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1 Introduction

Recent tests of the nonlinearity of the functional form of a regression model have focused on attempts to
develop consistent tests that do not specify a parametric alternative and encompassing forms. These tests are a
special case of the broader conditional moment tests for misspecification, such as that of Bierens (1990), that
have greater power by restricting the specification to the linear form. Examples of this are the tests of Lee,
White, and Granger (1993) (LWG), which is based on the Bierens test and which detects omitted nonlinearity
through the use of a “neural net,” and Wooldridge (1992), which is based on the Davidson-Mackinnon test and
uses a Fourier expansion. Like the test of Bierens, these tests are consistent against deviations from the null.

In this paper we adapt the consistent test of Bradley and McClelland (1994) to a test of nonlinearity in a
manner analogous to the adaptation of the Bierens test by LWG. Our test is based on the idea of Newey
(1985), that if the model is not properly specified, then the vector of explanatory variables, x , can better
predict the residuals from a linear regression than the residual’s mean. Thus, while many x-measurable
functions, such as a neural net, can be used to detect neglected nonlinearities, an appealing function to use is
the conditional expectation of the residuals given x . We implement this idea in the first stage of our test by
estimating the residuals as a function of the explanatory variables. Because we obtain our estimate with a
kernel regression, our test is nonparametric. The estimate is then a component of the second stage, which is
similar to the neural net test with the kernel estimate in the first stage replacing the net.1 By directly estimating
the nonlinearity with a conditional expectation function, the limit of our test over the sample size is the largest
of all conditional moment tests. Because the kernel regression is an estimate of the misspecification, the test
can be used to better understand the nature of any misspecification.

Another advantage of our test is the potential for increased finite sample power through a constrained
cross-validation of the window-width parameter. Cross-validating with a quadratic loss function is particularly
appealing in our case, because the expected value is minimized by predicting the residuals with their
conditional expectation. This connects with the idea that the regressors can better predict the residuals than
the residual’s unconditional mean in a misspecified model, so that procedures that increase this predictability
increase the power of our test. Lewbel (1993), Wooldridge (1992), and Bierens (1990) discuss the problem that
a cross-validation type mechanism can overfit the alternative model under the null hypothesis, forcing their
tests to acquire undesirable or unknown distributions. Thus, none of these studies use cross-validation.

∗The views expressed in this paper are solely those of the author, and do not necessarily reflect the policy of the Bureau of Labor Statistics
(BLS) or the views of other BLS staff members.

1For an example of a two-stage procedure for semiparametrically estimating a binary choice model under uncertainty using estimated conditional
expectations, see Manski (1991).
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In our study, we cross-validate but address the problem of overfitting by resampling and limiting the
window width to a compact set of permissible values. This resampling also solves the problem caused by the
dependence inherent in the residuals produced by a regression that includes a constant term. This, plus the
absence of bias for the kernel regression under the null hypothesis, also allows the distribution of our statistic
to converge to a χ2(1) distribution.

Finally, we compare Monte Carlo simulations of the results of using our test and the neural net and Ramsey
RESET test. Because we use the same models studied in Wooldridge (1992), we can also make limited
comparisons with the sieve test developed in that paper. These simulations show that the kernel test is about
as powerful as the neural net test in many simulations, and more powerful than it or the RESET test in others.
We then choose one simulation at random under this alternative hypothesis and show how the kernel
estimation in the first stage of our test can be used to describe the nature of the misspecification.

The remainder of our paper is organized as follows. Section 2 describes the test of Bradley and McClelland
(1994). Section 3 shows how this can be adapted to a test for the detection of nonlinearity in a regression.
Section 4 discusses results from Monte Carlo experiments that compare our test to the neural net and Ramsey
RESET test, and conclusions are in Section 5. The assumptions on the random vectors of dependent and
independent variables (y, x) are listed in Appendix A, and the proof of Theorem 1 is in Appendix B.

2 A Misspecification Test

In this section we describe a test in the set of conditional moment tests that uses a direct estimate of the
misspecification as the weighting function on the estimated residuals. Relying upon the work of Bierens
(1982, 1987, 1990) and described in detail in Bradley and McClelland (1994), this test is consistent against all
deviations from the null hypothesis and has the greatest asymptotic power of all tests in the set of conditional
moment tests, in the sense that the probability limit of the kernel estimate is the function that maximizes plim
(W /n), where W is defined as an element in the set of conditional moment tests and n is the sample size.

We also increase the finite sample-size power of our test over a fixed window width by using a
cross-validated window width. Only two parameters need to be set before using the test: bounds on the
window width and the size of the bootstrap sample. Lastly, we can use the estimate of the misspecification to
gather insight into the nature of any problem detected by the test. This general specification test can also be
modified to test the more restrictive null of linearity. By following the same intuition as that guiding LWG, we
construct a Lagrange multiplier test of linearity that can be constructed from a simple R2 statistic.

To focus our discussion upon the use of a direct estimate of the misspecification as a weighting system, and
to make our test as compatible as possible with the sieve test of Wooldridge, we restrict ourselves to an
independently and identically distributed (IID) random sample {yi, xi}, i = 1, . . . , n from a distribution F (y, x)

on R × Rk . Further, we assume that E (y2) < ∞ and that:

y = f (x, θ) + u.

E (y | x) = f (x, θ).

Suppose we use the functional form f (x, θ) to estimate E (y | x) and define ûi = yi − f (xi, θ̂ ). A direct
estimate of the misspecification is then g(x) ≡ E (û | x). Under Ho, we assume that the true value of θ , which
we denote as θo, satisfies:

θo = argmin
θ∈2

E ([yi − f (xi, θ)]2) and E ([yi − f (xi, θo)] | xi) = 0. (1)

Let θ̂ be a consistent estimate of θo. This study is based on assumptions outlined in Appendix A. If Ho in (1) is
correct, then

plim E (ûh(x)) = 0 (2)

for all h(x) ∈ H (X ), the set of x-measurable functions on X , the domain of x . Under H1, there exists some
function

plim E (ûh(x)) > 0. (3)
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A reasonable set of tests for misspecification would then be

{Wh} =


[ 1√
n

∑n
j=1 ûj h(xj )

ŝ

]2
∣∣∣∣∣∣ h(x) ∈ H (X )

 ,

where ŝ2 is a consistent estimate of the variance of the numerator.
The Rao-Blackwell theorem tells us that under H1:

lim E (û − g(x))2 < lim E (û − E (û))2, (4)

which implies lim E (ûg(x)) = lim E (g(x)2) > 0. Under Ho, since plim θ̂ = θo, the inequality in Equation (4)
becomes an equality, so that lim E (ûE (û | x)) = 0. The function g(x) therefore satisfies both conditions (2)
and (3), and our test uses a nonparametric estimator of g(x). The features in Equations (1) through (4) suggest
the following four steps to test the null hypothesis in Equation (1):

(i) Estimate θ and denote this estimate as θ̂ .
(ii) Generate ûi = yi − f (xi, θ̂ ) for i = 1, . . . , n.
(iii) For each observation i, estimate g(x) = E (ûi | xi) with a kernel regression by selecting a random

subsample with replacement of size n′ = int(n3/2γ k/2
n ) from the existing sample.

Specifically, for the original sample of size n, let N = {1, . . . , n} index the sample. We then choose for each
sample point i a random subsample with replacement from N of size n′, which we denote as N ′

i . We then
define the cardinal “bootstrapping” variable S(A) as the number of occurrences of event A, and calculate for
each i a kernel estimator denoted as ĝi(xi, γi) where:

ĝi(xi, γi) =
∑

S( j ∈ N ′
i )ûj K (

xi−xj

γi
)∑

S( j ∈ N ′
i )K (

xi−xj

γi
)

, (5)

and γi is the bandwidth of the kernel function K (·) with the following properties:

(P.1)
∫

K (u) du = 1

(P.2)
∫

uK (u) du = 0

(P.3)
∫ ∏k

j u
ij
j duj = 0 for

∑k
j ij < m, where m is the kernel order such that nγ k

n → ∞ and nγ 2m+k/2
n → 0.

(P.4) 0 = arg maxu K (u).

(iv) Calculate the statistic:

Ŵ (γ ∗, θ̂ ) = nT̂ 2(γ ∗, θ̂ )/ŝ2(γi), (6)

where

T̂ (γ ∗, θ̂ ) = (1/n)

[
n∑

i=1

ûi ĝi(xi, γi)

]
, (7)

γ ∗ = {γ1, γ2, . . . , γn}.
To increase the predictability of ĝ(x, γ ) in finite samples, we choose γi as the cross-validated window

width by solving:

γi = arg max
Cn<γ<Bn<∞

[ ∑
k∈N i ′

ûk − ˆ̂g−k(xk, γ ))2

]
where

ˆ̂g−k(xk, γ ) =
∑

j∈N i ′, j 6=k ûj K (
xk−xj

γ
)∑

j∈N i ′, j 6=k K (
xk−xj

γ
)
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and the bound Bn to have three properties:

(P.5) Bn ≤ Bn+1

(P.6) lim sup Bn = B < ∞.

(P.7) Cn = O(nγ 2m+k/2
n ) for Cn < Bn for all n.

The limit, B, on the window width γi is the only parameter we must choose a priori and has another
important feature under Ho. The bound B along with the property (P.4) for the kernel K (·) guarantees that ŝ2

is always positive as long as the variance of x is greater than zero. It also prevents the window width from
becoming so large that the test statistic degenerates to a constant. The lower bound Cn is used to prevent
overfitting under the null. Without (P.7), the test would have a noncentrality parameter that would not
converge to zero under the null. This technique is similar to that used by Bierens (1990). Under the
alternative, the constraint in (P.7) is not binding because the cross-validated window will converge to zero less
rapidly than Cn.

Ŵ (γ ∗, θ̂ ) is essentially a Wald Test for the restriction that E (û[Eû | x ]) = 0. The following theorem is the
main result of Bradley and McClelland (1994):

Theorem 1 (Bradley and McClelland 1994). Let the assumptions in Appendix A hold. The statistic Ŵ (γ ∗, θ̂ )

generated in Equation 6 is asymptotically distributed as χ2(1) under Ho.

This theorem shows that the limiting distribution of Ŵ (γ ∗, θ̂ ) under the null is a χ2 distribution with one
degree of freedom. Given the properties (P.1) through (P.4), the Bradley and McClelland (1994) test is
consistent against all alternative hypotheses and Ŵ (γ ∗, θ̂ ) is the most asymptotically powerful test in the set
{Wh}. The reason for this is that E (û | x) is the function h(x) in the set of bounded functions which
maximizes E {ûh(x)}. In essence, T̂ in Equations 6 and 7 is an estimator of E {ûE (û | x)} and therefore the
numerator in Equation 5 uses an estimator that maximizes the value of E {ûh(x)}.

We now turn to a possible complication. First, ĝi(xi, γi) is not an IID process, even though the errors in the
true model are IID under Ho, partially because there is finite sample dependence among observations of ûi

arising from the first moment restriction,
∑n

i=1 ûi = 0 when there is a constant term. We solve this problem in
step three by using a bootstrap from the original sample. This bootstrapping allows us to use a projection
theorem from the literature on U-statistics that shows that the moments of {ûi, ĝi(xi, γi)}, i = 1, 2, . . . , n
converge in probability to the moments of an IID random process. The only parameter we must choose is the
size of the bootstrap, which can be chosen according to standard bootstrap criteria, as long as the
bootstrapped sample is of size O(n3/2γ k/2

n ).

3 The Kernel Test

Given the statistic Ŵ (γ ∗, θ̂ ), we can construct a test for neglected nonlinearity in the same manner that Lee,
White, and Granger (1993) use the results of Bierens (1990) to construct the neural net test for nonlinearity.
The null that we wish to test is now more restrictive than (1). For the linearity case, the assumptions in
Appendix A ensure that under Ho plim θ̂ − θo = 0 and under H1 plim θ̂ exists.

Ho: there exist θ ∈ 2 ⊂ R
k such that Pr (E (y | x) = x ′θ) = 1 (8)

H1: Pr (E (y | x) = x ′θ) < 1 for all θ ∈ R
k (9)

Here the null is that the true conditional expectation function is linear, which allows us to offer a Lagrange
multiplier version of the statistic Ŵ (γ ∗, θ̂ ). To form this statistic, we derive θ̂ from an ordinary least squares
(OLS) regression of yi on xi . We calculate the estimated residuals, ûi , and we estimate the kernel density
ĝi(xi, γi) as outlined in Equation (5). Finally, we regress ûi on xi and ĝi(xi, γi).

To use the statistic, we need the following theorem for x-measurable functions h(x):

Theorem 2. Under the linear null hypothesis in Equation (8), and homoskedasticity, define the statistic Wn

as follows:

Wn = n
[h′ûi ]2

û′
ih(I − x(x(x ′x)−1x)h′ûi

.
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Then Wn − nR2 p−→ 0, where R2 is the coefficient of determination of ûi regressed on x and h(x) where h is
the column vector of h(xi).

Proof. See Appendix B.

Because ĝi(xi, γi) is an x-measurable function, we can apply this theorem to it. We then have a test statistic
that avoids explicit computation of Ŵ (γ ∗, θ̂ ) because

nR2 d−→ χ2(1) (10)

where R2 is the uncentered squared multiple correlation from an ordinary least squares regression of ûi on xi

and ĝi(xi, γi).
If H1 is true, then the probability limit of the regression coefficient on ĝi(xi, γi) should be one. If one rejects

the null that the coefficient is equal to one, then there is evidence that ĝi(xi, γi) is not picking up the
misspecification E (u | x). Since ĝi(xi, γi) is an estimator for E (û | xi), it can provide a direction in which the
investigator can go to better specify the model if the coefficient is not significantly different from one.
Although not proved in this article, under misspecification the OLS coefficient on ĝi(xi, γi) converges in
probability to one. If the coefficient is not significantly different from one, then one can look at the
confidence intervals of derivatives of ĝi(xi, γi) to determine the additions to the linear model that need to be
added to achieve a correct specification.

As with the more general test, we need to select two parameters: bounds on the bandwidth and bootstrap
sample size. For the simulations in the next section, we set the upper bandwidth bound Bn to 19.5 + 1/n and
the lower bound Cn to 1.5n−1/δ where δ satisfies the inequality, k < δ < m − k/2. These bounds on the
cross-validation serve to prevent overfitting under the null. Additionally, these limits force the cross-validated
bandwidth to converge to zero at a rate where the asymptotic bias of the kernel estimate will go to zero. The
bootstrap sample size is trunc(.85n), and the estimated variance in the denominator equals the order of our
statistic in the numerator so that the statistic does not degenerate under the null. In addition, we use the
Epanechnikov kernel, which satisfies the properties P.1, P.2, and P.4.

4 Monte Carlo Experiments

We now briefly consider two Monte Carlo experiments discussed in Wooldridge (1992), allowing us to make
some comparisons with his sieve test. In each, we compare Wn with the neural net test of LWG using 10
nodes and the Ramsey RESET test using three powers of the estimated conditional expectation of y. We
consider sample sizes of 50, 100, and 200 and a variety of misspecifications. We also show how the function
ĝ(x, γi) can be used to gather information about the nature of the misspecification.

Both the sieve test and the neural net test are also robust tests. Our test is more closely related to the neural
net test in that both are variations of the Bierens (1990) test and both are based on the asymptotic distribution
of nR2 of the residuals regressed on the X values and an additional nonlinear X -measurable function.
Wooldridge uses the Davidson-Mackinnon test framework with a linear regression and a nonparametric sieve
regression. To achieve consistency under the null, his truncation parameter must expand at a rate that is an
inverse function of the rate at which ŷ converges to y. Because Wooldridge uses the entire sample for his sieve
estimation, this bound on the expansion rate prevents him from cross-validating his truncation parameters.

The neural net test takes the inner product of the column vectors of x and q independent random
k-vectors. These q-random vectors are also known as “nodes.” The q products x̃ are then transformed by the
logistic cumulative density function (1 + e−x̃)−1. To reduce correlation among the q-transformed products,
only the first two principle components of the transformed products are taken. These components are then
regressed on û. The resultant test statistic formed by the R2 multiplied by the number of observations has an
asymptotic χ2(2) distribution.

The RESET test is designed to detect misspecifications of E (y | x) by modeling the misspecification as a
power expansion of E (y | x). While the test is easy to calculate, its power depends upon the degree to which
the misspecifications are well approximated by a low-order expansion. We implement the RESET test by
checking the joint significance of α2, α3, and α4 in a regression of the form

yi = xiθ +
4∑

j=2

αi(ŷi | xi)
j + ei .
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Under the null hypothesis of a correct specification, every αi should equal zero. We use the LWG version of
the test so that it has a χ2(3) distribution under the null.

The data-generating process for both experiments is essentially the same. Let v1 and v2 be two independent
random variables with uniform distributions on [0, 2π ], and define

z1 = v1

z2 = 0.5v1 + 0.5v2.

Then the vector of independent variables is defined as

x = [1, z1, z2]

and the coefficient vector is

θ = [1, 1, 1]′.

Given homoskedastic residuals u drawn from a standard normal distribution, the data-generating process
under the null hypothesis is:

yi = xiθ + ui .

The first experiment considers the model:

(DGP1) yi = xiθ + γ (xiθ)2 + ui .

Table 1 shows that all three tests are effective in detecting the misspecification. With 50 observations, all three
tests reject almost 100 percent of the iterations with γ equal to 0.20 or −0.20. With 100 observations, the three
tests reject when γ is equal to 0.15. Because the RESET actually nests the true misspecification, it should and
does have the greatest power. Comparing the kernel and neural net tests to the RESET test is worthwhile here
because it represents the upper bound on power. Both the kernel and neural net tests seem to reject almost
exactly the same number of cases, although a cursory examination of the rejection patterns shows that
different simulations are being rejected. As the sample size increases, the rejection rates increase toward 1.000.

One difficulty with the kernel test appears to be its high rejection rate under the null hypotheses (γ = 0).
This rate reflects the finite sample bias of the kernel estimate. As the sample size increases, however, the
rejection rate decreases somewhat and should continue to decrease to the proper rejection rates. The rate of
this decrease is a function of the rate at which the bound Cn, and hence the noncentrality parameter,
converges to zero. Letting Cn converge less rapidly to zero would force the rejection rate to converge more
rapidly. However, it would not change the finite sample power when the null is false because all of the
cross-validation solutions were between the bounds Bn and Cn.

These results may also be compared with the results of Wooldridge (1992) using the sieve test. With 100
observations and γ equal to 0.1, the sieve test rejects 0.576 and 0.418 of the cases at the ten- and five-percent
points, respectively. With the same number of observations and γ equal to −0.1, the test rejects 0.999 of the
cases at both the ten- and five-percent points. This shows that for this model the power of the sieve test is
more sensitive to the direction of the misspecification than any of the three tests considered here.

The second experiment considers the model:

(DGP2) yi = (xiθ)λ + ui .

For values of λ, we consider a range of values from 0.5 to 1.5 and for −0.5. The results in Table 2 are
somewhat ambiguous. For values of λ between 1.2 and 1.5, the kernel and neural tests move together,
although the neural test decreases in power from 1.2 to 1.3 more rapidly than the kernel test. As expected, the
RESET test performs at a progressively greater rate as λ rises. When λ is equal to 1.5 with 100 observations,
we can make a direct comparison with the sieve test. Comparing the nearly uniform rejection from all three
tests against the rejection rates of 0.804 and 0.693 at the 10- and 5-percent points shows that other
nonparametric tests have greater power against this alternative.

For values between 0.8 and 0.5, there is little change in power either as the sample size increases or as λ

decreases. The neural net and RESET tests appear to have essentially no power to detect the misspecification,
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Table 1
Percent of 1,000 Trials Rejected at the Asymptotic 10 Percent and 5 Percent Signifi-
cance Levels

Simulations of DGP1 for Various Levels of γ

Sample Size 50 100 200
Significance Level 10% 5% 10% 5% 10% 5%

γ = 0.20
Kernel 0.970 0.957
Neural Net 0.952 0.932
RESET 1.000 1.000

γ = 0.15
Kernel 0.900 0.872 0.998 0.998
Neural Net 0.912 0.870 0.985 0.973
RESET 0.997 0.994 1.000 1.000

γ = 0.10
Kernel 0.669 0.614 0.916 0.899 0.997 0.996
Neural Net 0.757 0.654 0.916 0.892 0.980 0.972
RESET 0.922 0.868 0.998 0.995 1.000 1.000

γ = 0.05
Kernel 0.334 0.251 0.525 0.472 0.742 0.681
Neural Net 0.372 0.243 0.553 0.421 0.795 0.706
RESET 0.454 0.327 0.712 0.594 0.952 0.901

γ = 0.00
Kernel 0.163 0.101 0.157 0.099 0.151 0.09
Neural Net 0.109 0.053 0.087 0.044 0.095 0.048
RESET 0.119 0.051 0.113 0.058 0.098 0.049

γ = −0.05
Kernel 0.302 0.218 0.483 0.417 0.748 0.694
Neural Net 0.351 0.232 0.528 0.413 0.815 0.727
RESET 0.372 0.249 0.658 0.543 0.954 0.909

γ = −0.10
Kernel 0.648 0.578 0.922 0.901 0.994∗ 0.994
Neural Net 0.740 0.629 0.922 0.883 0.980∗ 0.972
RESET 0.860 0.785 0.992 0.987 1.000∗ 1.000

γ = −0.15
Kernel 0.893 0.869 0.991 0.989
Neural Net 0.915 0.875 0.947 0.963
RESET 0.997 0.989 1.000 1.000

γ = −0.20
Kernel 0.976 0.969
Neural Net 0.953 0.933
RESET 1.000 1.000

∗Only 500 iterations are used in this simulation

while the kernel test shows some power. When λ is equal to 0.5 with 100 observations, we can make another
comparison with the sieve test. Comparing the low power of all three tests against the rejection rates of 0.24
and 0.166 at the 10- and 5-percent points shows that the sieve test performs approximately as well as the
kernel test and outperforms the neural net and RESET tests. It would be of interest to know how the sieve test
exhibits the same constancy of rejection rates over the λ range of 0.8 to 0.5, as the three tests show in Table 2.

Finally, the negative value of −0.5 for λ reveals nearly the same rejection rates as for 0.5. Again, the neural
net and RESET tests appear to have little power for any of the sample sizes. Interestingly, the RESET test could
not be performed for sample sizes of 100 because of repeated failures of the matrices to invert at the second
stage of the test. This appears to be due to the creation of a variable ŷi that has essentially no variation. In
contrast, the sieve test has much greater power than any of the tests, rejecting 0.443 and 0.307 percent of the
cases at the 10- and 5-percent points, and this power appears to grow with the sample size, rejecting 0.646
and 0.489 percent of the cases when the sample size increases to 300.

Although these simulations shed some light on the relative advantages of the tests for the misspecifications
in DGP1 and DGP2, an additional advantage of the kernel test is that an estimate of the misspecification is
preserved. We can show how this information, obtained with the estimation of ĝ(x, γi), can be used to help
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Table 2
Percent of 1,000 Trials Rejected at the Asymptotic 10 Percent and 5 Percent Signifi-
cance Levels

Simulations of DGP2 for Various Levels of λ

Sample Size 50 100 200
Significance 10% 5% 10% 5% 10% 5%
Level

λ = 1.5
Kernel 0.896 0.875 0.995 0.995 1.000 1.000
Neural Net 0.921 0.884 0.980 0.971 0.998 0.992
RESET 0.993 0.987 1.000 1.000 1.000 1.000

λ = 1.4
Kernel 0.642 0.579 0.896 0.882 0.996∗ 0.994
Neural Net 0.717 0.596 0.908 0.853 0.976∗ 0.970
RESET 0.857 0.763 0.989 0.980 1.000∗ 1.000

λ = 1.3
Kernel 0.334 0.269 0.589 0.525 0.794 0.777
Neural Net 0.381 0.272 0.645 0.529 0.877 0.813
RESET 0.476 0.345 0.752 0.654 0.955 0.922

λ = 1.2
Kernel 0.267 0.198 0.290 0.237 0.418 0.339
Neural Net 0.192 0.118 0.254 0.155 0.408 0.304
RESET 0.221 0.134 0.291 0.194 0.486 0.368

λ = 0.8
Kernel 0.209 0.141 0.221 0.151 0.223 0.153
Neural Net 0.142 0.077 0.135 0.070 0.125 0.072
RESET 0.141 0.067 0.141 0.073 0.130 0.072

λ = 0.7
Kernel 0.196 0.139 0.205 0.142 0.280 0.202
Neural Net 0.119 0.049 0.135 0.068 0.147 0.064
RESET 0.115 0.051 0.141 0.070 0.145 0.083

λ = 0.6
Kernel 0.214 0.143 0.225 0.158 0.243 0.161
Neural Net 0.122 0.066 0.143 0.081 0.147 0.064
RESET 0.132 0.068 0.135 0.065 0.148 0.078

λ = 0.5
Kernel 0.200 0.126 0.222 0.147 0.229 0.167
Neural Net 0.114 0.052 0.111 0.063 0.140 0.077
RESET 0.116 0.063 0.108 0.054 0.138 0.073

λ = −0.5
Kernel 0.189 0.122 0.218 0.153 0.230 0.165
Neural Net 0.114 0.051 0.106 0.061 0.101 0.057
RESET 0.118 0.058 0.111 0.066

∗Only 500 iterations are used in this simulation.

the researcher understand the nature of the misspecification. To do this, we plot the first regression from
DGP2 with 200 observations and λ equal to 0.6. Figure 1 shows the kernel estimate and the true conditional
expectation ûi given x1 and holding x2 constant at the mean. We also include the 95-percent confidence
intervals to show how closely ĝ(x, γi) follows ûi .

As Figure 1 shows, ûi has a concave form consistent with modeling (xiθ)0.6 as (xiθ). The kernel estimate
ĝ(x, γi) also has the same general shape, although it is much less smooth than ûi . Still, this example shows
how given only ĝ(x, γi) and the confidence limits, a researcher may obtain information about the manner in
which the proposed model differs from the true relationship.

5 Conclusion

In this paper, we adapt the test of Bradley and McClelland (1994) to a test of nonlinearity. Using the idea of
Newey (1985) that if the model is not properly specified then the vector of explanatory variables can better
predict the residuals from a linear regression than the residual’s mean, we use the conditional expectation of
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Figure 1
A Comparison of the Conditional Expectation of the Residual and the Kernel Estimate and 95% Confidence Interval, Holding
X2 Constant

the residuals given the regressors. We implement this idea by estimating the residuals as a function of the
regressors with a kernel regression. By directly estimating the nonlinearity with a conditional expectation
function, the limit of our test over the sample size should be the largest of all conditional moment tests.

Our test also allows researchers to increase power through cross-validation of the window width. We avoid
the problems of cross-validation discussed by other authors by resampling. This resampling also solves the
problem caused by the dependence inherent in the regression residuals.

In several Monte Carlo simulations, we compare our kernel test to that of the neural net test, the Ramsey
RESET test, and the sieve test. Although the choice of models essentially guarantees that the RESET test will
outperform others in most simulations, our test compares favorably with the neural net test in most
simulations and appears to be somewhat more powerful than either the neural net or the RESET tests in
others. The sieve test does not appear to have as much power, with one notable exception. Lastly, we use the
results from an arbitrary regression to show how the kernel regression estimated for the test can be used by
the researcher to gather information about the nature of any specification errors detected.
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Appendix A

Assumptions for the Random Vector (y, x)
(A.1) {yi, xi}, i = 1, . . . , n is a simple random sample from a continuous probability distribution on R × Rk

with

E (y2
i ) < ∞.

(A.2) Under Ho, the parameter space 2 is a compact and convex subset of Rm and f (x, θ) is a Borel
measurable real function on real k, and for each k vector x is a twice continuously differentiable real function
on θ . E [supθ∈2 f (xi, θ)2] < ∞ and for i1, i2 = 1, . . . , m,

E

[
sup
θ∈2

|{(∂/∂θi1) f (x1, θ)}{(∂/∂θi2) f (x1, θ)}|
]

< ∞

E

[
sup
θ∈2

|{y1 − f (x1, θ)}2{(∂/∂θi1) f (x1, θ)}{∂/∂θi2) f (x1, θ)}|
]

< ∞

E

[
sup
θ∈2

|{y1 − f (x1, θ)}(∂/∂θi1)(∂/∂θi2) f (x1, θ)|
]

< ∞

(A.3) E (y1 − f (x1, θ)) takes on a unique minimum on 2 at θo. Under Ho, the parameter vector θo is an interior
point of 2.
(A.4) The matrix A defined in Equation (13) is nonsingular.

Appendix B

Proof of Theorem 1
There are three steps:

i) show that Wn − Än = 0

where Än is the Wald test for γ = 0 in model Y = θX + γ h(x) + ε,

ii) show that Än − 3n
p−→ 0

where 3n is the Lagrange multiplier test for the above model, and

iii) show that 3n − nR2 = 0.

i) In the linear model we may write Wn as

Wn = n
[h′û]2

û′h[I − X (X ′X )−1X ′]h′û

= n
û′h[h′[I − X (X ′X )−1X ′]h]−1h′û

û′û
,

where h = [h(x1), . . . , h(xn)]′.
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This is just a Wald test for γ = 0:

γ̂ 0−1
n γ̂ ,

where γ̂ is an OLS estimator of γ , using x and h,

0n = R ′(Z ′Z/n)−1R
û′û
n

,

R = [01, . . . , 0k, 1]′,

and

Z = [X , h].

ii) See White (1984).

iii) We begin with the Lagrange multiplier statistic for the null γ = 0. From the above,

E (Y | X ) = θX + γ h.

Let B = [θ, γ ]′.
Then the null hypothesis is

RB = 0,

where

R = [01, . . . , 0k 1].

Let

1) λ̈ = 2[R(Z ′Z/n)−1R ′]−1RB̂, and

2) B̈ = B̂ − (Z ′Z/n)−1Rλ̈/2

= [θ̂ 0]′.

The Lagrange multiplier statistic is:

3) Ln = nλ̈′
n3̂−1

n λ̈n −→ χ2(1),

where

4) 3̂n = 4(R ′(Z ′Z/n)−1R)−1R(Z ′Z/n)−1V̈n(Z ′Z/n)−1R ′(R ′(Z ′Z/n)−1R)−1,

where V̈ is an unbiased estimate of the variance of (Z ′u/n
1
2 ).

We can simplify Ln to

5) RB̂ = R(Z ′Z/n)Z ′Y /n.

We know that

6) RB̈ = 0.

Adding 6) to the right-hand side of 5):

7) RB̂ = R(Z ′Z/n)Z ′(Y − Z ′B̈)/n

= r (Z ′Z/n)−1Z ′û/n.
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Substituting the right-hand side of 7) into 1), we get

λ̈ = 2[R(Z ′Z/n)−1R ′]−1R(Z ′Z/n)−1Z ′û/n.

Partitioning Z ′Z−1, we have

(Z ′Z)−1 =
[
(X ′(I − h(h′h)−1h′)X )−1 −E−1X ′h(h′h)−1

−D−1h′X (X ′X )−1 (h′(I − X (X ′X )−1X ′)h)−1

]
,

where

E = X ′(I − h′(h′h)−1h)−1h)X

D = h′(I − X (X ′X )−1X ′)−1X )h.

Then

R(Z ′Z)−1R ′ = (h′(I − X (X ′X )−1X ′)h)−1, and

R(Z ′Z)−1 = [−D−1X (X ′X )−1 (h′(I − X (X ′X )−1X ′)h)−1].

Then

(R(Z ′Z)−1R ′)−1R(Z ′Z)−1 = (h′(I − X (X ′X )−1X ′)h)[−D−1X (X ′X )−1 (h′(I − X (X ′X )−1X ′)h)−1]

= [−h′(I − X (X ′X )−1X ′)hD−1h′X (X ′X )−1 I ]

= [−h′X (X ′X )−1 I ].

Further,

(R(Z ′Z)−1R ′)−1R(Z ′Z)−1Z ′ = h′(I − X (X ′X )−1X ′).

Then

8) λ̈ = 2h′(I − X (X ′X )−1X ′)û/n

= 2h′û/n.

Given homoskedasticity, V̈ in 4) can be simplified as

9) V̈ = σ̈ (Z ′Z/n)

= (û′û/n)(Z ′Z/n).

Using 9) and substituting allows us to simplify 4) as

10) 3̂n = 4(û′û/n)(Z ′Z/n)−1.

Substituting 8) and 10) into 3), then

Ln = nû′Z(Z ′Z)−1Z ′û/û′û = nR2.
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