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Abstract. This paper aims at testing and modeling business-cycle asymmetries within a structural time-series

framework, allowing for smooth transition in the parameters characterizing the cyclical component, namely,

the damping factor and the frequency. An LM test of linearity is derived, and illustrations are provided with

reference to a set of quarterly U.S. industrial production series for two-digit manufacturing industries.
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1 Introduction

Detecting and modeling asymmetry constitutes an important issue in the study of business-cycle fluctuations.
A first type of asymmetry, recognized in the very early stage of business-cycle research, occurs when
contractions are steeper, but shorter, than expansions, so that the average duration and the dynamics of the
two phases of the business cycle differ. That contraction is a more violent change than expansion is already
regarded by Burns and Mitchell (1946, p. 134) as a common empirical finding.

A second type, introduced by Sichel (1993) and referred to as steepness, occurs when troughs are deeper
than peaks: recessions and expansions are characterized by the same duration (symmetry along the time axis),
but the cycle undergoes a steep fall and a steep recovery, then it peaks at a slower rate and starts falling at a
slow, but accelerating, rate; as a result, the distribution of the cyclical component is negatively skewed, with a
positive mode.

A third way in which asymmetric behavior can arise is due to an amplitude-frequency relationship (Tong
1990), implying, for instance, that the period of the cycle is lower when the amplitude of the oscillation is high.

Business-cycle asymmetry is a specialized departure from linearity that is accommodated by a transition or
switching model, capturing the notion that the phenomenon under investigation behaves differently according
to the state of the system defined in terms of a function of a transition variable. Along with the latter, which
can be observable or unobserved, the transition mechanism, i.e., the way the system moves from one state to
another, needs to be specified. The choices of the transition variable and the transition mechanism have given
rise to different approaches to modeling the feature under consideration.

In Hamilton’s Markov-switching models (Hamilton 1989, 1993) the parameters of the autoregressive
data-generating process vary according to the states of a latent first-order Markov chain; in empirical
applications to output series, the feature modeled is that the mean rate of drift is higher in expansions than in
recessions. The transition across regimes can be made smooth, allowing for time variation in the transition
probabilities. On the contrary, the class of threshold autoregressive models (TAR) is such that the transition
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variable is observed—usually as linear combinations of lagged values of the series. The transition mechanism
can be discrete or smooth, giving rise, in the latter case, to smooth-transition AR models (STAR), which
postulate a continuum of states between two extremes.

Smooth transition is usually deemed preferable to discrete transition. Apart from being more realistic since
“economic agents may not all act promptly and uniformly at the same moment” (Teräsvirta 1998), it is also
encompassing, as it nests discrete switching as a limiting case, and more flexible: Sichel (1994) has recently
criticized the emphasis on the two-phase characterization of business-cycle fluctuations, documenting the
presence of three phases: recessions are followed by high growth recovery, and a moderate growth period
follows. The smooth-transition approach has the flexibility to account for these patterns.

Other approaches have been proposed in the literature, such as AutoRegressive Asymmetric Moving
Average (ARAMA) models (Brännas and de Gooijer 1994; Brännas, de Gooijer, and Teräsvirta 1998), according
to which the response to negative shocks differs from the response to positive ones. However, ARAMA
models are less well suited to modeling a specific business-cycle asymmetry, and thus will not be pursued
further here.

This paper aims at modeling business-cycle asymmetries from a structural (Harvey 1989) perspective, by
which the series is decomposable into components of direct relevance to the analysis, such as trends,
seasonals, and cycles. In this framework, it is quite natural to model directly possible nonlinearities
concerning the cycle itself. The latter represents the most obvious transition variable, which is used to define
events or states such as recessions and expansions. This choice is somewhat a compromise between the
Markov-switching and TAR approaches, as the regimes are defined according to an unobserved variable, for
which, however, the minimum least-squares linear estimator is delivered by the conditionally Gaussian
Kalman filter (KF). This course of action enhances the interpretability of the model, by a thorough
understanding of its properties and the type of asymmetry captured. Moreover, we do not commit ourselves to
an autoregressive representation, and the reduced form of the model will be such that both the autoregressive
and moving-average parameters vary.

The paper is organized as follows: Section 2 is devoted to a brief review of TAR models that serves to
discuss the issues of selecting a transition mechanism and linearity testing against a specific alternative. Section
3 defines the linear cyclical model and its properties, whereas in the next section we set up its enhancements
in order to model business-cycle asymmetries. Likelihood inference for the models considered in the paper is
discussed in Section 5, and in Section 6 we derive LM linearity tests against smooth transition in the
parameters characterizing the behavior of the cycle. Finally, for illustrative purposes, we present the empirical
evidence concerning a set of U.S. quarterly industrial production series (Section 8), and Section 9 concludes.

2 Threshold Autoregressive Models

In this section, we briefly review the TAR approach to testing and modeling asymmetry, since some of its
ideas will be exploited later. A TAR model is specified as follows:

yt = µ1 + µ2F (zt−d )+
p∑

j=1

[φ1 j + φ2 j F (zt−d )]yt− j + [σ1 + σ2F (zt−d )]εt ,

where εt ∼ WN(0, 1), and the parameters shift according to the regime defined in terms of a function of the
observable transition variable zt−d , where d is the delay parameter. The transition mechanism is a function,
F (·), usually bounded between 0 and 1, so that the range of the parameters is (µ1, µ1 + µ2), (φ1 j , φ1 j + φ2 j )

and (σ1, σ1 + σ2).
As far as the definition of the transition variable is concerned, we shall restrict attention to univariate

threshold models, such that zt−d is a scalar variable; usually zt−d = yt−d , although Beaudry and Koop (1993),
in modeling the relative changes in yt , 1yt , defined zt = yt −max{yt , yt−1, yt−2, . . . , y1}, which captures the
depth of contractions in the levels of yt . Teräsvirta (1998) considered the case zt−d = t , for modeling and
testing time variation in the parameters of the autoregression.

Several specifications have been proposed for the transition mechanism, F (zt−d ):

• SETAR (Self-Exciting Threshold Autoregressive) models: for a threshold parameter, c,
F (zt−d ) = I (yt−d > c), where I (a) is the indicator function taking the value of 1 if the event a occurs,
and 0 otherwise (Potter 1995).
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• STAR models whereby F (zt−d ) is an odd monotonically increasing function with F (−∞) = 0 and
F (+∞) = 1. Examples are the standard normal distribution function, 8((yt−d − c)/δ), where δ is a scale
parameter, and the logistic function or LSTAR models (Granger and Teräsvirta 1993),

F (zt−d ) = 1

1+ exp[−τ(yt−d − c)]
.

The parameter τ > 0 is the smoothness parameter determining how rapid the transition is. If τ →∞,
F (zt−d )→ I (zt−d ).

• STAR models whereby F (zt−d ) is an even function; e.g., the normal density function

F (zt−d ) = 1√
2πδ

exp[−(yt−d − c)2/2δ2]

or

F (zt−d ) = 1− exp[−τ(yt−d − c)2],

as in exponential STAR (ESTAR) models. For small or large values of yt−d , F is close to 1; when τ →∞,
F → 1− I (yt−d = c). This is used to model amplitude-dependent phenomena: recessions and expansions
have similar dynamics, but the middle ground is subject to different dynamics. As a matter of fact, the
ESTAR model is a generalization of Ozaki’s exponential AR models (d = 1 and c = 0); see the work of
Tong (1990).

Linearity testing against a SETAR specification is a highly nonstandard inferential problem that has been
recently dealt with by Hansen (1996). More convenient approximate test procedures are available for STAR
alternatives. When the irregular variance is constant, the LM test of linearity against LSTAR and ESTAR
alternatives is a test of τ = 0 in

yt = µ1 + µ2F (yt−d )+
p∑

j=1

[φ1 j + φ2 j F (yt−d )]yt− j + ut ,

where ut ∼ WN(0, σ 2). This testing problem is also nonstandard, since under H0 the parameters µ2, φ2 j , and c
are not identified, and the block of the information matrix corresponding to these parameters is null, which
violates the standard regularity conditions under which the LM test is derived.

A way of getting around the problem is to adopt the strategy suggested by Davies (1977, 1987), which
leads to a convenient test procedure. This consists of first deriving the LM statistic as a function of the
unidentified parameters LM(µ2, φ2 j , c), and then basing the test on max LM(µ2, φ2 j , c) over all possible values
(µ2, φ2 j , c). When the transition variable is known, this yields the test statistic T R2, where R2 is the coefficient
of determination in the regression of the LS residuals ût = yt − µ̂1 −

∑
φ̂1 j yt− j on a constant, yt−1, . . . , yt−p,

and yt−1yt−d , . . . , yt−p yt−d . The coefficients associated to the cross-product terms depend on φ2 j and c, but
not on µ2, and the null is reformulated so that they are zero. Hence, under H0 the test has an asymptotic
χ2(p) distribution, but the fact that µ2 does not enter the coefficients is responsible for the low power of the
test when the nonlinearity is mainly due to the intercept (i.e., µ2 is large and the φ2 j values are small).

A general way for circumventing the lack of identifiability while enhancing the power properties of the test
against the alternative has been proposed by Luukkonen, Saikkonen, and Teräsvirta (1988), and amounts to
replacing F (yt−d ) by a third- and a first-order Taylor approximation around τ = 0, respectively, for the LSTAR
and the ESTAR models. For the former, when the transition variable is known, the LM test takes the usual T R2

form, where R2 is the coefficient of determination in the regression

ût = µ+
∑

j

b1 j yt− j +
∑

j

b2 j yt− j yt−d +
∑

j

b3 j yt− j y
2
t−d +

∑
j

b4 j yt− j y
3
t−d + et .
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The null hypothesis is H0 : b2 j = b3 j = b4 j = 0, j = 1, . . . , p. The test statistic has an asymptotic χ2(3p)
distribution. Alternatively, the modified LM test,

F = (SSE0 − SSE1)/3p

SSR1/(T − 4p − 1)
,

is suggested, since it yields an F -test statistic with better size properties.
As far as the ESTAR model is concerned, the first-order Taylor expansion leads to the same regression for

ût with b4 j = 0,∀ j . Hence, Teräsvirta (1994) suggests first testing linearity versus STAR by F , and using the
results of the sequence of tests of nested hypotheses, H01: b4 j = 0, H02: b3 j = 0 | b4 j = 0,
H03: b2 j = 0 | b3 j = b4 j = 0, j = 1, . . . , p, to select the relevant alternative. The strategy of approximating
F (zt−d ) by a Taylor-series expansion is adopted in Section 7 for testing linearity in a structural framework.

3 The Linear Stochastic Cycle Model and the Basic Structural Model

In the structural framework, the model is specified directly in terms of the stylized facts concerning an
economic time series: for a quarterly economic time series, the basic model we entertain is the additive
decomposition,

yt = µt + γt + ψt + εt , (1)

where µt is the trend component, γt is the seasonal component, ψt is the cyclical component, and
εt ∼ WN(0, σ 2

ε ) is the irregular.
Throughout the paper we are holding constant the representations for the trend and the seasonal. The

former is generated by µt+1 = µt + βt + ηt , and βt+1 = βt + ζt , with ηt and ζt mutually uncorrelated white
noises with variances σ 2

η and σ 2
ζ , respectively. The latter has a trigonometric representation as the the sum of

two stochastic cycles defined at the seasonal frequencies π/2 and π .
We now turn our attention to the linear representation of the cyclical component, which is capable of

interpreting essential features, such as the presence of strong autocorrelation, determining the alternation of
phases, and the damping of the fluctuations (zero long-run persistence), which are commonly recognized as
pertaining to business cycles. The stochastic cycle, ψt , is modeled as a stationary ARMA(2,1) process, subject
to the following restrictions on the parameter space:

ψt = [1 0]αt , αt = [ψt , ψ
∗
t ]′,

ψt+1 = ρ cos λψt + ρ sin λψ∗t + κt , (2)

ψ∗t+1 = −ρ sin λψt + ρ cos λψ∗t + κ∗t ,
where κt ∼ WN(0, σ 2

κ ) and κ∗t ∼ WN(0, σ 2
κ ) are mutually uncorrelated; ρ ∈ [0, 1] is the damping factor, and

λ ∈ [0, π ] is the frequency of the cycle (the period is 2π/λ). The reduced form of Equation 2 is ARMA(2,1),

(1− 2ρ cos λL + ρ2L2)ψt+1 = (1− ρ cos λL)κt − ρ sin λLκ∗t ,

such that the roots of the AR polynomial are a pair of complex conjugates with a modulus of ρ−1 and a phase
of λ. The spectral density is everywhere positive, and displays a peak at λ; furthermore,
E(ψt ) = 0, σ 2

ψ = Var(ψt ) = σ 2
κ /(1− ρ2), and the autocorrelation at lag j is ρ j cos λj .

An equivalent representation is obtained as follows:

ψt = [cos λt, sin λt ]At , At = [A1t ,A2t ]
′,

A1,t+1 = ρA1t + κ̃1t , (3)

A2,t+1 = ρA2t + κ̃2t ,

where κ̃1t ∼ WN(0, σ 2
κ ) and κ̃2t ∼ WN(0, σ 2

κ ) are mutually uncorrelated. By trigonometric identities, it is
possible to prove that there is a one-to-one mapping between the representations of Equations 2 and 3; in
particular, [

ψt+1

ψ∗t+1

]
=
[

cos λt sin λt

− sin λt cos λt

][
A1,t+1

A2,t+1

]
;
[
κt

κ∗t

]
=
[

cos λt sin λt

− sin λt cos λt

][
κ̃1t

κ̃2t

]
.
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The Ait , i = 1, 2 values are related to the amplitude of the oscillation, as ψt can be rewritten as

ψt = ϕt cos(λt − ϑt ),

where ϕt = (A2
1t + A2

2t )
.5 is the time-varying amplitude, and ϑt = tan−1(A2t/A1t ) is the phase shift. Note that

ϑt ∼ U (−π/2, π/2); i.e., is uniformly distributed in the interval (−π/2, π/2) if the Ait were observed. This
suggests that the histogram of ϑt can be used as a descriptive device for nonlinearity detection (deviations
from uniform distribution). Unfortunately, when the Ait , i = 1, 2, are replaced by their smoothed estimates,
E(Ait | YT ), where Yt denotes information up to time t , Yt = {y1, . . . , yt }, the result is no longer valid;
moreover, it depends on the normality assumption for κ̃1t and κ̃2t .

In order to complete the model specification, the seasonal component is γt = γ1t + γ2t , where γ1t has the
same representation as Equation 2 with ρ = 1, λ = π/2, σ 2

κ = σ 2
ω, and γ2t+1 = −γ2,t−1 + ωt , ωt ∼ WN(0, σ 2

ω).
Finally, all random innovations are mutually uncorrelated.

4 Smooth-Transition Cyclical Models

The linear-cycle model introduced in the previous section cannot generate the types of asymmetries we are
interested in. We will now investigate ways of allowing a (possibly) smooth variation of its hyperparameters
according to the values taken by a state variable, namely ψt . The resulting models are thereby called ST2

(structural smooth transition) models; of course, the transition variable is nonobservable, but we know at least
some aspects of its distribution, conditional upon the data.

An ST2 model for the cycle may be obtained by letting the damping factor and the frequency vary as
λt = λ1 + F (Yt−1)λ2, and ρt = ρ1 + F (Yt−1)ρ2, σ 2

κ,t = σ 2
ψ(1− ρ2

t ). However, since these parameters are subject
to constraints, we shall adopt the parameterization

ρt = |rt |√
1+ r 2

t

, rt = r1 + F (Yt−1)r2, (4)

λt = 2π

2+ exp λ̄t

, λ̄t = λ̄1 + F (Yt−1)λ̄2, (5)

where r1, r2, λ̄1, λ̄2 are unconstrained parameters. These transformations ensure that ρt and λt lie in their
admissible range for all t .

There are some advantages in investigating nonlinearity in the structural framework, since some economic
hypotheses are more easily spelled out in terms of the structural parameters. In the STAR and
Markov-switching approaches, at the estimation stage the modeler is rather blind on the type of asymmetry
captured by the variation in the AR parameters: for instance, in order to check that the model is sensible,
Teräsvirta and Anderson (1992, p. S125) suggest checking for the dynamic properties of the estimated model
by looking at the roots of the characteristic polynomial associated with the different regimes and at the
long-run properties of the model. A further cause of concern is the uncertainty surrounding the choice of the
transition variable.

On the contrary, in the structural framework, we let the cycle “speak for itself,” and hereby list a few
sensible selections for the variable defining the regimes:

• E(ψt − ψt−1 | Yt−1) = ψ̂t − ψ̃t−1|t−1, where ψ̂t = E(ψt | Yt−1) and ψ̃t |t = E(ψt | Yt ). A recessionary pattern
arises when ψt − ψt−1 is negative, whereas an expansion occurs when ψt − ψt−1 > 0. Of course, ψt is
unobservable, but we can construct its minimum least-square linear prediction based on Yt (see
Section 5).

• E(ψt | Yt−1) = ψ̂t . The regimes are defined according to the level of the cycle.

• E(ψ2
t | Yt−1) = ψ̂2

t + Var(ψt | Yt−1). Recessions and expansions receive a symmetric treatment, and the
regimes are defined in terms of the amplitude of the fluctuation.

• E[(ψt − ψt−1)
2 | Yt−1] = (ψ̂t − ψ̃t |t )2 + Var(ψt − ψt−1 | Yt−1). The regimes are defined according to the

depth of recessions and the strength of expansions.

• ϕ̂t = E[(A2
1t + A2

2t )
.5 | Yt−1]. The regimes are defined in terms of the amplitude of the cycle.
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It should be noticed that for the threshold, c, the choice c = 0 is quite natural, which is another advantage of
working with the realization of the cycle as the transition variable.

Harvey (1989), in order to model business-cycle asymmetry between expansions and recessions, proposed
the threshold cyclical model specifying F (Yt−1) = I {E(ψt − ψt−1 | Yt−1) > 0}. The rationale is that when there
is an upswing, the frequency of the cycle is λ1 + λ2, whereas in the presence of a downswing, the frequency
of the cycle is λ1. The resulting model is conditionally Gaussian, since the system matrices depend on the
information available at time t − 1.

In the sequel, we shall concentrate on the following transition mechanisms:

• The monotonic transition mechanism. For modeling type-I asymmetries, F (Yt−1) must monotonically
increase in the range (0,1) as we move from recession to expansion. This can be achieved by

F (Yt−1) = pr(ψt − ψt−1 > 0 | Yt−1) = 8
(
−(ψ̂t − ψ̃t−1|t−1)/

√
Var(ψ̂t − ψ̃t−1|t−1)

)
,

but in the sequel we are concerned with the logistic transition mechanism (LgstTrM I),

F (Yt−1) = 1

1+ exp[−τ(ψ̂t − ψ̃t−1|t−1)]
. (6)

An LgstTrM can be specified also with respect to the transition variable ψ̂t , in which case type-II
asymmetry (steepness) is modeled (LgstTrM II),

F (Yt−1) = 1

1+ exp[−τ ψ̂t ]
. (7)

Logistic transition mechanisms for the transition variables E(ψ2
t | Yt−1) and E[(ψt − ψt−1)

2 | Yt−1] do not
correspond to any type of asymmetry dealt with in the literature, and are not considered here.

• Symmetric transition mechanism. When the transition variable is E(ψ2
t | Yt−1), we can use an exponential

transition mechanism (ExpTrM I),

F (Yt−1) = 1− exp[−τE(ψ2
t | Yt−1)]. (8)

This specification is able to detect amplitude-frequency relationships, but it can also detect type-II
asymmetries, since the cycle dynamics are different when a steep trough takes place (ψ2

t is high) and in
the vicinity of a peak (ψ2

t is small).

When the exponential transition mechanism is applied with transition variable E[(ψt − ψt−1)
2 | Yt−1], i.e.,

F (Yt−1) = 1− exp{−τE[(ψt − ψt−1)
2 | Yt−1]}, (9)

we deal with a situation in which contractions and expansions have similar dynamics, but the middle
ground behaves differently. This proves useful when the cycle is characterized by the presence of more
than two phases (Sichel 1994), and will be referred to as ExpTrM II.

5 State-Space Representation and Likelihood Inference

In this section, we review likelihood theory for state-space models (SSM), as derived by de Jong (1991), with
respect to a general vector time series yt , t = 1, . . . , T , with N elements; let Yt = {y1, . . . , yt } denote the
information up to and including time t .

The SSM for yt is written as

yt = Ztαt + Xtβ +Gtεt , t = 1, 2, . . . , T ,

αt+1 = Wtβ + Ttαt + H tεt , t = 0, 1, 2, . . . , T ,
(10)

where αt is the m × 1 state vector, with α0 = 0, and α1 = W0β + H0ε0. Further, β = b+ Bδ, δ ∼ N(µ, σ 2Λ),
b is a nonrandom vector, B is full column rank, and the specification is completed by the assumption that
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εt , t = 0, 1, . . . , T , is NID(0, σ 2I ). Regression effects enter the SSM via Xtβ and Wtβ; the system matrices,
Zt ,Gt ,Tt , and H t are nonstochastic, although they may vary over time.

In particular, Equation 1 is an SSM with N = 1, σ 2 = 1,m = 7, and αt = [µt , βt , γ1t , γ
∗
1t , γ2t , ψt , ψ

∗
t ]′, and

system matrices are Zt = Z = [1, 0, 1, 0, 1, 1, 0], Xt = 0, Gt = G= [1 0′m], Wt = 0m, t = 1, . . . , T , H t = [0mH̃ ],
with H̃ = diag(0, ση, σζ , σω, σω, σω, σκ, σκ), and Tt = diag(Tµ,Tγ ,Tψ,t ), where

Tµ =
[

1 1
0 1

]
, Tγ =

 0 1 0
−1 0 0

0 0 −1

 , Tψ,t = ρt

[
cos λt sin λt

− sin λt cos λt

]
,

and

H0 =
[

0
σψ I 2

]
, W0 =

[
I 5

0

]
.

Note that H t G′t = 0; i.e., the measurement and transition equation noise are uncorrelated; ρt and λt are
formulated as Equations 4 and 5, where the transition function is given by Equations 6 and 8. Therefore,
Tt = T(Yt−1) and H t = H(Yt−1), the latter being so since σ 2

κ = σ 2
ψ(1+ ρ2

t ), and the resulting SSM is
conditionally Gaussian (see Harvey 1989, sec. 3.7.1.; Lipster and Shiryaev 1978, ch. 11).

In the general SSM, the random vector δ, with d + k elements, allows the unified treatment of k regression
and d nonstationary effects; the latter arise, for instance, when trends and seasonals are present; δ is said to
be diffuse if Λ−1→ 0 in the Euclidean norm.

The Kalman filter is a recursive algorithm for computing the minimum mean-square linear estimator
(MMSLE) of αt and its mean-square error (MSE) matrix conditional on Yt−1 and δ, denoted at and σ 2Pt ,
respectively:

ν t = yt − Xtβ − Zt at , Ft = Zt Pt Z′t +Gt G′t ,
qt = qt−1 + ν ′t F−1

t ν t , Kt = (Tt Pt Z′t + H t G′t )F
−1
t ,

at+1 = Tt at +Wtβ + Ktν t , Pt+1 = Tt Pt L′t + H t M ′t ,
(11)

with Lt = Tt − Kt Zt , M t = H t − Kt Gt , and starting conditions a1 = W0β, P1 = H0H ′0, and q0 = 0. Note that,
unlike the unconditionally Gaussian case, at is nonlinear in Yt−1, and its conditional MSE matrix depends on
the particular realization Yt−1.

When δ is diffuse, the relevant algorithm for likelihood evaluation is the diffuse KF (DKF) proposed by
DeJong (1991), which replaces the recursions for ν t , at+1, and qt , respectively, with

Vt = [yt ,0]− Zt At − Xt [b,B],

At+1 = Tt At +Wt [b,B]+ Kt Vt , (12)

Qt = Qt−1 + V′t F
−1
t Vt ,

with starting conditions A1 = W0[b,B] and Q0 = 0.
Then, partitioning

Qt =
[

q†
t s′t

st St

]
,

de Jong (1991) shows that the diffuse log-likelihood is

L(y | θ) = −1

2

[
N (T − d − k) ln σ 2 +

T∑
t=1

ln |Ft | + ln |ST | + σ−2(q†
T − s′T S−1

T sT )

]
.

The DKF is computationally more demanding than the KF, since it is based on matrix recursion for Vt

(N × d + k + 1), At (m × d + k + 1), and Qt (d + k + 1× d + k + 1). The computational burden can be
significantly reduced by collapsing the filter; i.e., by reducing to one the column dimension of At , Vt , and Qt .
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A full collapse to the KF can take place when k = 0; i.e., Xt = 0 and Wt = 0, t = 1, . . . , T . Suppose that
after d runs of the filter the matrix Sd is invertible; it is then possible to compute the diffuse predictions as
follows:

δ̂d = −S−1
d sd ,

ad+1 = Ad+1[1, δ̂
′
d ]′,

Pd+1 = Pd+1 + A†
d+1S

−1
d A†′

d+1,

and qd = q1d − s′dS−1
d sd , where A†

d+1 denotes the last d columns of Ad+1. Then a switch is made to the
ordinary KF, which is run for t = d + 1, . . . , T , and the log-likelihood function is

L(y | θ) = −1

2

[
N (T − d) ln σ 2 +

T∑
t=1

ln |Ft | + ln |Sd | + σ−2qT

]
.

The variance σ 2 can be estimated as σ̂ 2 = q̂T /(T − d), and the concentrated LF is

Lσ 2(y | θ) = −1

2

[
N (T − d) ln σ̂ 2 +

T∑
t=1

ln |Ft | + ln |Sd |
]
.

A further simplification arises for the model considered in this paper, as
∑d

t=1 ln |Ft | = − ln |Sd | and qd = 0
(DeJong and Chu-Chun-Lin 1994, p. 139), so that, assuming without loss of generality σ 2 = 1, we can rewrite

L(θ) = −1

2

T∑
t=d+1

lt (θ), (13)

where lt (θ) = ln |Ft | + ν ′t F−1
t ν t .

6 The LM Test for a Structural Model

Let C be any m× n matrix functionally related to the q × 1 parameter set θ; following Magnus and Neudecker
(1988), we denote by DC the mn × q matrix ∂vec(C)/∂θ′, whereas by HC we denote the mnq × q Hessian
matrix D(DC)′ = ∂vec(DC)/∂θ′. Further, let Kmn denote the commutation matrix, such that KmnvecC= vecC′,
Km = Kmm, and Nm = 1

2 (I m2 + Km).
The LM test of the restriction H0: θ = θ0 takes the form

LM = DL(θ0)I(θ0)
−1DL(θ0)

′,

where DL(θ0) is a 1× q vector containing the partial derivatives with respect to the parameters evaluated at
the null, and I(θ0) is the information matrix evaluated at θ0, I(θ) = −E[HL(θ0)].

Now, by straightforward differentiation of Equation 13,

DL(θ) = −.5
T∑

t=d+1

Dlt (θ) = −.5
T∑

t=d+1

{
vec′[F−1

t (I N − ν tν
′
t F
−1
t )]DFt + 2ν ′t F

−1
t Dν t

}
,

and

HL(θ) = −.5
T∑

t=d+1

Hlt (θ),

where

Hlt (θ) = − DF′t [(I N − F−1
t ν tν

′
t )F
−1
t ⊗ F−1

t ]DFt − DF′t (F
−1
t ⊗ F−1

t )2NN (ν t ⊗ I N )Dν t

+ DF′t (F
−1
t ⊗ F−1

t ν tν
′
t F
−1
t )DFt + 2(ν t F

−1
t ⊗ I q)Hν t

− 2(ν t F
−1
t ⊗ Dν ′t F

−1
t )DFt + 2Dν ′t F

−1
t Dν t ,
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E(Hlt (θ)) = E[E(Hlt (θ) | Yt−1)]

= −E[2Dν ′t F
−1
t Dν t − DF′t (F

−1
t ⊗ F−1

t )D]Ft .

Dropping the expectation operator yields the following approximation of the information matrix:

Î(θ) = .5
T∑

t=d+1

[
2Dν ′t F

−1
t Dν t − DF′t (F

−1
t ⊗ F−1

t )DFt

]
,

which is appealing from the computational standpoint, since it involves only first derivatives.
Analytic derivatives can be obtained by running a set in parallel to the DKF with full collapsing at d :

assuming H t G′t = 0, Wt = 0, and Xt = 0 for t = 1, . . . , T , and given the matrices DZt , DGt , DTt , DH t , DW0,
and DH0, we have the following algorithm:

• Initialization

A1 = W0[b,B], DA1 = [(b,B)⊗ I m]DW0,

P1 = H0H ′0, DP1 = 2Nm(H0 ⊗ I m)DH0,

Q0 = 0, DQ0 = 0.

• For t = 1, . . . ,d run the filter

Vt = [yt ,0]− Zt At ,

DVt = −(At ⊗ I N )DZt − (I d+1 ⊗ Zt )DAt ,

Ft = Zt Pt Z
′
t +Gt G

′
t ,

DFt = (Zt ⊗ Zt )DPt + 2NN (Zt Pt ⊗ I N )DZt + 2NN (Gt ⊗ I N )DGt ,

Qt = Qt−1 + V′t F
−1
t Vt ,

DQt = DQt−1 − (V′t F−1
t ⊗ V′t F

−1
t )DFt + 2Nd+1(I d+1 ⊗ V′t F

−1
t )DVt ,

Kt = Tt Pt Z
′
t F
−1
t ,

DKt = (F−1
t Zt Pt ⊗ I m)DTt + (F−1

t Zt ⊗ Tt )DPt (14)

+ (F−1
t ⊗ Tt Pt )KN mDZt − (F−1

t ⊗ Tt Pt Z
′
t F
−1
t )DFt ,

DAt+1 = (I d+1 ⊗ Tt )DAt + (At ⊗ I m)DTt + (I d+1 ⊗ Kt )DVt + (V′t ⊗ I m)DKt ,

At+1 = Tt At + Kt Vt ,

Lt = Tt − Kt Zt ,

DLt = DTt − (Z′t ⊗ I m)DKt − (I m ⊗ Kt )DZt ,

DPt+1 = (Lt ⊗ Tt )DPt + (Lt Pt ⊗ I m)DTt + (I m ⊗ Tt Pt )KmDLt + 2Nm(H t ⊗ I m)DH t ,

Pt+1 = Tt Pt L
′
t + H t H

′
t .

• Fully collapse the DKF filter at t = d

δ̂d = −S−1
d sd ,

Dδ̂d = −S−1
d Dsd + (s′dS−1

d ⊗ S−1
d )DSd ,

Pd+1 = Pd+1 + A†
d+1S

−1
d A†′

d+1,

DPd+1 = DPd+1 − (A†
d+1S

−1
d ⊗ A†

d+1S
−1
d )DSd + 2Nm(A

†
d+1S

−1
d ⊗ I m)DA†

d+1,

Dad+1 = Ad+1

[
0

Dδ̂d

]
+
(
[1, δ̂

′
d ]⊗ I m

)
DAd+1,
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ad+1 = Ad+1[1, δ̂
′
d ]′,

qd = q1d − s′dS−1
d sd ,

Dqd = Dq1d + s′dDδ̂d + δ̂dDsd ,

where Dsd = (R⊗ C)DQd , DSd = (C⊗ C)DQd , Dq1d = (R⊗ R)DQd , and DA†
d+1 = (I d ⊗ C)DAd+1, with

R= [1,0], and C= [0, I d ].

• Run the KF filter for t = d + 1, . . . , T , dropping the recursion for DQt and replacing the recursions for Vt ,
DVt , Qt , DAt+1, and At+1, respectively, by

ν t = yt − Zt at ,

Dν t = −(at ⊗ I N )DZt − ZtDAt ,

qt = qt−1 + ν ′t F−1
t ν t , (15)

Dat+1 = TtDat + (at ⊗ I m)DTt + KtDν t + (ν ′t ⊗ I m)DKt ,

at+1 = Tt at + Ktν t .

Moreover, compute and accumulate

Dlt (θ) = vec′[F−1
t (I N − ν tν

′
t F
−1
t )]DFt + 2ν ′t F

−1
t Dν t

and

2Dν ′t F
−1
t Dν t − DF′t (F

−1
t ⊗ F−1

t )DFt .

• Compute the LM test.

7 The LM Test for Linearity in the Business Cycle

Let us turn back now to the issue of testing linearity of the cyclical component within a structural model for
quarterly economic time series displaying trends and seasonals. The null is formulated as H0: τ = 0 against
H1: τ > 0 in Equations 6–9. As with STAR models, the problem is nonstandard, since r2 and λ̄2 are not
identified under the null; however, we follow the strategy of replacing F (Yt−1) by its first Taylor-series
expansion around τ = 0. This amounts to reparameterizing the alternative model in such a way that the
identification problem disappears. For the LgstTrM I model, we get rt ≈ r ∗1 + (ψ̂t − ψ̃t−1|t−1)r ∗2 and
λ̄t ≈ λ̄∗1 + (ψ̂t − ψ̃t−1|t−1)λ̄

∗
2. Hence, we reformulate the testing problem as follows: H0: r ∗2 = 0, λ̄∗2 = 0 versus

H1: r ∗2 6= 0, λ̄∗2 6= 0. Note that we do not need higher-order terms in the Taylor expansion.
The LM test of this hypothesis can be implemented according to the general theory set forth in the previous

section: if we use the parameterization σ 2
a = exp(2θa) for a generic variance parameter,

θ = [θε, θη, θζ , θω, θψ, r ∗1 , r
∗
2 , λ̄

∗
1, λ̄2], so that under the null, θ0 = [θε, θη, θζ , θω, θψ, r ∗1 , 0, λ̄

∗
1, 0].

The first step is to compute the derivatives of the system matrices with respect to θ and evaluate them at
θ0: the only system matrices depending on r ∗2 and λ̄∗2 are Tt and H t . For instance, by the chain rule,

∂Tψ
∂λ̄∗2
= ρt

[ − sin λt cos λt

− cos λt − sin λt

]
∂λt

∂λ̄∗2
(ψ̂t − ψ̃t−1|t−1),

where ∂λt/∂λ̄∗2 = −2π exp λ̄∗2(2+ exp λ̄∗2)
−2. Under the null, ρt = |r ∗1 |/

√
1+ r ∗21 , λt = 2π/(2+ exp λ̄∗1), and

∂λt/∂λ̄∗2 = −2π/9, and so forth. Then, in running the algorithm described in the previous section, for ease of
computation we cast ψ̂t − ψ̃t−1|t−1 = 0 for t < d , and start computing the transition variable after processing d
observations. This avoids the calculation of diffuse predictions by the DKF, and amounts to keeping the
values of ρt and λt fixed for the first d observations. To get the updated estimate of the state vector, at |t , we
use the KF-updating equation: at |t = at + Pt Z′t F

−1
t ν t .

In the ExpTrM I case, the first Taylor-series expansion gives, with reference to the damping factor,
rt ≈ r ∗1 + (ψ̂2

t + Var(ψ̂t | Yt−1))r ∗2 , but since the null model is time-invariant, detectable, and stabilizable, Pt

converges to a steady-state matrix and Var(ψ̂t | Yt−1) is constant, so we can equivalently perform the LM test
using the approximation rt ≈ r ∗1 + ψ̂2

t r ∗2 .
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Table 1
U.S. index of industrial production: Lagrange multiplier linearity tests

LgstTrM I LgstTrM II ExpTrM I ExpTrM II
LM Test p-Value LM Test p-Value LM Test p-Value LM Test p-Value

Apparel 7.2336 0.0269 12.6094 0.0018 4.6068 0.0999 25.8565 0.0000
Chemicals 1.4702 0.4795 13.4625 0.0012 5.0586 0.0797 1.4551 0.4831
Electric Machinery 17.1487 0.0002 4.8054 0.0905 16.1368 0.0003 38.5147 0.0000
Fabricated Metal 1.6252 0.4437 2.5370 0.2813 0.4212 0.8101 1.5856 0.4526
Furniture 7.2874 0.0262 4.8439 0.0887 1.2190 0.5436 2.5440 0.2803
Instruments 0.8096 0.6671 1.1986 0.5492 7.7708 0.0205 13.0270 0.0015
Leather 2.6553 0.2651 6.1942 0.0452 2.6780 0.2621 2.1872 0.3350
Lumber 0.4569 0.7958 2.9558 0.2281 0.0768 0.9623 3.3447 0.1878
Machinery 6.4962 0.0388 15.1307 0.0005 2.7320 0.2551 1.1042 0.5758
Other 3.9933 0.1358 2.0185 0.3645 3.5332 0.1709 6.0902 0.0476
Paper 5.4632 0.0651 5.3094 0.0703 18.4641 0.0001 6.3231 0.0424
Primary Metal 9.0915 0.0106 7.2190 0.0271 54.8560 0.0000 0.0728 0.9643
Printing 5.7123 0.0575 7.5271 0.0232 1.5789 0.4541 1.1113 0.5737
Rubber 1.6472 0.4388 3.9062 0.1418 1.9689 0.3736 4.0031 0.1351
Stone, etc. 3.4459 0.1785 8.5128 0.0142 10.1723 0.0062 1.3601 0.5066
Textiles 2.0573 0.3575 20.1721 0.0000 17.0789 0.0002 5.8021 0.0550
Durables 0.2799 0.8694 4.6396 0.0983 2.6243 0.2692 11.7624 0.0028
Nondurables 1.7064 0.4261 8.6521 0.0132 7.8959 0.0193 5.6925 0.0581
Total 1.5083 0.4704 4.6568 0.0975 0.8164 0.6648 11.7089 0.0029
Total (61.1–96.4) 19.9807 0.0000 2.5659 0.2772 0.8281 0.6610 10.5917 0.0050

8 Nonlinearity in U.S. Industrial Production Series

To illustrate the issue of characterizing asymmetries in the business cycle by ST2 models, we consider a set of
quarterly U.S. industrial production series for two-digit manufacturing industries, along with the total,
durables, and nondurables series, for a number of 23 series altogether. This set, which was recently studied by
Miron (1996) from a different perspective, is made available electronically by the Federal Reserve Board on
the World Wide Web at the URL www.bog.frb.fed.us , and covers the period 1947.1–1996.4.

Table 1 reports the results of LM testing for linearity versus four alternative models,1 specifying ρt and λt as
in Equations 4 and 5 with LgstTrM and transition variable ψ̂t − ψ̃t−1|t−1 (LgstTrM I), with logistic transition
mechanism and transition variable ψ̂t (LgstTrM II), with exponential transition mechanism and transition
variable ψ̂2

t (ExpTrM I), with exponential transition mechanism and transition variable (ψ̂t − ψ̃t−1|t−1)
2

(ExpTrM II). The tests were not performed on the Food, Petroleum, Tobacco, and Transportation Equipment
series, since under the null model we could not extract a cyclical component.

The evidence for nonlinearity, although not overwhelming, is fairly strong: type-I asymmetry seems to
characterize the Electrical Machinery and the Total series. Note that for the latter, the test conducted on the full
sample is not significant, whereas it is highly so when the range of observations is restricted to 1961.1–1996.4,
which is an extension of the series considered by Teräsvirta and Anderson (1992). The test against LgstTrM I is
also significant at the 5% level for the Apparel, Furniture, Machinery, and Primary Metal series. The presence
of type-II asymmetries is detected by the test corresponding to LgstTrM II, which turns out to be highly
significant for the Apparel, Chemicals, Machinery, and Textiles series. Amplitude dependence (ExpTrM I) is
detected for the Apparel, Electric Machinery, Instruments, Durables, and Total series. Finally, evidence for
asymmetric behavior relating to the strength of contractions and expansions and hence for the presence of
more than two phases, is fairly strong for the Electric Machinery, Paper, Primary Metal, Stone, and Textiles
series.

It should be noticed that in some cases (e.g., the Apparel series), the LM test is significant for a variety of
alternative specifications. This poses the question of which transition mechanism provides the best
explanation of the data. One of the referees suggested that a sequence of tests could be implemented for
model selection, as set out by Teräsvirta (1994, sect. 4.3).

As a matter of fact, the first-order Taylor approximations of the ST2 models considered in the paper are

1All computations were carried out in GAUSS, and the programs can be made available upon request.
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nested within the following specification:

rt = r ∗1 + ψ̂t r
∗
2 + ψ̃t−1|t−1r

∗
3 + ψ̂2

t r ∗4 + ψ̃2
t−1|t−1r

∗
5 + ψ̂t ψ̃t−1|t−1r

∗
6 ,

λ̄t = λ̄∗1 + ψ̂t λ̄
∗
2 + ψ̃t−1|t−1λ̄

∗
3 + ψ̂2

t λ̄
∗
4 + ψ̃2

t−1|t−1λ̄
∗
5 + ψ̂t ψ̃t−1|t−1λ̄

∗
6.

This suggests that model selection in an ST2 framework, with rt and λ̄t parameterized as above, can be
performed by running a series of Wald tests of the following linear restrictions:

H0,L.I : r ∗2 = r ∗3 , r
∗
4 = r ∗5 = r ∗6 = 0; λ̄∗2 = −λ̄∗3, λ̄∗4 = λ̄∗5 = λ̄∗6 = 0,

H0,L.I I : r ∗3 = r ∗4 = r ∗5 = r ∗6 = 0; λ̄∗3 = λ̄∗4 = λ̄∗5 = λ̄∗6 = 0,

H0,E .I : r ∗2 = r ∗3 = r ∗5 = r ∗6 = 0; λ̄∗2 = λ̄∗3 = λ̄∗5 = λ̄∗6 = 0,

H0,E .I I : r ∗2 = r ∗3 = 0, r ∗4 = r ∗5 = −.5r ∗6 ; λ̄∗2 = λ̄∗3 = 0, λ̄∗4 = λ̄∗5 = −.5λ̄∗6,
so that the null model is a first-order Taylor approximation of the LgstTrM I, LgstTrM II, ExpTrM I, and ExpTrM
II models, respectively, at τ = 0.

Now, in deciding between LSTAR and ESTAR in a smooth-transition autoregressive framework, a sequence
of F -tests is performed on the coefficients of an auxiliary regression model, which renders the procedure easy
to implement. As far as ST2 models are concerned, the above sequence is more effective in discriminating the
models entertained by the null, but is also more computationally demanding, as it asks for estimation of the
unrestricted model, which has 10 extra parameters (r ∗2 , . . . , r

∗
6 , λ̄

∗
2, . . . , λ̄

∗
6) with respect to the linear model.

Comparing the relative strength of the rejections and selecting the specification that provides the greatest
LM test (or minimum p-value) yields a much simpler rule, and this is what I tentatively suggest. Some
experimentation is needed to judge the effectiveness of this strategy. Future research will pursue this point
further.

We next illustrate the results of fitting ST2 models (Equation 1) respectively with LgstTrM I for the Total
series, 1961.1–1996.4, and with LgstTrM II for the Textiles series. Table 2, which reports the parameter
estimates along with diagnostic and goodness-of-fit statistics for both linear and ST2 models, shows that the
performance of the latter is indeed satisfactory. Apart from residual correlation, the ST2 model for the Total
series substantially improves the fit, noticeably for residual skewness and kurtosis; for the Textiles series, the
evidence is less clear cut. Also notice that the value of the estimated τ is in both cases seemingly high;
actually, this comes as no surprise, since its size depends on the scale of the transition variable.

Figure 1 is helpful in interpreting the kind of asymmetry that is captured by the smooth-transition model.
Along with the logarithms of the Total series and its seasonal differences, the time pattern of the estimated ρt

and λt are displayed, where the dotted line in the background is the suitably rescaled cyclical component. It
should be noticed that lower values of ρt and higher values of λt correspond to a recessionary pattern. Hence
recessions are stronger but less persistent than expansions, since the period of the oscillation becomes
relatively short (compared to expansions) and the damping is relatively low (i.e., the successive realizations
are comparatively less correlated). On the contrary, expansions are characterized by a higher period and
stronger autocorrelation.

Figure 2 compares the smoothed cyclical component extracted by the ST2 model with that extracted by the
linear model. It is interesting to notice that there is a close correspondence in the location of the turning
points highlighted by the two series, although there is some difference in the dynamics from troughs to peaks
and vice versa. Also, the former emphasizes the depth of the recessions at the end of the sample period.

As far as the Textiles series is concerned (Figure 3), both ρt and λt move sharply across two regimes: in the
neighborhood of a trough, the damping factor moves down and the frequency rises upward, as a result of
type-II asymmetry. Hence, troughs are deeper than peaks, and this behavior corresponds to fluctuations that
have a lower period and damping in the vicinity of a trough, and a higher period and damping when the
cycle peaks. Finally, Figure 4 displays the nonlinear and the linear smoothed cyclical component.

9 Conclusions

This paper has aimed at detecting and modeling the asymmetric features of business-cycle fluctuations within
a structural framework. We have advocated that this approach is especially tailored for the problem at hand,
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Figure 1
U.S. industrial production: Total, 1961.1–1996.4.

Figure 2
Cyclical component in U.S. industrial production: Total, 1961.1–1996.4.
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U.S. industrial production: Textiles, 1947.1–1996.4.

Figure 4
U.S. industrial production: Textiles, 1947.1–1996.4.
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Table 2
U.S. index of industrial production: Parameter estimates, di-
agnostics, and goodness of fit for Total and Textiles seriesa

Total Textiles
Linear LgstTrM I Linear LgstTrM II

σ 2
η 0 0 0 0
σ 2
ζ

18 45 13 12

σ 2
ω 4 5 33 16
σ 2
ψ

11988 12865 29359 34388

ρ 0.932 0.860
λ 0.297 0.469
τ 145 588
r1 1.860 1.410
r2 2.746 0.855
λ̄1 1.960 1.686
λ̄2 2.019 1.480
L 559.451 568.961 629.004 648.522
N1 23.046 5.028 20.693 33.916
N2 53.944 3.418 113.980 84.785
N 76.990 8.446 134.673 118.701

Q(12) 19.800 26.234 21.025 18.102
pev 2835 2640 14390 15424
R2

s 0.283 0.373 0.306 0.275
AIC −8.046 −8.053 −6.453 −6.102

a Variance parameters and pev are multiplied by 107. Standard er-
rors are not reported, since they are not meaningful in this context.
L is the value of the natural logarithm of the maximized-likelihood
function; N1 is a test for residual skewness, based on the standard-
ized third moment of the residuals about the mean (Harvey 1989,
sect. 5.4.2.); N2 is a test for residual kurtosis; and N = N1 + N2

is the Bowman and Shenton test for non-normality. Q(12) is the
Ljung-Box statistic based on 12 residual autocorrelations. pev is
the prediction-error variance; and R2

s = 1 − SSE/SSDSM , where
SSE = (T −d)pev, and SSDSM is the sum of squares of first differ-
ences around the seasonal means. The Akaike information criterion
in the last column is computed as AIC= ln(pev) + [2(m + d)/T ],
where m is the number of hyperparameters, d is the number of
diffuse components, and T is the number of observations.

since by letting “the cycle speak for itself” and using a suitable transition mechanism, it is possible to keep
track of the nature of the asymmetry under investigation, thereby enhancing model interpretation.

Linearity in the cyclical component has been tested against well-specified alternatives for a set of U.S.
industrial production series, and it was concluded that various types of asymmetries are detectable. Also, the
results of fitting structural models with smooth transition in the persistence and the period of the oscillations
were satisfactory. An interesting topic for future research is the evaluation of the forecast performance of ST2

models, in comparison with that provided by the linear model.
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