophysiologic but No Clinical Evidence of Polyneuropathy Versus Control Subjects

Statistical tests were performed only for the CA position. The critical point could not be clearly defined in enough trials to perform statistical analysis for the other positions.

Cdisp was significantly greater in these patients than in the control subjects, but Ctime was not statistically different. TotDisp was greater in these patients than in the control subjects ($P = .02$). Therefore, in comparisons with control subjects, these patients’ results were the same as those of patients with both electrophysiologic and clinical evidence of polyneuropathy.

Patients With No Electrophysiologic or Clinical Evidence of Polyneuropathy Versus Control Subjects

Cdisp, Ctime, and TotDisp were not significantly different in these patients compared with control subjects.

The critical point (Ctime, Cdisp) is located at the intersection of the straight lines fitted to the 2 regions of the diffusion plot.
Table 2: Group Mean, Standard Deviation, and Number of Trials for Each Parameter Within Each Subject Group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>E + C Evidence</th>
<th>E Evidence Only</th>
<th>No Evidence</th>
<th>Normal Control Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
</tr>
<tr>
<td>Cdisp, mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>77.72</td>
<td>63.71</td>
<td>28</td>
<td>18.03</td>
</tr>
<tr>
<td>OT</td>
<td>105.84</td>
<td>79.62</td>
<td>30</td>
<td>24.28</td>
</tr>
<tr>
<td>CA</td>
<td>83.73</td>
<td>46.87</td>
<td>19</td>
<td>78.68</td>
</tr>
<tr>
<td>CT</td>
<td>244.21</td>
<td>165.46</td>
<td>30</td>
<td>43.75</td>
</tr>
<tr>
<td>Ctime, s</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>0.89</td>
<td>0.32</td>
<td>28</td>
<td>1.16</td>
</tr>
<tr>
<td>OT</td>
<td>1.01</td>
<td>0.48</td>
<td>30</td>
<td>1.24</td>
</tr>
<tr>
<td>CA</td>
<td>0.66</td>
<td>0.20</td>
<td>19</td>
<td>0.71</td>
</tr>
<tr>
<td>CT</td>
<td>0.96</td>
<td>0.50</td>
<td>30</td>
<td>0.94</td>
</tr>
<tr>
<td>TotDisp, mm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OA</td>
<td>61.12</td>
<td>23.83</td>
<td>28</td>
<td>40.41</td>
</tr>
<tr>
<td>OT</td>
<td>73.17</td>
<td>29.93</td>
<td>30</td>
<td>40.89</td>
</tr>
<tr>
<td>CA</td>
<td>80.05</td>
<td>29.74</td>
<td>19</td>
<td>73.00</td>
</tr>
<tr>
<td>CT</td>
<td>116.33</td>
<td>50.70</td>
<td>30</td>
<td>50.56</td>
</tr>
</tbody>
</table>

*“E + C evidence” indicates both electrophysiologic and clinical evidence for polyneuropathy; “E evidence only,” electrophysiologic but no clinical evidence for polyneuropathy; “no evidence,” no electrophysiologic or clinical evidence for polyneuropathy; Cdisp, mean squared displacement; Ctime, interval; TotDisp, total planar displacement; OA, eyes open and feet apart; OT, eyes open and feet together; CA, eyes closed and feet apart; CT, eyes closed and feet together; dash, no data available.

In all positions. Therefore, the results of these patients—patients referred for polyneuropathy investigation—were the same as those of the control subjects (ie, there were no false-positives regardless of the referring diagnosis; cf results of conventional EMG).

Eyes Open Versus Eyes Closed
In patients with both electrophysiologic and clinical evidence of polyneuropathy and in control subjects, Cdisp was always less with eyes open than with eyes closed—which was significant for these patients with feet together and for control subjects with feet apart. Ctime was always longer with eyes open than with eyes closed—which was significant for patients with both electrophysiologic and clinical evidence of polyneuropathy with feet apart and for control subjects with feet together. TotDisp was always less with eyes open than with eyes closed—which was significant for patients with both electrophysiologic and clinical evidence of polyneuropathy with feet apart. In general, patients and control subjects sensed smaller displacements over shorter intervals and moved overall shorter distances with eyes open.

Feet Apart Versus Feet Together
In patients with both electrophysiologic and clinical evidence of polyneuropathy and in control subjects, Cdisp was always less with feet apart than with feet together—which was significant except for patients with both electrophysiologic and clinical evidence of polyneuropathy with eyes open. Ctime was always less with feet apart than with feet together—which was significant except for patients with both electrophysiologic and clinical evidence of polyneuropathy with eyes open. TotDisp was always less with feet apart than with feet together—which was significant except for patients with both electrophysiologic and clinical evidence of polyneuropathy with eyes open. In general, patients and control subjects sensed smaller displacements over shorter intervals and moved overall shorter distances with feet apart.

Discussion
This pilot study confirms the hypothesis that people with polyneuropathy have a distinct standing sway pattern that distinguishes them from a control population without polyneuropathy.

Critical displacement (Cdisp) was significantly higher in patients with polyneuropathy than in control subjects. Clinically, this meant that, for patients with polyneuropathy, larger COP coordinate translations went undetected before being acted upon by the musculoskeletal system. In other words, the nervous system of patients with polyneuropathy is less...
sensitive to changes in position of COP. As a result, COP wanders in a larger area before being detected and before the diseased peripheral nervous system attempts correction. This delay translates to a less tight swaying pattern and, consequently, poorer standing balance.

TotDisp also was significantly higher in patients with polyneuropathy, which means that COP wandered farther per unit of time in these patients than in control subjects. Critical time (Ctime), however, was not significantly different between the two groups. In other words, COP in the patients with polyneuropathy wanders not only farther but faster. Therefore, tighter control provided by healthy peripheral nerves limits total displacement and the speed of COP wandering. This control mechanism is defective in the patients with polyneuropathy. These findings are confirmed clinically when the position sense is examined in patients with polyneuropathy. A patient who has large-fiber polyneuropathy and who cannot detect small or slow changes in big-toe position may be able to detect larger or faster changes. This situation raises the question as to whether larger and faster displacement in COP is a compensatory mechanism that enables someone with polyneuropathy to detect changes in position of COP.

Also pertinent is that the short-term postural control scheme used by patients with polyneuropathy differs from that used by control subjects. We noted this when examining the location of the critical point in the diffusion plots (Fig. 3). Plot 3a represents 2 short-term control schemes that start off similarly but diverge at some time t1, and arrive at their respective critical displacements at different times, and plot 3b represents 2 short-term control schemes that differ at the start but arrive at their respective critical displacements at the same time. In plot 3a, P may be interpreted as a patient who has lost the ability to sense small displacements and who requires a larger displacement before switching from short- to long-term control schemes (thus, more time is required before switching control schemes); in plot 3b, patient P sways faster and reaches the larger critical displacement in the same amount of time. Plot 3b is consistent with our findings—which suggests that the short-term control scheme used by the patients in this study was different from that used by the control subjects.

Findings from this pilot study agree with findings from other investigations (Lehman et al, 1990; Collins and De Luca, 1995). Standing balance is worse with eyes closed and/or feet together than with eyes open and/or feet apart.

In this study, posturography was also used to detect balance or sway-pattern abnormalities in patients who had polyneuropathy detected by conventional EMG but who had no symptoms or signs of neuropathy. The posturography results of patients with normal EMG results were the same as those of control subjects, which implies that posturography has the potential to become a sensitive screening test for large-fiber polyneuropathy—comparable to the gold standard of conventional EMG. In addition, for patients with polyneuropathy, posturography may be useful in conducting serial noninvasive evaluations and thus in assessing the results of therapeutic interventions. This benefit may be of special importance to elderly patients with polyneuropathy, a disease that increases the risk of falling. Posturography may also be used to assess the effects of walking aids such as canes and walkers (Tideiksaar, 1989; Ledin, 1990; Waespe et al, 1993; Simoneau et al, 1994; Richardson and Hurvitz, 1995).

This study is a pilot study with a few shortcomings. First, our patients had no symptoms or signs of abnormal visual or vestibular function, and we did not undertake any specialized testing of these systems. Visual function and vestibular function, however, should be tested in patients undergoing posturography, as abnormal function affects postural sway. Indeed, our data confirmed that vision is important in maintaining a tight sway pattern. Taking a full history and conducting a thorough examination should reveal any abnormalities in these systems. Suspected central abnormalities of the sensorimotor system can be confirmed by neuroimaging.

Second, we did not take into account age-related effects, and we did not age-match our patients and control subjects.

Third and last, statistical significance was reached in many parameters, but the power of this study would have been greatly enhanced if more study pa-
tients had been involved. Our patients constituted a random sample of patients referred to our laboratory, so, essentially, referred patients with no electrophysiologic or clinical evidence of neuropathy formed another control group. Results of these patients—referred for polyneuropathy investigation but showing no evidence of polyneuropathy on electrophysiologic and clinical testing—differed significantly from results of patients with electrophysiologic evidence of polyneuropathy.

Conventional EMG results and physical findings do not correlate well (Dyck, 1993; Bergin et al, 1995). Physicians sometimes consider low nerve conduction as evidence of severe neuropathy, even when the patient is without symptoms or signs. For instance, in nerve conduction studies of patients with Charcot-Marie-Tooth disease, slowing does not correlate with degree of weakness or functional performance. As opposed to conventional EMG, posturography is a functional test with results that reflect performance. Posturography may therefore be the test of choice for assessing functional deficits in patients with peripheral neuropathy—specifically, the deficits that increase the risk of falling. Posturography, however, cannot and should not replace conventional EMG, as posturography cannot differentiate types of peripheral neuropathy. On detection of polyneuropathy, conventional EMG should be performed to determine its nature.

References

Neurology and Clinical Neurophysiology is a peer-reviewed and electronically published scholarly journal that covers a broad scope of topics encompassing clinical and basic topics of human neurology, neurosciences and related fields.

EDITOR
Keith H. Chiappa, MD

ASSOCIATE EDITOR
Didier Cros, MD

Electronic Mail
chiappa@helix.mgh.harvard.edu

Editorial Board

Robert Ackerman
Massachusetts General Hospital, Boston

Barry Arnason
University of Chicago

Flint Beal
Massachusetts General Hospital, Boston

James Bernat
Dartmouth-Hitchcock Medical Center, New Hampshire

Julien Bogousslavsky
CHU Vaudots, Lausanne

Robert Brown
Massachusetts General Hospital, Boston

David Burke
Prince of Wales Medical Research Institute, Sydney

David Caplan
Massachusetts General Hospital, Boston

Gregory Cascino
Mayo Clinic, Rochester

Philip Chance
The Children’s Hospital of Philadelphia, Philadelphia

Thomas Chase
NINDS, National Institutes of Health, Bethesda

David Cornblath
Johns Hopkins Hospital, Baltimore

F. Michael Cutrer
Massachusetts General Hospital, Boston

David Dawson
Brockton VA Medical Center, Massachusetts

Paul Delwaide
Hôpital de la Citadelle, Liège

John Donoghue
Brown University, Providence

Richard Frith
Auckland Hospital, New Zealand

Myron Ginsberg
University of Miami School of Medicine

Douglas Goodin
University of California, San Francisco

James Grotta
University of Texas Medical School, Houston

James Gusella
Massachusetts General Hospital, Boston

John Halperin
North Shore University Hospital / Cornell University Medical College

Stephen Hauser
University of California, San Francisco

E. Tessa Hedley-White
Massachusetts General Hospital, Boston

Kenneth Heilman
University of Florida, Gainesville

Daniel Hoch
Massachusetts General Hospital, Boston

Fred Hochberg
Massachusetts General Hospital, Boston

John Hoffman
Emory University, Atlanta

Gregory Holmes
Children’s Hospital, Boston

Bruce Jenkins
Massachusetts General Hospital, Boston

Ryuji Kaji
Kyoto University Hospital

Carlos Kase
Boston University School of Medicine, Boston

J. Philip Kistler
Massachusetts General Hospital, Boston

Jean-Marc Léger
La Salpêtrière, Paris

Simmons Lessell
Massachusetts Eye and Ear Infirmary, Boston

Ronald Lesser
Johns Hopkins Hospital, Baltimore

David Levine
New York University Medical Center

Ira Lott
University of California, Irvine

Phillip Low
May Clinic, Rochester

Richard Macdonell
Austin Hospital, Victoria, Australia

Joseph Masdeu
St. Vincent’s Hospital, New York

Kerry R. Mills
Radcliffe Infirmary, Oxford

José Ochoa
Good Samaritan Hospital, Portland

Barry Oken
Oregon Health Sciences University, Portland

John Penney
Massachusetts General Hospital, Boston

Karlheinz Reiners
Bayernische Julius-Maximilians-Universität, Würzburg

Allen Roses
Duke University Medical Center, Durham

Thomas Sabin
Boston City Hospital, Boston

Raman Sankar
University of California at Los Angeles

Joan Santamaria
Hospital Clinic Provincial de Barcelona

Kenneth Tyler
University of Colorado Health Science Center, Denver

Francois Viallet
CH Aix-en-Provence

Joseph Volpe
Children’s Hospital, Boston

Michael Wall
University of Iowa, Iowa City

Stephen Waxman
Yale University, New Haven

Wigbert Wiederholt
University of California, San Diego

Eelco Wijdicks
Mayo Clinic, Rochester

Clayton Wiley
University of California, San Diego

Anthony Windebank
Mayo Clinic, Rochester

Shirley Wray
Massachusetts General Hospital, Boston

Anne Young
Massachusetts General Hospital, Boston

Robert Young
University of California, Irvine