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Abstract. In this paper, we propose a model-selection approach to testing the expectations theory of the term

structure of interest rates. Our method is based on the posterior information criterion (PIC) developed and

analyzed by Phillips and Ploberger (1994, 1996) and extended to provide order estimation of cointegrating

rank by Chao and Phillips (1997). This methodology has the advantage that issues of order selection—i.e., the

determination of lag length and cointegrating rank in a vector autoregression—and hypothesis testing are

treated within the same framework. Applying our procedure to interest-rate data from the International

Financial Statistics, we find the expectations theory to be inconsistent with the data.
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1 Introduction

Traditionally, most empirical studies in economics involving time-series data have been conducted using

models that are linear in parameters. Oftentimes, these models belong to the class of autoregressive models or

to their multivariate generalization, the vector-autoregressive models (VAR) in levels. Since the pathbreaking

empirical analysis of Davidson et al. (1978), however, it has been widely recognized that the error-correction

model, which has nonlinear restrictions on some of its coefficients, fits many macroeconomic and financial

time series very well, and often better than strictly linear time-series models such as the level VARs.

Parallel to this development is the important work of Granger (1981), Granger and Weiss (1983), and Engle

and Granger (1987) on cointegration. In these papers, Granger and his co-authors conceptualize and formalize
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the idea that several nonstationary I(1) processes (i.e., stochastic processes that are stationary upon first

differencing) may move together in such a way so that taking a linear combination of them may result in a

stationary I(0) process. Moreover, they show that this phenomenon of cointegration is intimately related to the

error-correction model in the sense that every cointegrated time series has an error-correction representation.

The papers of Granger and his co-authors have stimulated much theoretical research in nonstationary

regression and cointegration. A main conclusion of this subsequent research is that in general the classical

Wald statistic has a nonstandard asymptotic distribution when it is constructed from level regressions with

untransformed I(1) variables, but has the usual chi-square distribution when knowledge of cointegrating

relationships is used to bring nonstationary regressions into error-correction form [see, for example, Phillips

(1991) and Toda and Phillips (1993)].

This theoretical research has also had a profound impact on empirical work. One area which has, in

particular, witnessed the application of the new theory of nonstationary regression and cointegration is in the

testing of rational expectations present-value models of the asset markets. In two influential papers, Campbell

and Shiller (1987, 1989) both estimate and use cointegrating relationships implied by economic theory to

transform a nonstationary I(1) system into one that is I(0). They are then able to construct Wald tests that have

the conventional chi-square asymptotic distribution in testing the implications of the present-value models for

stock prices and for the term structure of interest rates.

Hence, for a system of I(1) processes, both theoretical and practical concerns point to the need for

identifying the existence and number of cointegrating relationships, either through estimation or through prior

information supplied by economic theory. In addition, if the underlying data-generating mechanism is taken

to be well modeled by a VAR process, then there is the additional task of choosing the lag order of the VAR.

Recently, Phillips (1996) and Chao and Phillips (1997) have argued that the problem of jointly estimating the

cointegrating rank (i.e., the number of linearly independent cointegrating vectors) and the lag order of a VAR

system can be best viewed within the framework of model selection. Moreover, they advocate the application

of a newly developed model-selection procedure, the posterior information criterion (PIC) of Phillips and

Ploberger (1994, 1996) for this task of joint order estimation. Chao and Phillips (1997), in particular, have

shown that the use of PIC in this context has an advantage over the alternative sequential-likelihood-ratio test

procedure proposed by Johansen (1992), in that the former results in consistent estimation of the

cointegrating rank, whereas the latter does not.

The purpose of this paper is to apply PIC to a reexamination of the expectations theory of the term

structure of interest rates.1 Our approach is similar to that of Campbell and Shiller (1987), in that we test the

expectations theory as restrictions on a VAR. However, our use of the model-selection procedure PIC has a

number of advantages over the statistical procedures adopted by Campbell and Shiller (1987). First, whereas

Campbell and Shiller (1987) use two distinctively different statistical methods for the two tasks of lag-order

selection and hypothesis testing (i.e., they use an information criterion, AIC, to select the lag order of their

VAR, and then test the restrictions of the present-value model using the classical Wald test), we show that by

employing PIC, we can determine the lag order and the cointegrating rank as well as test restrictions implied

by the expectations theory, all within a single coherent framework. Second, in our framework, bar charts and

histograms of PIC values can easily be constructed to assess the strength and robustness of our inference with

respect to lag and cointegrating-rank selection. Finally, Chao and Phillips (1997) have shown that PIC leads to

consistent estimation of the lag order, even in nonstationary VARs, whereas AIC, the lag-selection procedure

that Campbell and Shiller (1987) employed, is known to be inconsistent in estimating the lag order for even

stationary autoregressive processes and has, in fact, a tendency to overestimate the lag order.2

1See Chao and Phillips (1997) for an application of a variant of the PIC methodology to a study of the present-value model for stock prices
using the data set of Campbell and Shiller (1987).

2See Shibata (1976) and Tsay (1984) for theoretical results pointing to the inconsistency of AIC in lag selection. See also Sawa (1978) for Monte
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The paper proceeds as follows. In Section 2, we briefly describe the rational expectations present-value

model for the term structure of interest rates, and the restrictions that it imposes on a vector error-correction

model (VECM). Section 3 gives a summary presentation of our model-selection procedure, PIC. For details on

this procedure, the readers are referred to Chao and Phillips (1997). Section 4 gives our empirical results.

Finally, we offer our concluding thoughts in Section 5.

2 The Present-Value Model and Its Testable Implications

In this section, we briefly describe the present-value model of the term structure of interest rates, and discuss

its testable implications. Since a detailed discussion of this model is given in Campbell and Shiller (1987), we

focus our attention here only on those features of the model that will be relevant for our subsequent analysis.

Following Campbell and Shiller (1987), the present-value model can be stated in its general form as:

y1t = θ (1− δ)
∞∑

i=0

E
(
y2t+i |It

)+ c, (1)

where E (·|It ) denotes the mathematical expectation conditional on the full public information set It at time t .

Throughout this paper, we shall treat conditional expectations as being equivalent to linear projections on

information. While the model given by Equation 1 also includes the present-value model for stock prices and

the permanent income theory of consumption as special cases, our discussion here will only focus on its

interpretation as a model for the expectations theory of the term structure of interest rates. In this context, the

value of the parameter θ is known a priori to equal one; the parameter c has an interpretation as the liquidity

premium unrestricted by the model; and δ is the parameter of linearization set to 1
(1+R) , where R is the

discount rate. Here, we let y1t denote the long-term yield and y2t the short-term interest rate.

Let st = y1t − y2t be the spread between long- and short-term interest rates. Campbell and Shiller (1987)

show that the present-value model denoted by Equation 1 implies two alternative interpretations of the spread:

st =
∞∑

i=0

δiE
(4y2t+i |It

)+ c, and (2)

st = δ

1− δ
∞∑

i=0

E
(4y1t+i |It

)+ c. (3)

If 4y2t is stationary, then Equations 2 and 3 further imply that st and 4y1t are also stationary. Hence, y1t and

y2t are cointegrated with cointegrating vector (1,−1) .

To test the implications of the expectations theory as expressed in these interpretations of the spread, we

first specify the joint dynamics of y1t and y2t as a bivariate VAR of lag order p + 1; i.e.,

yt = µ+
p+1∑
i=0

Bi yt−i + εt , (4)

where yt =
(
y1t , y2t

)′
, µ = (µ1, µ2)

′, and εt ≡ N (0
∼
, Ä). This formulation is in line with that of Hansen and

Sargent (1981), Campbell and Shiller (1987), and Toda (1991), in that it includes lagged values of not only y2t

but also y1t in the information set available to the econometrician.

Alternatively, Equation 4 can be written as:

4 yt = µ+
p∑

i=0

B∗i 4 yt−i + B∗yt−1 + εt , (5)

Carlo evidence on the tendency of AIC to overestimate the lag order in a finite sample.
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where B∗i = −
∑p+1

l=i+1 Bl and B∗ =
∑p+1

i=1 Bi − I2. Now, if y1t and y2t are cointegrated, then the 2×2 matrix B∗
is of reduced rank, and we can write Equation 5 in the form:

4 yt = µ+
p∑

i=0

B∗i 4 yt−i + γα′yt−1 + εt , (6)

where γ = (γ1, γ2)
′ and α=(1, α1)

′. We shall refer to Equation 6 as an unrestricted VECM, and test the

expectations theory as restrictions on this model. To do so, it is most convenient for us to work with the

spread relationship given by Equation 3. Imposing Equation 3 on the VECM in Equation 6 results in the

following set of restrictions:

b∗i,11 = b∗i,12 = 0, i = 1, . . . , p, (7)

γ1 = 1− δ
δ
= R, (8)

µ1 = − (1− δ)
δ

c, and (9)

α = (1, α1)
′ = (1,−1)′ , (10)

where (b∗i,11, b
∗
i,12) denotes the first row of the matrix B∗i .

Before proceeding to discuss our approach for testing the restrictions given by Equations 7–10, we first

introduce more notations. In the rest of the paper, we shall let 1Y = (1y1,1y2, . . . , 1yT )
′,

Y−1 = (y0, . . . , yT−1)
′, Wt (p) = (1,1y ′t−1,1y ′t−2, . . . , 1y ′t−p)

′, W (p) = (W1(p), . . . ,WT (p))′, E = (ε1, . . . , εT )
′,

and B∗ = (µ,B∗1 , . . . ,B∗p). With these notations, we can rewrite Equation 6 in a more concise manner, as:

1Y = W (p)B∗′ + Y−1αγ
′ + E . (11)

In addition, we let PX = X (X ′X )−1 X ′ denote the matrix that projects onto the range space of X , and let

MX = IT − PX denote the matrix that projects onto the orthogonal complement of the range space of X .

3 A PIC Approach to Testing Economic Hypothesis

Our approach to testing the expectations theory for the term structure of interest rates is based on the PIC

criterion first developed by Phillips and Ploberger (1994, 1996) and applied to the VAR context by Chao and

Phillips (1997). Similar to other information criteria, such as AIC and BIC, hypothesis testing within the PIC

framework can be performed by computing the value of the PIC criterion under the various alternative

hypotheses (or models) under consideration, and choosing that hypothesis which gives the maximum PIC

value. To be more explicit, let us first define the form of the PIC criterion for the (unrestricted) VECM given by

Equation 6 (or, alternatively, Equation 11) of the last section. Following Chao and Phillips (1997), we have:

PIC
(
p, r

) = (12)

exp

{
−1

2

[
vec

(
1Y − Y−1B̃∗

(
p, r

)′)′
MW (p) vec

(
1Y − Y−1B̃∗

(
p, r

)′)]}
exp

{
1

2

[
vec

(
1Y − Y−1B̂∗

(
p
)′)′

MW (p) vec
(
1Y − Y−1B̂∗

(
p
)′)]}

[∣∣∣Ä̂−1 ⊗W
(
p
)′

W
(
p
)∣∣∣ 1

2
/
∣∣∣Ä̂−1 ⊗W

(
p
)′

W
(
p
)∣∣∣ 1

2

]
[∣∣∣Ä̂−1 ⊗ Y ′−1MW (p)Y−1

∣∣∣ 1
2
/
∣∣∣H̃ (

p, r
) (
Ä̂−1 ⊗ Y ′−1MW (p)Y−1

)
H̃
(
p, r

)′∣∣∣ 1
2

]
.
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Here, B̃∗(p, r ) = γ̂ (p, r )̂α(p, r )′, where γ̂ (p, r ) and α̂(p, r ) are the Gaussian maximum-likelihood estimators

of the reduced-rank parameters γ and α in Equation 6, when the cointegrating rank is taken to be r and the

order of lagged differences is taken to be p.3 We let B̂∗(p) = 1Y ′MW (p)Y−1(Y ′−1MW (p)Y−1)
−1 denote the

least-squares estimator of B∗ in a VECM of lag order p, with p being the maximum lag length under

consideration. In addition, Ä̂ = 1Y ′M(Y−1,W (p))1Y is the maximum-likelihood estimator of Ä in the case

where Equation 5 has the highest possible order in our setup, i.e., r = m and p = p. Furthermore, we define

H̃ (p, r ) =
[

(0̂(p, r )′ ⊗ F (r )′)
(Im ⊗ (Ir , Â(p, r )′))

]
, (13)

where F (r ) is the m × (m − r ) matrix such that F (r )′ = [0, Im−r ]. The criterion denoted by Equation 12 can

then be used to determine the cointegrating rank and lag order of the (unrestricted) VECM, based on the

decision rule: (
p̂, r̂

) = arg max PIC
(
p, r

)
. (14)

Although the criterion denoted by Equation 12 may appear complicated, it actually has a simple and

intuitive interpretation as a combination of likelihood-ratio statistics, which test the fit of the reduced-rank

model of Equation 6, and penalty terms, which reflect the complexity of the model. To see this, we first note

that with a bit of straightforward algebra, the criterion denoted by Equation 12 can be rewritten as:

PIC
(
p, r

) = (15)

exp

{
−1

2
tr
[
Ä̂−1

(
B̃∗
(
p, r

)− B̂∗
(
p
))

Y ′−1MW (p)Y−1

(
B̃∗
(
p, r

)− B̂∗
(
p
))′]}

exp

{
−1

2
tr
[
Ä̂−1B̂∗

(
p∗
)

W
(
p∗
)′

M(Y−1,W (p))W
(
p∗
)

B̂∗
(
p∗
)′]}

[∣∣∣Ä̂−1 ⊗W
(
p
)′

W
(
p
)∣∣∣ 1

2

]
/

[∣∣∣Ä̂−1 ⊗W
(
p
)′

W
(
p
)∣∣∣ 1

2

]
[∣∣∣Ä̂−1 ⊗ Y ′−1MW (p)Y−1

∣∣∣ 1
2

]
/

[∣∣∣H̃ (
p, r

) (
Ä̂−1 ⊗ Y ′−1MW (p)Y−1

)
H̃
(
p, r

)′∣∣∣ 1
2

]
,

where B̂∗(p∗) = 1Y ′M(Y−1,W (p))W (p∗)(W (p∗)′M(Y−1,W (p))W (p∗))−1 denotes the least-squares estimator of the

last m(p − p) columns of B∗ [or the coefficients of the last (p − p) lagged differences] in a VECM of lag order

p. Now, note that the trace term in the exponent of the first term, i.e.,

tr
[
Ä̂−1

(
B̃∗
(
p, r

)− B̂∗
(
p
))

Y ′−1MW (p)Y−1

(
B̃∗
(
p, r

)− B̂∗
(
p
))′]

is, in fact, the likelihood-ratio statistic for testing that the cointegrating rank is r versus the general alternative

that it equals m [cf. Reinsel and Ahn (1992)]. Similarly, the trace expression in the exponent of the second

term, i.e.,

tr
[
Ä̂−1B̂∗

(
p∗
)

W
(
p∗
)′

M(Y−1,W (p))W
(
p∗
)

B̂∗
(
p∗
)′]

is simply the likelihood-ratio statistic for testing the null hypothesis that the VECM has p lagged differences

3Of course, in our application of PIC here, we work only with a bivariate system, so that strictly speaking, the reduced-rank formulation of
Equation 12 is only correct for r = 1. When r = 0, we take r = α = 0, so that correspondingly, γ̂ = α̂ = 0. On the other hand, when r = 2,
we take γ = B∗ and α = I2, so the maximum-likelihood estimators are γ̂ = B̂∗ and α̂ = I2.
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versus the alternative that the number of lagged differences is p > p. The third and fourth terms, on the other

hand, are terms which, ceteris paribus, penalize models for having higher lag order and/or greater

cointegrating rank. Note also that the penalty terms of PIC differ from those of AIC, BIC, and the

Hannan-Quinn criterion: whereas the penalty functions for these other information criteria depend on a

simple parameter count, the penalty terms of PIC compare the Fisher information matrix of the larger model

with that of the smaller model and, in effect, use the redundant information introduced by an

overparameterized model to penalize excess parameterization. Both Phillips and Ploberger (1994) and Chao

and Phillips (1997) have argued that the use of a penalty function based on the Fisher information matrix is a

likely explanation for the better finite-sample performance of PIC relative to AIC and BIC, as shown in Monte

Carlo experiments reported in these two papers. An information-matrix-based penalty function is

advantageous because it takes into account not only the number of regressors included in the alternative

models, but also the magnitude of the regressors and the sample information accumulated in the data about

the models’ parameters. Chao and Phillips (1997) have also shown that choosing p and r based on the

decision rule given by Equation 14 leads to consistent estimators of the lag order and cointegrating rank. See

Chao and Phillips (1997) for more discussion of the properties of PIC.

Now, to test restrictions implied by the expectations theory of the term structure of interest rates, we must

also construct the PIC statistic for the VECM restricted by Equations 7–10 in Section 2. To proceed, we note

that the restrictions given by Equations 7–10 are linear restrictions that take the form:

H
(
M R

)
: γ = f1φ + g1, α = g2, vec

(
B∗
) = F3

(
p
)
β, (16)

where β and φ are respectively, a (2+ 2p)× 1 vector of basic parameters and a scalar parameter, and where

F3

(
p
) = ( 1 0 0

0 0 I2p+1

)

is a (2+ 4p)× (2+ 2p) matrix, and f1 =(0, 1)′, g1 = (R, 0)′, and g2 = (1,−1)′ are 2× 1 vectors. Moreover, by

imposing the restrictions given by the null hypothesis (Equation 16) on the VECM (Equation 6) of Section 2,

we obtain the restricted VECM:

M R
p : 1yt =

(
I2 ⊗Wt

(
p
)′)

F3

(
p
)
β + ( f1φ + g1

)
g ′2yt−1 + εt

= Xt

(
p
)
β + γ (φ) g′2yt−1 + εt , (say),

(17)

where Xt (p) = (I2 ⊗Wt (p)′)F3(p) and γ (φ) = f1φ + g1. Following arguments similar to Theorem 3.3 and

Corollary 3.4 of Chao and Phillips (1997), we can deduce the form of the PIC statistic for the restricted model

(Equation 17) as:

PICR
(
p
) = (18)

exp

{
−1

2

[
vec

(
1Y − Y−1B∗

(
p
)′)′

N
(
p
)
vec

(
1Y − Y−1B∗

(
p
)′)]}

exp

{
1

2

[
vec

(
1Y − Y−1B̂∗

(
p
)′)′

MW (p) vec
(
1Y − Y−1B̂∗

(
p
)′)]}

[∣∣∣Ä̂−1 ⊗W
(
p
)′

W
(
p
)∣∣∣ 1

2

]
/

[∣∣∣F (p)′ (Ä̂−1 ⊗W
(
p
)′

W
(
p
))

F
(
p
)∣∣∣ 1

2

]
[∣∣∣Ä̂−1 ⊗ Y ′−1MW (p)Y−1

∣∣∣ 1
2

]
/

[∣∣∣H ′N (
p
)

H
∣∣∣ 1

2

]
,
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where

N
(
p
) = (

Ä̂−1 ⊗ Y ′−1Y−1

)− (Ä̂−1 ⊗ Y ′−1W
(
p
))

F3

(
p
)(

F3

(
p
)′ (
Ä̂−1 ⊗W

(
p
)′

W
(
p
)) (

F3

(
p
)))−1

F3

(
p
)′ (
Ä̂−1 ⊗W

(
p
)′

Y−1

)
,

H = ( f ′1 ⊗ g ′2
)
,

and

B∗
(
p
) = γ (φ̂ (p)) g′2,

with φ̂(p) being the Gaussian maximum-likelihood estimate of φ in the restricted model (Equation 17) when

the lag order is taken to be p. Given the criterion denoted by Equation 18, the lag choice p̃ for the restricted

model can be made as follows:

p̃ = arg max PICR(p). (19)

Finally, let H (M R) be the null hypothesis defined by Equation 16 (i.e., the set of restrictions implied by the

expectations theory), and let H (M U ) be the alternative of an unrestricted VECM as defined by Equation 6 in

Section 2. Then we propose to test H (M R) versus H (M U ) using the decision rule:

accept H
(
M R

)
in favor of H

(
M U

)
if

PICR( p̃)

PIC( p̂, r̂ )
> 1. (20)

Note that this decision rule is analogous to one that Bayesians would employ for posterior-odds analysis in

the case where the loss function treats type-I and type-II errors symmetrically. Indeed, Chao and Phillips

(1997) show that in certain special situations, the PIC criterion can be interpreted as an approximate

posterior-odds ratio. The interested reader is referred to that paper for further discussion.

4 Data Description and Empirical Results

In this section, we apply the statistical procedures given in Section 3 to test the expectations theory of the

term structure of interest rates described in Section 2. A brief discussion of the data is in order. The data used

come from the International Financial Statistics published by the IMF, and contain monthly observations

extending from 1964:1 to 1997:1. The short-term interest rate y2t in the sample is the one-month U.S. Treasury

bill rate, while the long-term interest rate y1t we use is the 10-year U.S. government bond yield. We shall

report our empirical results not only for the full sample period, but also for the shorter period from 1964:1 to

1978:8. Results for the latter period are also reported since, as Campbell and Shiller (1987, 1991) have argued,

the use of a subsample period ending 1978:8 is likely to avoid any structural change in the data owing to the

1979 monetary regime shift.

4.1 Unit Root Tests

We begin our empirical analysis by testing the two interest-rate series for unit roots. To be consistent with the

model-selection approach that we take in our subsequent multivariate analysis, we test unit roots using the

univariate version of PIC as detailed in Phillips and Ploberger (1994). The Phillips-Ploberger PIC approach to

unit-root testing requires comparing a general autoregressive model with trend (and written in difference

form), viz.,

H
(
M REF

p,l

)
: 1yt = a0yt−1 +

p−1∑
i=1

ai1yt−i +
l∑

j=0

bj t
j + εt , (21)
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Table 1
Unit Root Tests

Sample Period Variable
Lag
Selecteda

Trend
Selected

PIC Ratio
in Favor of a
Unit Root

1964:1–1978:8
y1t

y2t

3
2

−1b

0
198.643
2.570e−25

1964:1–1997:1
y1t

y2t

3
7

−1
−1

498.699
266.355

a The maximum lag order p is set equal to 12.
b −1 denotes the absence of a constant term.

with one that explicitly incorporates a unit root:

H
(
M UR

p,l

)
: 1yt =

p−1∑
i=1

ai1yt−i +
l∑

j=0

bj t
j + εt . (22)

Unit-root tests can then be mounted using the test criterion:

PICUR( p̃, r̃ )

PICREF( p̂, r̂ )
=
{(

1

σ̂ 2

)
y ′−1MZ y−1

} 1
2

exp

{
−1

2
σ̂ 2â0

2
(
y ′−1MZ y−1

)}
, (23)

where y−1 = (y0, . . . , yT−1)
′, Z is a T × (p + l) matrix whose t th row is the 1× (p + l) vector

(1yt−1, . . . , 1yt−p+1, 1, t, . . . , t l )′ and â0 is the least-squares estimator of a0 in Equation 21. Here, p̂ and l̂ are

the lag order and trend degree selected by PIC for the reference model given by Equation 21, while p̃ and l̃

are the lag order and trend degree selected for the unit-root model denoted by Equation 22. Given the

criterion denoted by Equation 23, decisions about unit roots can be made based on the rule:

decide in favor of unit root if
PICUR( p̃, r̃ )

PICREF( p̂, r̂ )
> 1. (24)

Table 1 documents the results of our unit-root test using the test criterion denoted by Equation 23 and the

decision rule given by Equation 24. The last column of Table 1 provides some evidence that both interest-rate

series can be characterized as I(1) processes, although the evidential support is not uniform across all sample

periods for both series. Of the two, the 10-year government bond yield seems to have the stronger support in

favor of its characterization as an I(1) process. In both the full sample period and the short sample period

from 1964:1 to 1978:8, the PIC criterion decides in favor of a unit-root characterization for this series. The

one-month Treasury bill rate, on the other hand, is found to have a unit root in the full sample period but not

in the short sample period. Note also that in all but one case (the one case being the Treasury bill rate in the

full sample period), our PIC criterion selects a rather parsimonious dynamic specification with three or less

lags. This is not surprising, since model-selection procedures by design will favor the more parsimonious

model in the absence of strong evidence for the larger model.

4.2 Lag Order and Cointegrating Rank Estimation

Since some (although not unambiguous) evidence for the presence of unit roots in our interest-rate series is

found in the last section, the natural next step in our analysis is to test to see whether the short-term and the

long-term interest rates are cointegrated. From Equations 7–10, it is apparent that the cointegration of the

short- and long-term interest rates is but one of the restrictions of the expectations theory of the term

structure. However, testing for cointegration in the absence of the other restrictions of the expectations theory

may nevertheless be of interest, especially if one wishes to obtain an appropriate time-series representation

for the long-term and short-term interest rates for forecasting purposes. Hence, in this section, we shall

proceed to estimate the lag order and the cointegrating rank of the (unrestricted) VECM (Equation 6) using the
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Table 2
Estimation of Cointegrating Rank and the Order
of Lagged Differences

Sample Period p̂ r̂ pm r m

1964:1–1978:8 3 1 2.490 0.447
1964:1–1997:1 2 1 3.920 0.885

Notes: p̂, r̂ , pm , and r m are as defined in Equations 14
and 25.

decision rule given in Equation 14. Note that Equation 14 selects the mode amongst possible PIC values. In

addition to this modal criterion, we shall also obtain point estimates for p and r by taking a weighted average

using the PIC values as weights, i.e.,

(
pm, r m

) = round

{(∑
p,r

PIC
(
p, r

))−1∑
p,r

(
PIC

(
p, r

) · (p, r ))} . (25)

The advantage of using a mean criterion such as Equation 25 to supplement a modal criterion like

Equation 14 is that the former is affected by and therefore alerts the investigators to cases (i.e., order

combinations) where an appreciable mass of PIC values may occur in regions away from the mode.

Table 2 reports order estimates (p, r ) under both the modal criterion of Equation 14 and the mean criterion

of Equation 25 for the bivariate system comprised of y1t (the 10-year government bond yield) and y2t (the

one-month Treasury bill rate). Note that the modal criterion finds one cointegrating vector both for the short

sample period extending from 1964:1 to 1978:8 and for the full sample period. The (prior to rounding)

cointegrating-rank estimates from the mean criterion are .447 and .885, respectively, for the short and the full

sample periods. That these estimates are both closer to .5 than to 0 or 1 is indicative of the considerable

uncertainty which surrounds the inference on cointegration in this case. Figures 1 and 2, which give bar charts

of PIC values in (p, r ) space for the two sample periods, also reveal that the inference on cointegration here is

not very sharp, as an appreciable mass of PIC values is observed for every value of the cointegrating rank r

under consideration. The weak inference on cointegration and also on unit roots serves to explain our

apparently contradictory finding of a cointegrating vector for the short sample period when the results of our

unit-root tests suggest that y1t is I(1) and y2t is I(0) during this period, in which case they cannot possibly be

cointegrated. The apparently conflicting results are due simply to the fact that the data is not very informative

about the existence of unit roots and cointegration. Note also that for the short sample period, the estimate of

the cointegrating rank based on the mean criterion rounds to zero and is, thus, more in accord with the

unit-root test results.

In spite of the less than unambiguous results which our unit-root and cointegration analyses have yielded, it

is worth keeping in mind that the goal of model selection is often not so much to test whether a model is true,

but rather to choose from a class of models under consideration that which best fits the data while making the

appropriate trade-offs with respect to model size. Seen from this perspective, our results suggest that a VECM

with r = 1 gives a better time-series representation for our data than alternative specification of the

cointegrating rank. This is in agreement with the results of Campbell and Shiller (1987) who, using a different

data set, find evidence of cointegration between the one-month Treasury bill rate and a long-term interest rate.

With respect to lag selection, Table 2 reports that the modal criterion chooses lag orders of 3 and 2,

respectively, for the short and the full sample periods. As with cointegrating-rank selection, both the lag

estimates from the mean criterion (which gives p̃ = 2.49 for the short sample period and p̃ = 3.92 for the full

sample period) and the bar charts of PIC values depicted in Figures 1 and 2 show considerable uncertainty in

regards to lag specification. This is particularly true for the full sample period, where the lag selection of the

mean criterion rounds to 4: this is substantially different from the lag order of 2 selected by the modal criterion.
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Figure 1
Lag/rank selection 1964:1–1978:8 for the spread between y2 and y1.

Figure 2
Lag/rank selection 1964:1–1997:1 for the spread between y2 and y1.
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Table 3
Model Selection Test of the Expectations Theoryc

Sample Period
p̂ under
H (M R )

pm under
H (M R )

τ1 τ2

1964:1–1978:8
(R = .0637/12)

3 2.862 0.278 0.278

1964:1–1997:1
(R = .07911/12)

3 3.200 1.017e−18 3.755e−18

c R is given by the mean 10-year bond rate.

Table 4
Model Selection Test of the Expectations Theoryd

Sample Period
p̂ under
H (M R )

pm under
H (M R )

τ1 τ2

1964:1–1978:8 3 2.862 4.639e−02 4.639e−02
1964:1–1997:1 3 3.200 3.286e−19 1.406e−18

d R is unrestricted.

4.3 Tests of the Expectations Theory of the Term Structure

We proceed now to test the restrictions (Equations 7–10) of the expectations theory using the test criterion

given in Equation 20. To summarize our results, we define the following statistics:

τ1 =
PICR

(
p̃
)

PIC
(
p̂, r̂

) , and

τ2 =
PICR

(
p̃
)

PIC
(
p̃, 1

) .
Here, PICR (·) denotes the form of the PIC criterion under the null model H (M R), when restrictions implied by

the expectations theory are imposed, while PIC(·, ·) denotes the form of the criterion when the underlying

model is the unrestricted VECM (Equation 6). The statistic τ1 compares the null model of the chosen lag order

p̃ with the model having the highest PIC value amongst those in the class of unrestricted (bivariate) VECMs.

On the other hand, τ2 compares the same null model with an unrestricted VECM of the same order ( p̃, 1).

We test the expectations theory for different specifications of the discount rate R . For the results in Table 3,

we take R = .0637/12 for the short sample period and R = .07911/12 for the full sample period, where these

discount rates are calculated as the mean monthly rate for the 10-year government bond for the respective

sample periods. Similar methods for specifying R were employed in Campbell and Shiller (1987). For the

results in Table 4, we leave R unrestricted and estimate it from the data jointly with the other parameters.

Tables 3 and 4 and Figures 3 and 4 report our findings. The results are unambiguous; for both the short

sample period and the full sample period, and regardless of the way R is specified, our tests reject the

restrictions imposed by the present-value model of the term structure of interest rates. Moreover, inspection of

the τ2 statistic shows that the present-value model of the chosen lag order p̃ also does not compare favorably

with an unrestricted VECM with the same lag order and one cointegrating vector.4 This observation suggests

that rejection of the expectations theory here is not a rejection of the cointegration part of the set of

restrictions of the present-value model, but rather it is caused by violation of the other restrictions of the

model, i.e., Equations 7–9 in Section 2. This result is also consistent with our cointegration analysis reported

earlier which, on the whole, finds cointegration between y1t and y2t while also noting the considerable

uncertainty surrounding that inference.

4Indeed, for the short sample period in both Tables 3 and 4, τ1 = τ2 since, in this case, the unrestricted model with the highest PIC value
happens to have the same order (p, r ) = (3, 1) as the restricted model of the chosen lag order p̃.
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Figure 3
PIC values for the spread between y2 and y1: 1964:1–1978:8.

Figure 4
PIC values for the spread between y2 and y1: 1964:1–1997:1.
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Figures 3 and 4 plot PIC values for four models (VECM with r = 0, VECM with r = 1, present-value model

with R given by the mean 10-year bond rate, and the present-value model with R unrestricted) against

different lag specifications. These figures show that our results are fairly robust to lag selection. For the short

sample period, one finds some evidence for the present-value model only if one is willing to condition on lag

selection greater than or equal to eight.5 The results for the full sample period are even more robust, since only

with a lag selection of p = 0 will one find evidence in favor of the present-value model; but this lag selection

is quite unlikely, as PIC values (for all four models) at this lag are much smaller than those at other lags.

Our results are, on the whole, in agreement with the results of Campbell and Shiller (1987) and Toda

(1991), both of whom using a different data set reject the expectations theory using classical statistical

procedures. However, Campbell and Shiller (1987) have argued that classical tests of the present-value model

may be so sensitive to departures from the expectations theory that they obscure some of the theory’s merits.

That is, the expectations hypothesis may be rejected even when it explains much of the variations in the

long-term interest rate.

Hence, in addition to classical tests of hypothesis, they also propose the use of informal procedures to

evaluate the “fit” of the present-value model, and find the informal procedures they use to yield encouraging

evidence for the expectations theory. It is interesting to note that Chao (1994) applies the model-selection

procedure used here to the Campbell-Shiller data set, and obtains results favorable to the expectations theory.

Qualitatively, the inference given in Chao (1994) is very similar to that of Campbell and Shiller (1987), based

on their informal procedures. This is not surprising, since model-selection methods are, in fact, procedures

that evaluate the “goodness of fit” of models while making the appropriate trade-offs on model size. Hence, in

our case, the mere fact that even model-selection methods reject the present-value model suggests that the

evidence against the expectations theory, at least for the particular data set used here, is very strong.

5 Conclusion

This paper puts forth a model-selection approach to testing the expectations theory of the term structure of

interest rates. Our method is based on the information criterion, PIC, as developed and analyzed in Phillips

and Ploberger (1994, 1996) and extended to provide order estimation of cointegrating rank by Chao and

Phillips (1997). This procedure has the advantage that it allows joint estimation of the lag order and

cointegrating rank of a VAR system, and the order estimators obtained from this procedure are completely

consistent in the sense that the probabilities of type-I and type-II errors both go to zero asymptotically. In

addition, bar charts of the PIC statistics for models of different order combinations can easily be constructed

so that one may assess the robustness of the inference with respect to lag order and cointegrating rank.

Applying PIC to monthly time-series data on the Treasury bill rate and a 10-year government bond yield

supplied by the publication International Financial Statistics, we find evidence for cointegration of these

interest rates, although bar charts of PIC values reveal considerable uncertainty about this inference. Testing

the full set of restrictions implied by the present-value model of the term structure results in the rejection of

this model by our model-selection procedure. Moreover, the rejection of the expectations theory is found to

be fairly robust to lag selection, as it can be overturned only if one conditions upon lag orders that are

extremely small (p = 0) or reasonably large (p ≥ 8). These lag specifications are considered unlikely, given

the small PIC values associated with them. These results are, on the whole, in agreement with those obtained

by Campbell and Shiller (1987) and Toda (1991) using a different data set, as these studies also reject the

expectations theory using classical tests of hypothesis.

5More precisely, we find evidence in favor of the present-value model for p = 8, 10, and 11, but not for p = 9, since in the latter case the
unrestricted VECM with r = 1 has a greater PIC value than any of the other models.
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