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If Nonlinear Models Cannot Forecast, What Use Are They?
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Abstract. This paper begins with a brief review of the recent experience using nonlinear models and ideas of

chaos to model economic data and to provide forecasts that are better than linear models. The record of

improvement is at best meager. The remainder of the paper examines some of the reasons for this lack of

improvement. The concepts of “openness” and “isolation” are introduced, and a case is made that open and

nonisolated systems cannot be forecasted; the extent to which economic systems are closed and isolated provides

the true pragmatic limits to forecastability. The reasons why local “overfitting,” especially with nonparametric

models, leads to worse forecasts are discussed. Models and “representations” of data are distinguished and the

reliance on minimum mean-square forecast error to choose between models and representations is evaluated.

1 Introduction

Most experienced econometricians and statisticians are familiar with the forecasting performance of “classical”
structural models and with that of the vector autoregressive models, to name the current chief protagonists in
the forecasting sweepstakes. What is not so familiar is the forecasting performance of nonlinear models.

There are two tasks contributing to the central theme for this paper. The first task is to review very briefly
the empirical evidence for the benefits of nonlinear models in forecasting; the review is restricted to obtaining
an idea of general performance, but without the details. There are many excellent papers devoted to
presenting evidence of nonlinearity in economic and financial time series, for example, Ashley et al. (1986),
Ashley and Patterson (1989), and Brock et al. (1991). But that investigation is not the subject of this paper. I
take it as given that there is abundant evidence of nonlinearity of some sort in almost all economic and
financial time series.

The major task of this paper is to evaluate the difficulties faced by inference and forecasting, in particular, if
the world is nonlinearly dynamic. The question has been well posed by Diebold and Nason (1990), who state:

“Why is it that while statistically significant rejections of linearity in exchange rates [and many other
economic and financial series] routinely occur, no nonlinear model has been found that can
significantly outperform even the simplest linear model in out-of-sample forecasting?”

The case is made in this paper that in the context of nonlinear dynamic models, the difficulties in forecasting
are not only more serious and more prevalent, but they are qualitatively different. A key point is that
forecasting involves global properties, whereas fitting is local.

The term “nonlinear” can be confusing in that it is used for a wide variety of models with widely varying
assumptions contained within the maintained hypothesis. Further, as will be discussed in a subsequent
section, what is nonlinear and what is not, depends as much on the formulation of the problem as on the
inherent structure of the system.

I will begin with discussing “deterministic nonlinearity,” which is a general term that contains models of
“chaos.” Nonlinear deterministic models are, as the name implies, “non linear,” and are therefore an
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amorphous collection of models defined by exclusion from the well-defined class of linear models. Nonlinear
models are usually modeled by nonlinear differential, or difference, equations. Models of deterministic chaos
are a subcategory of nonlinear models that are characterized by the conjunction of local instability, thereby
giving rise to sensitivity to initial conditions, with global stability that effectively restricts the long-term domain
of the dynamic orbits to a bounded compact set. Chaotic paths, notwithstanding their seemingly random time
paths, are in fact representations of long-term steady states of the corresponding dynamical system.

A second major strand to use of the term “nonlinear” is in the context of stochastic models. In this situation,
the adjective “nonlinear” may refer to properties of models that link the conditional moments of the
distributions involved to the time paths of exogenous variables, or to the nature of the time-varying path of
the distributions themselves. With respect to the former concept, researchers frequently restrict attention to
just the first two moments, although this is more a matter of convenience than of theoretical necessity or
empirical fact.

In the subsequent development, I will use the term “nonlinear” in all of its various senses, but will
endeavor to be clear which is which at any given point in the text.

2 Forecasting and Nonlinear Models: The Record

The empirical literature on chaotic and nonlinear dynamics began in about 1986. Since that time, there has
been an enormous amount of activity. The following comments cannot hope to provide a thorough review of
the empirical literature. I will restrict myself to a brief schematic review indicating only the main results, the
“bottom line,” as it were. In the discussion below I will refer to a few reviews of the literature which do an
excellent job of bringing the new reader up to date; see in particular Lorenz (1993), Bollerslev et al. (1990),
Brock and Potter (1993), and Le Baron (1994).

The initial flurry of activity investigating the role of “chaos” in economics that began in 1986 centered on
calculating Lyapunov exponents and dimension numbers. Lyapunov exponents determine the degree of local
instability of the time paths of a dynamic system, and dimension indicates the degree of complexity of the
system as determined by the minimum number of variables that is needed to model the system. An objective
of the early analysis was to discover the presence of a deterministic chaotic structure that would be analogous
to the discoveries in the experimental sciences. Unfortunately, the challenge was too great. The sparsity of
data was a problem, albeit not the most important one. There were also difficulties caused by aggregation and
the fact that the sampling rate is usually far too coarse for detecting fine dynamical structure; see for example,
Ramsey and Yuan (1989) and Ramsey et al. (1990). Some of the other reasons for the “nondetection” of chaos
will be enunciated below when I discuss the concepts of openness and nonisolation of systems.

A more germane reason for the failure was that in the experimental sciences the empirical discovery of
chaos was always achieved by examining systems that were on the boundary of the transition from
periodicity to chaos. If we were to examine systems that are deeply into the chaotic regime, we would
discover that the tools available for the detection of chaos are inadequate even in the experimental sciences,
Casdagli (1989). What is needed to discover chaos in economics is a series of experiments that will enable
one to evaluate behavior as the system is “forced” to undergo a phase transition from periodicity to chaos.
Actual economic systems are not likely to be observed on the borderline between periodicity and chaos.
Thus, the most likely potential for the discovery of chaos in economics is through experimental economics.

The outcome of the effort to discover chaos in the context of economic and financial data is best
summarized in the words of Granger and Teräsvirta (1992): “Deterministic (chaotic) models are of little
relevance in economics and so we will consider only stochastic models.” The theme was echoed and
amplified by Jaditz and Sayers (1992), who reviewed a wide variety of research to conclude that there was no
evidence for chaos, but that was not to deny the indication of nonlinear dynamics of some sort (Brock and
Potter 1993; Le Baron 1994; and Ashley and Patterson 1989).

The more limited objective of finding a data-dependent method for determining the “dimension” of an
economic system has been an equal failure so far. The importance of this task is clear. If one can obtain an
estimate of the number of degrees of freedom within an economic system, then the task of the
econometrician is greatly simplified; and if, for reasons to be discussed later, the number of degrees of
freedom tends to vary by small amounts over time, the econometric benefits from dimension estimation
would be even greater. Unfortunately, the determination of the number of degrees of freedom of an economic
system is no easy task, and it cannot be accomplished by a straightforward calculation of dimension constants,
no matter how defined (Casdagli 1992; Hunter 1992).
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There are several reasons for this, some of which will be discussed in the sequel, but one of the most
important is that appropriate models for economic and financial data involve internal resonating noise in
addition to observational noise. In short, one of the difficulties is that economic models must incorporate the
nonlinear processing of shocks to the system that behave like random noise. Depending on the relative size
of the noise variance, the presence of such terms on dimension calculations can produce results that are
difficult to distinguish from colored noise; that is, error terms that are representable by a general linear model.

The next major branch of the empirical literature involved the detection of “general nonlinearity” in the
context of stochastic models. Some researchers distinguish nonlinearity in the mean from nonlinearity in the
variances. While this is a common practice, the distinction is not useful in an exclusionary sense. As argued
elsewhere (Ramsey 1994), it is likely that the analysis of macroeconomic variables must take into account the
contemporaneous interaction of both means and variances. Further, the nonlinearity that we observe will
likely affect all the moments of the relevant distributions; the higher moments in particular. Thus, to restrict
attention to nonlinearity in the means, or to nonlinearity in the variances, is probably counterproductive.

The results of the search for stochastic, as opposed to deterministic, nonlinearity are summarized in Brock
et al. (1991), Lorenz (1989), Ashley et al. (1986), Ramsey et al. (1990), Granger (1991), Ramsey and Rothman
(1995), Lee et al. (1993), Bollerslev et al. (1990), Barnett et al. (1993), Rothman (1994), and Le Baron (1994).
All these authors testify to one general result. There is abundant evidence that economic and financial data
provide many varied indications of widespread stochastic nonlinearity, even though the main effects seem to
be exhibited in the variances of the respective distributions.

The main debate that arises from this literature is whether there is evidence of nonlinearity net of
generalized autoregressive conditional heteroskedastic (ARCH) effects. Some of the work of Brock and
LeBaron cited in Brock et al. (1991), as well as a number of other researchers, have all indicated that
generalized ARCH models still leave some evidence of nonlinearities in the data. However, what that
nonlinearity is and how it should be modeled is still an open question. A recent example of current attempts
is provided by the “ceiling-floor” model of U.S. GDP growth rates by Pesaran and Potter (1993). An alternative
approach that returns to the analysis of the time variation of the means is the examination of time series for
evidence of time irreversibility (Ramsey and Rothman 1995).

The work of Ramsey and Rothman on the existence of time irreversibility in macroeconomic variables
provides a litmus test for the relevance of any proposed models of macrobehavior; that is, for a variety of
macrovariables, relevant models must be time irreversible. In short, the business cycle is “asymmetric” in that
upturns do not have the same shape as downturns, but are inverted. The evidence for asymmetry is extensive
in macroeconomic variables. The advantages of the time-irreversibility concept are that a variety of definitions
of asymmetry can be subsumed under one general concept, and that time irreversibility is directly related to
the dynamics of the system.

The forecasting literature with respect to nonlinear models can be illustrated by only a few papers that
represent the plethora of ARCH-type models and some of the work that is now being carried out to compare
various types of nonlinear dynamic models. With respect to ARCH models of all types, Bollerslev et al. (1990)
have provided a comprehensive review of the use of ARCH models in finance and foreign exchange. The
overwhelming conclusion is that ARCH models of some persuasion provide very useful representations of the
second moments of the data, but that the evidence for out-of-sample forecasts is not very strong. Adding to
these statements, Day and Lewis (1988), who examined the relative information content of implied volatilities
from option prices and historical volatilities obtained by using both generalized autoregressive conditional
heteroskedastic (GARCH) and exponential generalized autoregressive conditional heteroskedastic (EGARCH)
processes, concluded that “weekly volatility is difficult to predict.” A more informative comment was made by
McCurdy and Stengos (1991). These authors compared parametric estimates of a model of time-varying risk
premia with kernel estimators of the conditional mean function. The nonparametric approach produced better
within sample fits, but the parametric model produced only marginally better out-of-sample (one-period)
forecasts. The authors conclude: “The superior in-sample performance of the [nonparametric kernel estimator]
may be attributed to overfitting.” I shall return to this idea of overfitting and forecasting performance later.

Mizrach (1992) used nearest-neighbor procedures to attempt to forecast European Monetary System (EMS)
exchange rates. The result is essentially that such procedures do not provide reliably improved forecasts.
Algoskoufis and Stengos (1991) concluded that the U.S. unemployment rate was easily described by an AR(2)
process with ARCH errors. There was some evidence of nonlinearity in the U.K. unemployment data, but the
nonlinearity is unlikely to be “chaotic” in nature. The potential for substantial forecasting gains appears to be
slight. Prescott and Stengos (1991) investigated the time path of gold prices and concluded that there was no
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forecastable structure in the conditional means of the return series, but that the evidence of nonlinear
dependence seemed to be restricted to the higher moments.

Rothman (1994) compared a variety of nonlinear models to a simple linear model. One should recognize
that none of the postulated models arise out of any theory, or even from a close examination of the dynamical
properties of the data; this is a point that I will return to later in the paper. The series involved are the U.S.
unemployment rates that are known to be asymmetric, so that some form of nonlinear model is required. The
forecast gain in forecasting conditional means by the nonlinear models depends on prior transformations to
stationarity, but within that restriction there are statistically significant gains relative to linear models.

However, a number of other studies have found little forecasting benefit using nonlinear models. Swanson
and White (1995) used an adaptive neural network approach for a variety of macrovariables, and contrasted
the results to those of the Survey of Professional Forecasters. A major conclusion was that while adaptivity
was very important, that is, re-estimating the neural network for each forecast horizon, nonlinearity seemed to
play a relatively minor role. Two other recent articles obtained disappointing results for the benefits of
nonlinear models in the context of foreign exchange markets. Diebold and Nason (1990) found a dramatic
difference in the relative performance of their nonparametric predictors for the conditional means in sample
and out of sample; the out-of-sample forecast record for the nonparametric predictors was worse than for the
random walk models. Subsequent work by Meese and Rose (1991) examined the empirical relationship
between nominal exchange rates and macroeconomic fundamentals for five major Organization for European
Community Development (OECD) countries, and found that neither time deformation (Stock 1987) nor
incorporating nonlinearities into structural models improved the forecasts of the levels of exchange rates.

The overall conclusion is that there is, so far, very little evidence one way or the other for the forecast
benefits of nonlinear models over linear ones. This is true even when one extends the variables of interest
from means to variances. What evidence there is, is not overwhelming to say the least, although the Rothman
results are among the strongest.

The remainder of this paper will concentrate on the difficulties that successful forecasting must face, and
query the preeminence of the forecasting criterion. The paper ends with a summary of the current status of
nonlinear models and their role in forecasting.

3 Some Rationalizations of Forecasting Difficulties

An aphorism that can readily be applied to economic forecasts is that “good fits do not necessarily lead to
good forecasts.” We can be even more adventurous, and claim that often the situation is that “better fits lead
to worse forecasts.” While I will not document this claim, merely illustrate it, its purported truth is
recognizable by anyone who has had a few years’ experience in examining economic forecasts. An excellent
early empirical evaluation of this claim is Makridakis (1986), who documented the lack of correlation between
fit and forecast accuracy even for a single-period forecast horizon.

There is evidence (for example, Poole 1988; Stock and Watson 1988), that the standard estimates of forecast
error as well as the estimates of the variance of coefficient estimates significantly understate the observed
variances of the forecasts and the variances of the coefficient estimates in the post-fitting stage. For example,
the Stock and Watson (1988) graph that is reproduced in this paper as Figure 1 illustrates one aspect of the
forecasting problem in a striking manner. In this figure we see that two long-term forecasts from the history of
consumption and GNP were well outside the actual subsequent paths, and are themselves well separated. In
short, the calculated standard errors of forecast were essentially irrelevant to determining the probability
bounds for the subsequent path of the forecasted variables.

The Poole analysis (1988) focused on the unanticipated sudden cessation in the steady rate of growth in
velocity of 3.1 percent per year that held from the early 1950s to the early 1980s. This surprise occurred
despite the widespread econometric attention paid to the velocity measure and the theoretical importance that
was attached to it.

While I do not want to over-emphasize these two examples, they do provide a striking illustration of the
central idea. The lesson that they illustrate could as easily have been illustrated at many other points in the
history of these series. Indeed, the lesson could have been made with almost any other series. The
conventional measures of forecast accuracy do not seem to be relevant in actual forecast situations. While the
observed degree of variation over any given interval did not change very much over the subsequent period,
the actual path of the variable was well outside the predicted bounds; the calculated error bounds were at
best misleading. One may usefully speculate that the lack of forecasting performance stems from problems
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Figure 1
Post-war Real per Capita U.S. GNP, Total Consumption, and Gross Private Domestic Investment (in logarithms).

All three series have been arbitrarily set to 1 in 1951:I. The straight solid lines represent two long-run forecasts of GNP,
the lower using data from 1951:I–1959:IV, and the upper using data from 1960:I–1969:IV. The forecasts were made
by extrapolating GNP growth over these periods using a linear deterministic time trend. The dotted lines represent
bands of ± two standard deviations of quarterly GNP growth around the long-run forecasts. Were GNP a stationary
series about a linear time trend, these bands would provide an approximate long-run 95% confidence interval for the
respective GNP forecasts. (Reprinted from J. W. Stock and M. V. Watson, “Variable Trends in Economic Time Series,”
Journal of Economic Perspectives, Summer 1988, 2(3):148.)

more severe than merely the underestimation of variances; it is likely that we really do not have a reasonable
grasp of the underlying data-generating mechanism.

Before proceeding with the main argument, what is meant by linear and nonlinear should be clarified.

3.1 Linear or Nonlinear Is in the Equation
Let me begin by clarifying the use of the term “nonlinear.” Strictly speaking, the distinction between the terms
“nonlinear” and “linear” must refer to the equations, or model, that is used to describe or characterize the
phenomenon under investigation. The distinction has no meaning when applied to the observation of the
phenomenon itself without a specific representation in mind. Further, what is linear or nonlinear depends on
the approach that is taken to provide a mathematical description of the phenomenon. Generally, any linear
partial differential equation is mathematically equivalent to the equations of its characteristics which are
usually nonlinear (Van Kampen 1981). For example, Newton’s equations of motion for the planets are
nonlinear, but the Schrödinger equation of the solar system is linear. The Euler equations from economic
optimization may be linear, but the corresponding “equations of motion” of the variables themselves may well
be nonlinear.

A further consideration is that what is or is not nonlinear is often a function of the choice of coordinate
system, with respect to which the specific formulation of the model is tied. A suitable change in coordinate
system can often redefine the relevant equations so that with respect to the new coordinate system the
equations are either linear, or easily linearized. For example, dynamical equations expressed in terms of the
parameter time “t ,” may be highly nonlinear, but there may exist a differential function h(t) such that by
redefining the dynamical equations in terms of the “new time” variable T = h(t), the resulting equations are
linear.

To illustrate, the arrival of information in the international foreign exchange market in terms of calendar
time is very uneven, depending on which regional markets are open at any point in time. Some consideration
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has been given to this problem by Dacorogna et al. (1993), and an alternative solution was provided by
Ramsey and Zhang (1995). In both cases, the underlying concept was that complex variations in the time
paths of price and quantities traded could be simplified by using a different definition of “time” than simple
calendar time. In Ramsey and Zhang (1995), time was redefined in terms of the rate of arrival of new postings
of bid and ask prices, so that the implied sampling rate was proportional to the rate of information arrival.
Previous schemes using nonlinear truncations of calendar time to define the sampling intervals had implicitly
over-sampled in periods of low information flow and implicitly under-sampled during periods of high
information flow. There is some evidence that the use of such “artificial units of time” simplified the analysis
of the time variation of returns.

While it is plausible that the time variation of economic variables in terms of the usual Euclidean
coordinates is best modeled by nonlinear equations, it is equally plausible that given a suitable choice of
coordinates, the differential equations defining the dynamics of the system may well be linear, or sufficiently
near linear that perturbation methods are feasible. A very simple example that is familiar to economists is the
transformation from measurements on levels of economic variables to measurements on relative rates of
growth defined in terms of first differences of the logarithms of the levels. Often, such a transformation
linearizes the problem and simplifies the statistical analysis.

The question of a suitable choice of “coordinates” is a key issue in physics, even in the context of
Hamiltonian systems. The idea is to convert a Hamiltonian system defined with respect to a Euclidean system
of units that may be constrained to lie on a nonlinear manifold into a simpler Hamiltonian system that is
defined without nonlinear constraints. Sometimes, such transformations can be achieved by the simple
expedient of transforming from Euclidean coordinates to polar, or spherical coordinates. However, the
situation is usually not so simple. Often, one must transform the data by more elaborate procedures and, in
the process, one often defines new variables of theoretical interest.

Thus, one objective of research in economics should be to investigate the extent to which reformulations of
economic relationships in terms of differential equations with an appropriate choice of coordinate system will
produce near-linear equations for estimation. In short, instead of trying to impose linearity on the complex
paths of the currently observed data, we should seek to reformulate the system in ways that will facilitate
deriving linear equations in terms of generalized coordinates.

When one considers stochastic formulations of economic models, the potential for nonlinearity is even
more common. As illustrated in Granger (1991), if E (yt |xt ) = g(xt ), where g(·) is linear, but with a nonzero
constant term, then the conditional mean of y2

t is nonlinear. Further, if the variance of the additive error term
depends on the square of the conditioning variable, that is, the error term is heteroskedastic and the
heteroskedasticity is a function of x2

t , then in fact the relationship between yt and xt is nonlinear. Thus, even
in these very simple cases, whether or not an equation is linear or nonlinear depends on the formulation of
the problem. One obvious way to deal with nonlinearity as an initial step is to reformulate the problem to
enhance linearity, even if by so doing the variables involved in the equations to be estimated are difficult to
interpret economically. However, as an ancillary benefit, the reformulated problem may well lead to new
theoretical insights into the operation of the economic system.

3.2 Open Nonisolated Systems Cannot Be Forecasted
There are two classes of problems involved in forecasting. The first class is inherent to the nature of economic
data; the second concerns the way in which we approach the modeling of data. The first class is that
economic systems are typically open and nonisolated. The second is that regression fitting is inherently local,
whereas successful forecasting relies on the global characteristics of the system.

An “open” system is one for which there is exchange of “material” across system boundaries. For a “closed”
system, the time path of variation in the values of all variables is determined within the system; there is
neither input, nor output. A “Robinson Crusoe” economy before the arrival of “Man Friday” is a typical, but
stark, example of a closed system. Trade is an obvious example of a mechanism that links open systems. The
wheat market is open to the extent that the market for wheat depends on variables in the markets for labor,
energy, and capital inputs, and that its output is the input to other productive processes and consumption.
“Material” crosses system boundaries, or the system is characterized by flows of inputs and outputs. In
equilibrium, there is a material balance in the flows so that flows are steady state, there is no change in the
efficiency losses, and there is no accumulation, or decumulation, in inventories. As an example, the bond and
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stock markets are closed except for the input or withdrawal of “cash” into the system and the creation, or
destruction, of instruments.

The line of causality for the equations of motion need not run from “inputs” to “outputs.” In economic
markets the direction of causality can be from outputs to inputs, in that the supply side of the market responds
to variations in the demand for its products. The direction of causality depends on the structure of the
dynamical system, including the presence of feedback loops. Consequently, the identification of both “inputs”
and “outputs” imputes to neither that they are exogenous, or “predetermined” variables as these terms are
normally used in econometrics. The causal structure of the dynamical system must be analyzed to determine
which, if any, of the variables involved in the openness of the system are exogenous, or predetermined, in the
usual sense. Engle et al. (1983) clarified the term “exogenous” and delineated the conditions under which the
presence of an exogenous variable enabled one to make inferences about subsets of parameters in the
absence of information about the joint distribution of the “exogenous” variables. The definition of “openness”
used above and the corresponding notions of “inputs” and “outputs” cuts across the distinctions discussed by
Engle, Hendry, and Richard, or EHR. A system may be open with a feedback loop from the outputs to the
inputs in such a way that there are no “exogenous” variables in the EHR sense. Openness and isolation are
concepts in specifying the properties of the dynamical system, irrespective of whether one can estimate and
identify from observed data the parameters of a model describing the system. “Exogeneity” can be regarded as
a constraint on the properties of joint distribution functions, whereby inferences about a model’s parameters
are invariant to the parameters of the marginal distribution of the exogenous variable.

The other relevant concept is “isolation.” Markets, or economies, are not isolated if they react to forces, or
“energy,” from outside the system. An isolated system is one that does not interact with other systems; it is
one for which the equations of motion within the system remain invariant to events outside the system.
Nonisolation means that the relationships within a system are altered by external events. This may mean either
that the functional form of the equations modeling the relationship are altered by external events, or, more
simply, that the coefficients in the model are altered by changes in external events. For example, the operation
of the bond market interacts with the operation of the stock and money markets through variations in returns.
Technological change, especially in the intermediate and short run, is the quintessential example of the effects
of external events that alter the productive relationships. As another example, legislation on the operation of
the market ensures that the market is not isolated. Nonisolation means that the “equations of motion” within a
system are influenced by activity outside the system; the equations themselves are changed. In contrast, an
open isolated system merely implies that while the state of the system depends on the rates of flow of “inputs”
and “outputs,” the equations of motion within the system remain invariant to action outside the system.

Systems can be open, but isolated; or closed, but not isolated. A stock market without change in the
volume of stocks and without change in the available cash into the system is closed, but is not isolated from
interest-rate changes. A “Robinson Crusoe” economy that begins to launch little boats with messages is no
longer closed, but is still isolated. A “Robinson Crusoe” economy that is showered by acid rain is still closed,
but is no longer isolated. The key issue in this example is that the acid rain, though it is not an “input” into
productive processes, has the effect of altering the productive relationships.

Open isolated systems can be forecasted, but only under strict assumptions about the flows of inputs and
outputs. If the causal relationship is from inputs to outputs and the flow of inputs can be forecasted in their
own right, then the system and its outputs can be forecasted. Alternatively, if the causal flow is from outputs
to inputs, that is, for example, the market responds to fluctuations in demand, inputs are perfectly elastic, and
demand can be forecasted in its own right, then the system and its inputs can be forecasted. To forecast such
a system, open and isolated, requires either knowledge about the time path of inputs or outputs, depending
on the direction of causality, or the necessity to extend the system to include the markets, or systems, for the
inputs and outputs. However, in the former case, as is well understood, the forecasting results usually depend
on forecasting without a model the behavior of the variables that are driving the system.

In the latter case, where one extends the system, and using one of the examples in a prior paragraph, we
may close the financial markets by examining as one dynamical system the stock, bond, and money markets.
Indeed, merely to speak of a “stock,” or of a “bond” market, involves the extension of the individual markets
for each instrument to a much larger market that includes the interactions between all the components. We
are able to speak of a “bond market” or a “stock market” only if there is sufficient comovement between the
components of each market that is, in turn, distinguishable from the comovement of the other markets. The
approach of incorporating interacting subsystems, however, is rapidly self-defeating in that one soon has too
large a problem to solve, with far too many variables to evaluate.
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One empirical approach to limit the explosion of systems to evaluate, to obtain forecasts of relatively
closed and isolated systems, is to estimate the sensitivity of the estimates of prime interest to the variation of
the variables introduced by the openness of the original system. One extends the analysis to include all
interactive systems that involve variables whose impact on the variables of interest exceeds some
researcher-assigned tolerance.

Nonisolated systems cannot usually be forecasted. The main difficulty is that if one is dealing with a
nonisolated system, then by “definition” as it were, the system under investigation is being altered by events
that are usually neither recorded, nor measured by the researcher. Under certain fortuitous circumstances, it
may be the case that the variation in the dynamical system can be represented as a smooth time variation in
the values of the coefficients, or the path of the coefficients can be linked to some observable variable. These
are the easiest examples of nonisolation with which to deal. However, one must realize that without a
supporting theory, one will never know when the fortuitous circumstances cease to apply. Two examples of
papers that address aspects of these issues from the econometric view are Ghysels et al. (1995), who provides
a test for a structural change at an unknown breakpoint, and Hastie and Tibshirani (1993), who investigate the
procedures for estimating coefficients that are themselves functions of other, but observable, variables. In the
former example, there is presumed to be a single point in time at which the nonisolated system’s dynamics
are changed. While the change in coefficient values is recognized as a problem, no attention is paid to the
econometric problem of disentangling transient dynamical behavior induced by the shift, from the new
steady-state dynamics that will apply once the transients have died out. The Hastie and Tibshirani problem is
one in which a system’s coefficients change smoothly over time as a function of a variable outside the system;
in short, the nonisolation of the system, that is, the shifting in the system’s relationships, can be captured by a
functional relationship between the coefficients and some other variable.

Clearly, if over time the relationships themselves are changing, then even very good fits to a historically
observed series typically will not produce very good forecasts beyond one or two periods; the estimated
variances of both forecasts and of coefficient estimates will, in general, be smaller than the observed variances
from actual realizations of the future data, and the forecast variance formulae based on nontime-varying
coefficients will not be relevant. Paradoxically, it is often the case that the better the fit for nonisolated
systems, the worse the forecast. An intuitive explanation of this paradox is easily presented.

Suppose that the model of a closed and isolated version of a system is correct, but that the observed system
is nonisolated. One of the effects of nonisolation is to produce model coefficient estimates that vary through
time with subsamples of the data. Estimating the equations in a nonisolated system over a given fixed time
period implies that the coefficient estimates, which are adjusted to minimize the squared errors, reflect a
trade-off between minimizing the actual errors and the errors induced by the time-varying effects of the
nonisolation. While this procedure can yield good fits, it is unlikely to produce reasonable forecasts after the
first few periods. This problem will be more thoroughly explored in the next subsection.

There is an exceptional case in which the lack of isolation can be benign in its effects. Suppose that the
relationships in the system are all linear, and the effect of nonisolation is to produce a linear drift in the
coefficients that is highly correlated with one or more of the variables of the system. Under these
circumstances, while the estimates of the system’s relationships are biased, the impact on forecasting is not
detectable. This is because the effect of the time-varying coefficients has been transferred by the fitting
process to the coefficient values imputed by the model to some of the included regressors. If we now
consider forecasting with this model, we see that its reliability and the accuracy of the forecast statements
depend on the extent to which the fortuitous correlation between the coefficient drift and the time path of
some of the included variables continues to hold.

There are three potential ways to deal with the issue of nonisolation, two of which are common to
economists. First, one can try to pick markets and subperiods of time so that one can be reasonably certain
that within the restricted system, there is reason to believe that the system is approximately isolated. However,
one can never be sure that such is the case, even during the estimation period, and certainly one cannot
usually predict the dynamics of the events that make the analyzed system nonisolated.

The second approach is to expand the system to include those aspects that account for most of the
elements that make the system nonisolated. Presumably, this was the motivation, along with the added
problem of openness, underlying the creation of “project link” in which national macro models were linked
through their trade and financial market interactions. Unfortunately, there are so many theoretical
interdependencies that this is not usually a practical solution.

A third approach for dealing with nonisolation is to rely on the possibility of the separation of time scales
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to separate out the effects of nonisolation. At very short time scales, some effects can be ignored in that they
are changing sufficiently slowly relative to the rate of change of the variables of interest. For example, if
external events affecting the system can be determined to be varying over decades, whereas the internal
variables are varying over several months, then short run solutions to the system dynamics can be achieved
by treating the external variables as constants. However, care must be taken, for even very slow changes will
eventually have a measurable effect; in short, from this we anticipate the idea of “slowly varying coefficients.”
At the other extreme, nonisolation may be evidenced by rapidly varying effects that can be averaged out; this
is, of course, the econometric assumption underlying random coefficient models (Swamy 1970). An
intermediate period case is illustrated by Osborn (1990), who examined models with seasonally varying
coefficients. In so far as this model is relevant, this approach is an example of nonisolation that can be
modeled in terms of continuous functions of time.

Similarly, it may be determined that nonisolation of the system is such that over normal time scales for the
system, we can ignore the effects until they are evidenced, and then allow for the change that has been
introduced. More precisely, it may be the case that we can model the effects of, say, legislation or a major
new technology, as a Poisson process with a very long mean duration time between occurrences. At each
occurrence, the dynamical system has to be reinitialized. Unfortunately, it is likely that the mean arrival time is
also time-varying.

A traditional method in economics to deal with aspects of nonisolation is the use of “dummy” variables,
which are often used to allow a different intercept to hold during a specified period, for example, during a
war, or a monetary experiment. The concentration on dynamics indicates that modeling external events that
alter relationships must go beyond the simple allowance for a shift in mean values. In general, even the
long-term steady-state path will be affected, as will its stability properties, so that one should examine effects
beyond a change in equilibrium values. At the least, one should consider interaction effects between the
externally induced shift and the effect that the other variables have on the system. In the context of linear
models using analysis of variance (ANOVA), the effects that should be allowed for include both interaction
and higher-order terms. However, the situation is even more complex, in that an externally induced change
will induce transients into the system that produce short-run variations in the outputs of the system, in
addition to those that will hold in the long-term steady state.

A point of clarification is perhaps needed about the role of “dummies” that are introduced to represent the
effects of a shift in relationships. Suppose that one is modeling a productive process, and that the introduction
of a dummy variable that takes the value one during a strike and zero elsewhere accurately captures the effect
of the strike on the dynamics of the productive process. The dummy variable is clearly needed in the
estimation process to estimate the “nonstrike” relationship. When one tries to forecast over a specific time
period, two questions arise. First, to the extent that one can forecast “no strike” over the forecast horizon, the
estimated model coefficient estimates provide a useful basis for forecasting production, but only given a “no
strike” assumption. This is, of course, the problem. Seldom will one have accurate information about the
occurrence of a strike, so that the reliability of the forecast depends on the reliability of the no-strike forecast.
If there were some statistical regularity in the occurrence of strikes, so that one could estimate the probability
of a strike, then one could, in confidence, produce a forecast with relevant standard errors. The second
question concerns the relevancy of the estimates of the effects of a strike in that the transients of the reaction
may well be state-dependent, and it will be difficult to estimate from one observational period such state
dependence.

Consider, for example, the introduction of options markets into the stock market. The long-term
steady-state relationship between the trade-off between return and risk was altered, as was the reaction of the
stock market to news of earnings changes. In addition, for some time, perhaps several years in this example,
the new market was undergoing transient changes as traders learned how to use and price the new
instruments. In addition, the system would have had to adjust from the initial conditions that prevailed at the
time of the change in the relationships. A similar example is provided by the “floating” of the major currencies
in 1974. Reputedly, a few years were needed for the transients induced by this change to work themselves
out. The difficulties in determining and estimating the coefficients of models undergoing change from external
events is clear from these examples. To consider forecasting any market dependent on the introduction of
options, or the floating of exchange rates, one must estimate, contemporaneously to the change in the market,
the new dynamical system and one must also isolate the transients. To achieve this result would seem to
require a degree of theoretical detail and precision that is far beyond anything available in economics or
finance at this time.
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A better example of these problems with nonisolated systems is provided by the first oil-price shock. In this
case, it is easy to perceive the role of both long-run adjustments to a new dynamical relationship and the role
of transients in the dynamics that were generated immediately. Oil firms and academic researchers had
considerable difficulty in obtaining reliable estimates of future demand relationships, both to forecast the
mean level at given prices and given levels of economic activity, and to forecast the outcome of another
shock to the oil market. The adjustment process with its accompanying transient dynamics lasted for years;
meanwhile, the oil industry experts who attempted to estimate “new” demand and supply relationships did
not take into account the effect on their estimates of any of the dynamics that were involved in reaction to the
oil-price shock.

Openness and nonisolation are facts of life that must be faced. To the extent that one can mitigate the
effects, reasonable forecasts can be made. To the extent to which one cannot mitigate the effects, one must
recognize the true limits to forecasting. If one cannot forecast the causal components in an open system, one
cannot forecast the system outputs, no matter how well the relationship is understood. If the system is
nonisolated, in general one cannot forecast at all in that the system’s model is changing both in the short run
due to transients, and in the long run to reflect the new dynamics. Only in those rare circumstances when one
can model the effects of such external changes in the relationships might one contemplate forecasting a
nonisolated system’s outputs.

The concepts of closure and isolation have an interesting effect on the comparison between the statistical
properties of the forecasts from linear and nonlinear models. For nonlinear models, the difficulty induced by
the lack of closure and isolation are likely to indicate serious lack of fit very soon, that is, after a relatively
short forecast horizon. Linear models, in contrast, as indicated above, may give no indication that there is a
difficulty for some time. The problem with the linear models is subtle in that while there may be no obvious
specification error to be observed in the residuals, the coefficient estimates are biased in that the estimates
collapse into one value (the effect of the variable itself) and the effects of the lack of closure or isolation.
While the linear models might appear to produce more stable fits in the short run, inferences drawn from
them would nevertheless be in serious error in the presence of undiscovered nonisolation and openness. At
least with a nonlinear model, one will usually receive early warning in terms of observable specification errors
that a model misspecification has been made.

4 Local Fitting Leads to Global Misfits

Regression fitting, even with nonlinear models, is essentially a local approximation centered at the vector of
means of the constituent variables. Even if the approximation is very good and the underlying system is both
closed and isolated, the standard results still may not apply, and estimates of forecast accuracy may not match
expectations.

This is because forecasting inherently relies on global properties of the system. While one-period-ahead
forecasts rely least on global properties, the lesson is still that forecasting requires more constraints on a
system than local fitting. Forecasting is much more influenced by openness and nonisolation than is local
fitting. One can always find some approximation to a historical sequence of data, but forecasting essentially
involves extrapolation. Successful extrapolation requires global constraints to be met.

Thus, nonlinear models lead to a greater sensitivity of forecast errors to the underlying assumptions of the
system. Subtle differences over the fitting region lead to rapidly decreasing usefulness of forecasts, especially
when the system’s models are nonlinear. The variation in forecasts and fitted values of parameters may be
greater than is indicated by local approximating fits. These are complications that are heightened by
nonlinearities in the equations. Small deviations within the fitting period that are not easily detected given the
inevitable presence of noise may quickly grow to very large values in the forecast regime. If fitting is over a
local instability region in a globally stable system, then even very good fits can easily lead to very inaccurate
forecasts. For example, consider the well-known “tent” function as a nonlinear mapping that is piecewise
continuous and linear. Local fitting can lead either to explosive growth, or to implosive collapse, whereas the
model is globally stable, even if it has a chaotic path. In either event, the forecasts will, in general, be wildly
at variance with actual outcomes.

Recently, Yao and Tong investigated in the context of nonlinear models the effects on forecast accuracy of
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a lack of accuracy in observing, or estimating, initial conditions. Their introductory paragraph presents the
problem very well (Yao and Tong 1994):

“The predominance until quite recently of the assumption of linearity in time series analysis has
perpetuated the misconception that the reliability of the prediction is independent of the state. Indeed
many standard textbooks in time series analysis have given ‘error bounds’ for the point forecasts
which are uniform over the state space. Although uniformity may be true for linear least squares
prediction, it is certainly untrue for non-linear prediction.”

Here again, we see the key distinction between local fits and global forecasts. In this case, the emphasis is
on the state of the state space in the “relatively distant past” and the effect that it has on the accuracy of one’s
forecasts.

Another source of forecast instability is the choice of approximation to the equations of motion used in
model estimation. In general, the use of polynomials is not to be encouraged. For example, in Ozaki (1985),
the examination of the stochastic dynamics of a ship rolling in waves reveals that, while a multivariate
quadratic approximation to the nonlinear model provides good fits to the observed data, the attempts to
extrapolate the results produced very bad “forecasts.” This result occurred mainly because while the
ship-rolling dynamics were stable, the quadratic approximation was not. Another example of an inefficient
approximating mechanism for producing forecasts is the use of Taylor’s series expansions whenever
extrapolations away from the point about which the expansion was calculated are needed. If forecasting is to
be successful, even with closed and isolated systems, the approximating equations must have the same global
properties as the equations themselves.

Consider an example originally generated by Riggs (1963). The data-generating mechanism is given in
Equation 4.1.

yt = A0 + A1Exp(B1t)+ A2Exp(B2t)+ et ,

A0 = 8.0,A1 = 36.0,B1 = −0.5, (4.1)

A2 = = 22.0,B2 = −0.1.

Figure 2 shows a sample of 20 observations drawn from this model, and the regression fits using a standard
nonlinear regression routine for five models: the model shown in Equation 4.1, a model with A0 set to zero, a
model with the second exponential replaced by a linear function in time, t , and finally, two models that were
modeled by orthogonal polynomials in “t” of degree three and five, respectively. Only the orthogonal
polynomial models provide any obvious evidence of specification error at the ends of the series. If the noise
level were any higher than the signal-to-noise ratio of 17:1 that was used in Equation 4.1, the estimation
results for the polynomial models would have given no obvious evidence of misspecification either. Even so,
the R2 values for the polynomial models were in excess of 0.98, and all the coefficients were very highly
significant. The “exponential” models that were alternatives to Equation 4.1 had even better regression fits, but
the “t -ratios” were somewhat lower, although unambiguously highly significant. With the possible exception
of the two orthogonal polynomial models, each model gives the appearance of providing an excellent fit to
the data.

Consider now Figure 3, in which is shown the projections of each of these models beyond the sample
range. To stress that the problem that I am addressing with this example is not a result of “over-fitting” to
sampling variation, the extrapolations presented in Figure 3 are based on coefficient estimates obtained from
the “no-error” version of the model shown in Equation 4.1, that is, et is set identically to zero. All of the other
“seemingly correct” models are wildly at variance with the extrapolations of the correct model and any
common forecast standard-error calculation would be totally irrelevant.

Using the last few observations to provide a fit by minimum mean-forecast error would not aid the matter
in these cases, as the same basic fits would be obtained. The source of the “error” here is that the alternative
models do not impose the global constraints that underlie the original model in that as “t” approaches infinity,
the system being modeled converges to a lower asymptote of 8.0.

Yet another problem occurs when the system is not well understood and the researcher is searching for a
model of the data. Under these conditions, the use of local fitting is even more prone to reflect the ephemera
of local random fluctuations; one tends to “overfit” the local time-idiosyncratic-random fluctuations of the data
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Figure 2
Fits Using Five Alternative Models.

True Model: 8.0+ 36.0∗ exp(−0.5∗t)+ 22.0∗ exp(−0.1∗t)+ e; e ∼ N (0, 1)

Figure 3
The Dangers of Extrapolation from Estimated Relationships.
Extrapolations based on coefficients estimated without error terms
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at the expense of the underlying structure. The shorter the time period over which such fitting is done, the
greater the fluctuation in the estimates of the model’s parameters, and even in the choice of the model itself.
In part, this is because with small data sets the relative importance of “errors” to variations in the model’s
variables is greater; that is, with only a few observations it is more difficult to distinguish model fluctuations
from errors, especially a few errors that by chance contain some form of regularity.

The temptation to overfit is greater than is usually given recognition because researchers tend to
underestimate the extent to which patterns in data can be generated by purely random fluctuations. While the
probability of a specific pattern being observed at random is very low, and decreases approximately
geometrically with the length of the pattern, the probability of observing some pattern at some length size is
very high. For example, imagine that the data consist of a string of binary values of length 10; that is, the data
represent 10 drawings from [0, 1] with equal probability. If we count the number of outcomes that pattern
searchers would regard as “without pattern” in a string of 10 drawings, we get a number on the order of 256,
and perhaps considerably less. But there are a total of 210, or 1,024, drawings, so that the probability of
observing some pattern is nearly three-quarters. The general lesson is clear: while the probability of a specific
pattern is very low, the probability of observing some pattern is very high, even with relatively large numbers
of observations.

After comparing various parametric and nonparametric models using simulated data, Granger and
Teräsvirta (1992) came to the conclusion that nonparametric models tended to provide better fits, but worse
forecasts than the parametric models. Even given that the experimental design included the condition that one
of the parametric models was used to generate the data, these results substantiate the discussion above. That
is, nonparametric formulations that are usually “representational” lead to local over-fitting in the regression,
and therefore to worse forecasts when the “over-fitted” results are extrapolated. Swanson and White (1995)
came to similar conclusions; indeed, these authors felt compelled to design what they called their “insanity
filter” to prevent the neural net results from producing obvious and egregious errors. There is seldom
sufficient attention paid to the properties of the approximating model and whether those properties are
reasonable and can be extrapolated.

The problems alluded to above suggest their own resolution. In the model-searching phase, at least,
attempts should be made to impose global constraints on the model, the approximating equations, and their
estimation, thereby offsetting the tendency to fit approximations with very different global characteristics and
avoiding the tendency to overfit local random patterns. An early example of efforts to provide “global”
constraints to improve the estimation of coefficients in a nonlinear model is Diewert and Wales (1987), which
followed early work by Lau (1978), Gallant, and Golub (1984). The task that Diewert and Wales set for
themselves was to estimate flexible functional forms that would still meet global curvature conditions that
were believed to be incontestable. Consider a further example from Ramsey (1992), in which was reported
the effort to find a useful dynamical model for indices of consumer goods production. The basic concept was
that a forced oscillator of some type would provide a potentially meaningful model of such indices, especially
when coupled with the idea that the parameters of the model were changing adiabatically over time in
response to long time-scale changes in the structure of the economy. The concept was that by allowing for
adiabatic change, one might be able to find a single class of models that would provide a succinct description
of the entire data series. If the goal were to be achieved, then events such as the Depression, World War II,
the Korean War, and so on, could be assessed in terms of the changes in the coefficients over time.

The model finally chosen was based on evaluating both the local regression fits and respecting the global
constraints. The class of approximating models was restricted to those that could match the global
characteristics of the data. Some of the global criteria applied included the stability of the parameter estimates
over the whole data series when estimated in epochs, the stability of the variance estimates over epochs, the
consistency of the estimates with the known dynamical properties of the data, whether there was any
evidence of systematic variation in the residuals at the same time scale as the model’s dynamics, and
symmetry in the model structure across subperiods; that is, the model was not altered over time merely to
meet local subperiod “fits.” In short, local evidences of fit were exchanged for evidence of global consistency.
This approach marks a departure from conventional analysis, in that a single class of models with appropriate
global characteristics was sought that would provide a unified description of all the data, without relying on
the elimination of difficult periods of time, nor on building special cases for the difficult periods.
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4.1 Sampling Rate and Aggregation
Another problem that is aggravated by the presence of nonlinear models is the choice of sampling rate. As is
well known, there is a trade-off between the stochastic continuity of stochastic processes and the relevance of
the Markovian assumption. Stochastic continuity of the stochastic process requires a high sampling rate.
Whereas for the process to be Markovian, a much lower sampling rate is required so that the short-run
processes of adjustment that are path-dependent can be ignored. Typically, empirical research relies on both
assumptions holding. However, if data are sampled at too wide an interval, then not only are high-frequency
components lost, as is well known, but also much of the dynamic structure can be missed, and attempts to
simulate the data using the estimated coefficients can produce simulated paths that are wildly at variance with
the sampled data. In contrast, if the relevant model is linear, or a linear sum of sinusoids, then sampling at a
rate that is a multiple of the periods of the higher frequencies merely loses information on the high-frequency
components. But with nonlinear models, the low sampling rate may also miss evidence that presages
large-amplitude oscillations that will eventually be recorded by the low-frequency sampling rate; see, for
example, the discussion on “intermittency” in Lorenz (1989). When noise is added to the system, the dangers
of a low sampling rate are enhanced. However, intermittently the magnitude of the nonlinear oscillations may
grow to a size that is large relative to the noise floor, in which case one has the appearance of a sudden shock
to the observed system, or one might be forgiven for presuming that the structure of the model had changed.
For interesting examples of these types of situations, see Ozaki (1981, 1985), and Casdagli (1989).

By now it is almost a truism to state that nonlinear models are not easily aggregated, in that it is difficult to
determine a smooth function of some aggregate from even certain knowledge of the nonlinear functions at the
micro level. This problem really concerns the existence of macrovariables, and is discussed in full in another
paper (Ramsey 1994). Nonetheless, it is clear that even C∞ functions contain few subclasses of functions that
are closed under summation. Worse is that it may be even more difficult to obtain a useful summary function
whose derivatives approximate closely the sum of the derivatives of the constituent functions.

An alternative to stringent constraints on the form of the functions to be aggregated is to restrict attention to
distributions of variables that are in the exponential family. Even so, one’s choice of functions that are closed
under summation, that is, can be aggregated, is still limited. Of course, there is still no guarantee that the
functions that can be aggregated are relevant to the requirements of economic theory (Stadler 1994).

Further, it is well known that the aggregation of only two nonlinear systems can preclude the discovery of
the structure of either; see, for example, Sugihara et al. (1990). A very simple example, but one that is a
common occurrence, is the aggregation of two harmonic series which differ in phase with the phase itself
varying over time, as compared to aggregating two harmonic series with a fixed phase difference. The former
aggregate series is difficult to analyze, while the latter aggregate is simply handled by Fourier analysis.

5 Minimum Mean-Square Error Forecasts Should Not Be the Sole Criterion

In the debate between those pursuing the conventional approaches to economic analysis and those pursuing
a more nonlinear approach, the idea seems to have arisen that forecasting accuracy, or, more narrowly,
minimum mean-square error of forecast, is the sole criterion for deciding between alternative models and
alternative methodologies. Recently, other measures for comparing forecast accuracy have been discussed and
evaluated empirically; see, for example, Makridakis (1993). However, these considerations, while important in
their own right, are not germane to the issue at hand.

If a nonlinear model cannot provide more accurate, or less variable forecasts, the conventional wisdom
claims there is no need to be bothered by the nonlinear model. I shall argue in the paragraphs to follow that
the forecasting benchmark, while useful, should not be the sole criterion for choosing between models.
Before proceeding, some clarification of the idea of “forecasting” is useful.

5.1 A Few Clarifying Comments on Forecasting in General
One may distinguish one-step-ahead forecasts from multiple-step-ahead forecasts, and whether or not there is
contemplated a sequence of such forecasts. The distinction between single- and multiple-step-ahead forecasts
mainly involves complications when nonlinear models are used (Granger and Teräsvirta 1992).

The first difficulty that arises with multistep forecasts with nonlinear models can be briefly indicated by a
simple example. If an output yt depends on an input xt through a nonlinear function g(·), and one wishes to
forecast yt on the basis of forecasts of xt itself, then the nonlinearity of g(·) complicates the choice of how to
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forecast the xt for which, in general, there will be no model. For example, suppose that phenomenologically
it is known that:

xt = αxt−1 + et , (5.1)

where et is IID. The one-step-ahead forecast for xt at time (t − 1) is simply αxt−1, so that the one-step-ahead
forecast for yt is g(αxt−1). But for even a two-step-ahead forecast, we have several choices. The first is the
“exact” forecast that is given by averaging g(αxt + e) with respect to the stationary distribution for [e]
conditional on xt−1 that was specified in Equation 5.1. We might also consider the “naive” forecast that
replaces αxt + et by its mean, αxt . The difference between the two results will be due solely to the extent of
curvature in the function g(·), and therefore to the difference between the expectation of g(·) with respect to
et , conditional on the information available at time (t − 1) and evaluating g(·) at the expectation of e. One
may consider other procedures that attempt to address the problem that multistep forecasts of yt+h depend on
forecasts of xt+h, which itself can only be forecast with error and usually without an explicit model. The
“practical” forecast involves two sources of error: those due to the estimation of the model, and those due to
the need to forecast the conditioning events for which there is usually no model. Theoretically, one can
consider forecasts based on known values of the conditioning events; such an approach is useful in trying to
separate the modeling-induced errors from those due to our lack of knowledge of the time path of the
conditioning events.

If we contemplate a sequence of forecasts, one step ahead or multistep, one has a further set of choices:
forecasts using estimates based on information only available at the time of the initial estimation of the model,
using all information available up to the beginning of each forecast in the sequence, or only using the last T
elements of information available before each forecast, where T is the number of observations used in the
initial estimation. I do not at this time wish to discuss the strategy that one might use in combining these
various forecast procedures to learn more about the structural stability of the model, as that discussion is not
germane to the main argument. For the current purposes, the various choices reflect the researchers’ beliefs
about the constancy of the model over time. If one believes that an appropriate model is being used and that
the coefficients are constant over time, then one’s forecasts will gain in accuracy by capitalizing on the
increased sample size that will come from using all available information. However, if one believes that the
coefficients are “slowly varying,” then one will be concerned to choose an appropriate window size, say of
length T 1, and base one’s forecasts on only the last available T 1 observations.

The usual practice is to choose small values for h, the forecast horizon, often just one or two periods. But
because of inertia in most economic systems, forecast comparisons and the attempt to choose between
models on such short horizons is often unproductive. Compare, for example, the results shown in Figure 3:
one-step-ahead forecasts might be within two standard deviations, but three- or four-step-ahead forecasts are
certainly not. The real key to discriminating between models is not so much the length of the time interval as
it is the magnitude of the change in the signal to the magnitude of the ambient error. Longer time horizons
usually ensure that the size of the change in the signal is greater, and therefore the ability to discriminate
between models is enhanced.

One of the difficulties with recommending comparisons of forecasts is that the forecast errors across
different models are highly correlated (Diebold and Mariano 1994). More recently, Ashley has contributed an
alternative resampling-based procedure to deal with this class of problems (Ashley 1995). In particular, Ashley
found that considerably more than 5 to 20 periods is required to detect reductions of mean-square error of 20
to 30 percent; this result confirms the comments above.

In the above discussion it was expositionally convenient to restrict attention of the forecast problem to one
of forecasting means. While this approach dominates the current literature, one might well contemplate the
notion that the entire distribution is evolving over time and that it is the distribution that should be forecasted.
In principle, this extension of ideas is most persuasive. Indeed, the references cited above dealing with the
ARCH literature indicate an important extension of the idea of forecasting from means to variances. We might
well with benefit consider the higher moments, especially the third, and indeed we should consider the time
variation of the whole distribution. However, this introduces a substantial research project in itself.

5.2 Models and Representations
At this stage in the discussion, it is useful to distinguish a “model” from a “representation.” A model, as is well
known, is an attempt to logically link seemingly related phenomena into an intellectually coherent framework.
A model is based on an underlying theory that provides a common framework of analysis for a range of

James B. Ramsey 79



related variables. Models provide a causal structure with, or without, a feedback mechanism. Models also
provide restrictions on the observable relationships. The specification of a causal mechanism and restrictions
on potential relationships are the distinguishing characteristics of a model.

Some models are phenomenologically based, that is, data driven, in the sense that an attempt is made to
derive a model from observed data and to incorporate whatever prior theoretical knowledge that one has.
The idea behind a phenomenologically driven model is that if the essential elements of the variation have
been captured, the phenomenologically discovered structure will indicate the causal mechanism and will
thereby provide links to similar phenomena. If successful, a phenomenological model can prove to be
relevant to the analysis of different data sets that are generated by similar experiments. In short,
phenomenologically driven models can be useful devices to discover structural relationships in the data,
provided one then checks out the model using different experiments. In either case, a model attempts to
provide, or at least to reveal in the case of a phenomenologically driven model, a causal mechanism, and to
specify restrictions on the relationships between classes of variables.

A “representation,” however, is a way of characterizing observations for a well-defined, albeit broad, class
of sequences and is not designed to provide a causal mechanism. Representations are “atheoretical.” The
Wold decomposition theorem, or the spectral representation theorem following Wiener-Khintchine (Priestley
1981) are the two most famous examples. Other examples are representations in terms of Volterra expansions
(Mittnik 1991), wavelets (Ramsey and Zhang 1994, 1995). Yet another representation arises out of neural
network theory using logistic functions (Hornik et al. 1989; Swanson and White 1995), or, finally, a most
useful representation for data in two-dimensional arrays is that of the singular value decomposition. While
representation theorems are useful, indeed very useful, it is important to recognize the limitations of a
representation result.

Clearly, representations are used when we do not know or cannot easily discover the model itself.
However, the choice of representation implies a given level of information about the system. We may know
that a system is the result of a mapping, for a famous example, the logistic map, Xt+1 = rXt (1− Xt ); or we
may only know that the output is bounded between zero and one, or we may know that the signal is smooth,
but is contaminated by noise, or we may only know that the system seems to be ergodic, stationary, and
uncorrelated; and so on. Our state of knowledge indicates in part at least the most relevant representation to
be used. As we shall see, if we know that we are dealing with some nonlinear map, but do not know what it
is, we would be throwing away valuable information if we used a Wold representation. If we know that our
signal is smooth and highly differential, we might well find Fourier transforms very useful. However, if we
know that the signal is very irregular with a low-level noise floor, we should consider wavelets.

Consider the singular value decomposition of any matrix of observations. For example, let X be a matrix of
T observations on L interest rates. The matrix X can be represented as follows:

X = U DV (5.2)

where D is a diagonal matrix with the singular values, or eigenvalue weights, on the diagonal, and U and V
are orthonormal bases for the column and row spaces of X , respectively. While much can be learned about
the matrix X and useful approximations of X can be obtained from an analysis of the matrices U , V , and D,
the solution to Equation 5.2 sheds no light on the mechanism that is supposed to be generating the observed
matrix, X . Representations are purely descriptive. In this example, it is important to remember that any T by
L matrix can be represented by this procedure.

Having obtained a representation, one can ask whether there are useful low-order approximations,
compare the representations with other representations obtained from similar data, and the best use of all,
examine whether the representation provides any guides toward the formulation of a model. In this last use,
the usual procedure is to concentrate on major effects and suppress details to aid in the revelation of some
structural characteristics that might be useful in modeling the data. The procedure is warranted by the fact that
any model of the data must have the same representation. Suppose in this example that there is some
nonlinear model for the term structure of interest rates over time that will yield the observed data. Then it is
clear that the representation illustrated in Equation 5.2 is a representation of the model as well. However, the
nonlinear model that purports to characterize the behavior of the mechanism underlying the generation of the
data is very important for interpreting the data and understanding the conditions under which the generating
mechanism performs as observed. Further, the nonlinear model will, in general, incorporate far more
information about the system than is usually true for any representation. Indeed, the usefulness of

80 If Nonlinear Models Cannot Forecast, What Use Are They?



representations is that they are representations for broad classes of relationships, or systems, so that
necessarily they will incorporate far less a priori information about a specific system.

A more statistical example is this. Let yt designate any stationary time series. Consider the representation by
the “general linear model,” shown in Equation 5.3,

yt =
∞∑

u=0

guεt−u (5.3)

where gu is l2 and εt is a white-noise process. Even when the parameters are consistently estimated and the
parameters do not vary over time, Equation 5.3 provides only a representation of yt , but no understanding of
the mechanism that might generate the series. To state that any stationary process can be factored into a linear
causal sequence of orthogonal increments plus a component that is deterministic and perfectly predictable is
not directly helpful in understanding the process that is presumably generating the observations. Because we
know that for some finite sequence of coefficients we can approximate the arbitrary stochastic sequence as
close as we like, the mere fact of “fitting” is itself uninformative.

Representations, within the class for which each is defined (that is, the class of stationary processes for the
Wold decomposition, stationary stochastically continuous processes for the Wiener-Khintchine theorem, and
so on), hold universally. The only relevant questions with respect to a representation are whether a
representation with a small number of terms is useful, and if so, what are the coefficient values. Over long
periods of time, one can use representations to check whether the values of the coefficients of the
approximating representation are constant, or change over time.

As I indicated above in the context of a singular value decomposition of interest rates, all models
themselves have representations. Another example is provided by real business cycles that have the
representation shown in Equation 5.3. Even if the data-generating mechanism that underlies real business
cycles is nonlinear in structure, but produces data that are stationary, then that nonlinear model will always
produce data that are representable by a Wold decomposition. This is a truism that is a source of confusion
about the respective roles of models and representations. For example, nonlinear models that pass statistical
stationarity tests have Wold representations. Most models with noise that are Markovian in nature will have
autoregressive integrated moving average (ARIMA) representations. As another example, a simple sinusoid
has a representation in terms of Fourier coefficients, or if the process has been sampled at a rate of k terms
per cycle, in terms of k constants, αj , j = 1, 2, . . . , k.

In Brock et al. (1991), it is shown that a GARCH(p, q) process can be regarded as a finite restriction of a
Wold-type representation of second-order moments. While a precise definition of the class of sequences for
which such an expansion is a representation has not been stated rigorously, the argument is indicative that
with respect to some reasonably broad class of sequences, the ARCH(p, q) formulation is a representation of
the time dependencies of second moments. ARCH processes have enjoyed a well-deserved popularity;
perhaps the realization that they are a first effort at providing a representation for second moments explains
their success.

Let us now examine the forecasting implications of these remarks. To begin, we should recognize that
when comparing forecasting capabilities, we should remember the degree of information that is incorporated
in the choice of representation. Different representations incorporate different levels of a priori information,
as I indicated above. For example, any stationary process generated by a theoretical or a phenomenological
model, whether linear or nonlinear, is always representable in terms of a Wold representation; that is, in terms
of a weighted sum of lagged unobservable orthogonal “shocks.” The forecasting capabilities of the model and
its representation depend on the relative degrees of information that are incorporated in the two. Using only
the information that the series is stationary, a Wold representation is a reasonable choice. But if we know that
the series is generated by some map, such as the logistic mentioned above, then it is immediately clear that
we will gain in forecasting capabilities by utilizing such information. The difficult choices between
representations and purported nonlinear models occur when the disparities in information are not so great
and the representation, perhaps with the use of more degrees of freedom, provides equally good forecasts.

Consider a simpler example. Suppose that a process is generated by a mechanism that can be modeled as a
sinusoid of a single frequency, and that the series is observed at a sampling rate that produces k observations
per cycle. Compare two “models” of this sequence of observations. One is the sinusoidal model, which might
have been suggested by some ideas about the dynamics of the underlying physical process. The other is a
“seasonal” dummy representation that uses the data to estimate k dummies. The seasonal dummy
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representation cannot be beaten in terms of mean-forecasting error criteria by any model of the purported
mechanism (even the simple sinusoidal model). Nevertheless, one would still be advised to consider carefully
the theoretically or phenomenologically driven model, rather than the “representational” method. This is
because the former is an attempt to relate the data to some notion of the dynamics involved and may
stimulate further ideas about the mechanism itself, stimulate comparisons with other mechanisms, and in
general provide a basis for theoretical speculation.

Some might complain that the sinusoidal model mentioned above involves fewer parameters and would
therefore be chosen on the grounds of parsimony of parameter use. The argument still holds, perhaps even
more clearly, when the number of required terms in the sinusoidal expansion is greater than k. The seasonal
dummy model still cannot be beaten in a mean-square error sense, and is now supposed to have fewer
parameters. Yet I claim that the sophisticated researcher will prefer the sinusoidal model, notwithstanding its
greater use of degrees of freedom. In this particular example, one could have one’s cake and eat it too, as it
were, by using the sinusoidal model for analysis, understanding, interpretation, stimulating insights, and
determining what will happen in response to changes to the system; while reserving the representation that
happens in this case to involve fewer parameters for providing forecast numbers.

An even more insightful example is provided by wavelet representations of time series that may well be
nonstationary. The types of structures that can be used to represent such data include, in the context of a
frequency-time decomposition, harmonic frequencies, short bursts of a block of frequencies (known as
“chirps”), and finally, Dirac delta functions (Ramsey and Zhang 1994, 1995). Waveform dictionaries therefore
can provide a very wide range of structures to represent data, including those found in Fourier analysis, in
conventional wavelet analysis, and indeed everything in between. Commonly, it is discovered that a relatively
few structures are needed to represent even very complex data series; such was the case for the Standard and
Poor’s 500 index and for foreign exchange rates as discussed in the Ramsey and Zhang papers. In short, the
waveform dictionaries provided very good fits to the data using relatively few structures to achieve that result.
However, this result is not sufficient to provide good forecasts. The reasons why are instructive.

To strengthen the argument, assume that whatever mechanism generated the data during the estimation
period continues to apply during the forecast period. First, insofar as the energy in the representation is in
harmonic frequencies that last during the entire historical period, then to this extent at least, one has the basis
for a forecast; one merely predicts that past frequencies continue to apply in the future. Now consider the
case where much of the energy in the system is in the occurrence of Dirac delta functions. Unless one can
discover some form of periodicity in their occurrence, then nothing can be forecasted from these structures.
Next, insofar as energy is contained in the “chirps,” short bursts of groups of frequencies, and the chirps do
not have any pattern, then once again there is no basis for forecasting. We have in this example demonstrated
a situation in which one can achieve good fits to historical data, but one cannot forecast very much, if
anything, using that information.

A similar situation holds for neural network analysis in that one can achieve very good fits to the data and
still not be able to improve forecasts very much at all. In the past, the source of this conundrum has been
ascribed to “overfitting”; that is, to fitting a model to elements of noise at the expense of the structure of the
model itself. The argument here is different in that the lack of forecasting gain is not due to “overfitting” in
this sense, but to the fact that the model has little in the way of a forecastable component. This is true even
though any historical segment can be represented by a relatively parsimonious set of model structures. The
simplest way of describing the situation is that most of the structure observed in any historical segment is
unlikely to be repeated, at least in its entirety, in any other segment. A compounding factor is whether the
approximations used to fit the historical data can be extrapolated out of the region over which the fits were
made; often this is not the case.

This type of result should not be too surprising. If we had been able to reduce the analysis of the variation
in market price to the outcomes of a binary choice, i.e., a “coin toss,” we would have a very good
understanding of the mechanism underlying the generation of the data, but would be unable to improve our
forecasts in the slightest. The broader lesson is that frequently in the statistical examination of economic and
financial data, we may well be able to “describe” any historical data set very well and to do so with
parsimony, but still not be able to improve our forecasts.

One conclusion is that models that are based on a theory, that provide restrictions on the relationships
between variables, that purport to characterize the dynamics of a system, are to be preferred to mathematical
or statistical representations of the data. This is true, I would claim, even at some cost in forecast accuracy,
although the compromise suggested in a previous paragraph is an option. If some degree of “universality” in
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the modeling of economic data is ever to be achieved, it will only come from theoretically, or
phenomenologically, driven models. Representations have their uses, most especially in the beginning stages
of an analysis, but the ultimate goal is to provide understanding of the underlying mechanisms, and, through
that, useful forecasts in which some reliability can be placed because the “causal mechanism” is at least
partially understood.

6 Summary and Conclusions

While there is virtually no evidence in favor of chaos or deterministic complex behavior in economic or
financial data, there is abundant evidence for nonlinear stochastic processes. Much of the nonlinearity is in the
second moments that can be successfully represented by some form of ARCH process. There is some
evidence that there is still nonlinearity present in the data even after allowing for ARCH effects. There is not a
lot of analysis on the forecasting results for nonlinear models, except for the ARCH type of processes. In any
event, the results that are available indicate at best there are only modest gains in forecasting accuracy and
virtually no gain in reliability in the forecasts.

A theme of the paper is that many of the modeling difficulties that plague all analyses of real data are not
only more worrisome and difficult to deal with in the context of nonlinear models, but are qualitatively
different. Another key point is that open and nonisolated systems cannot be forecasted, except under the
most stringent conditions. Consequently, the ability to forecast reliably depends on the extent to which the
assumptions of closure and isolation are good approximations.

The conventional rule of thumb that “good fits do not give good forecasts” is justified by recognizing that
while fitting is local, forecasting is an essentially global idea. Even good modeling approximations for closed
and isolated systems can lead to very bad forecasts; this is especially true when the approximating functions
do not have the same global properties as the mechanism generating the data. Polynomials and extrapolated
Taylor’s series are good examples of inappropriate approximations that have good local properties, but very
bad global properties. Local overfitting also leads to bad forecasts, especially with nonlinear models.

Nonlinear properties of models can be missed in data analysis, because the sampling rate is too coarse,
there is too much aggregation, or for some periods the nonlinear fluctuations are below the noise floor.
Further, forecasts are more sensitive to the errors in evaluating initial conditions than is true for regression fits.

Models and representations of data have been distinguished. A case was made that forecasting should not
be the sole criterion in choosing between a model and a representation of the data. Models purport to delimit
the causality, whereas the representations provide a basis for projections for broad classes of observed
sequences. The forecasting capabilities of representations depend in part on the generality of the supposed
class underlying the representation; alternatively expressed, the forecasting capabilities depend on the level of
a priori information that is included in the choice of representation. Models are to be preferred to
representations for understanding the mechanism and its limitations, and in facilitating the links to other
classes of phenomena. These advantages outweigh some loss in forecasting accuracy. One could easily use
both procedures: the model for understanding and knowing the limits of applicability of the model; the
representation for obtaining more accurate forecasts. However, when the analysis of the model indicates that
the structure has changed, the representation will need to be re-estimated before being used as a forecast tool.
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