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Abstract. This paper studies nonlinear behavior of high-frequency financial data and employs nonlinear

hierarchical models for analyzing such data. We illustrate the analysis by modeling the transaction-by-

transaction data of IBM stock on the New York Stock Exchange for a period of 3 months. The variables

considered include time durations between trades and price changes. For a short time span of 5 trading days, a

simple threshold model is found adequate for modeling time durations between trades after adjusting for the

diurnal pattern of the data. When price change and time duration between price changes are considered

jointly, we use a hierarchical model that consists of 6 simple conditional models to handle the dynamic

structure within a trading day and the variation between trading days for the whole sample. The model shows

that dynamic structure exists in the high-frequency data, but there are some special days on which the

behavior of the stock seems different from the others. We use Markov chain Monte Carlo methods to estimate the

hierarchical model.
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1 Introduction

Transaction-by-transaction data of individual stocks in the United States are now available in the Trades and

Quotes (TAQ) database of the New York Stock Exchange. These data are commonly referred to as

high-frequency financial data and are useful in studying market microstructure, such as the determinants of

bid and ask quotes and the refinements in daily volatility estimation of an asset return (see Hasbrouck 1999

and Zhang, Russell, and Tsay 2000 for the dynamics of bid and ask quotes and Bai, Russell, and Tiao 2000 for
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volatility estimation). Analysis of high-frequency data, however, is not simple, because such data exhibit some

characteristics that are not found when the data frequency is low. Examples of the special characteristics

include (a) extremely high kurtosis, (b) diurnal pattern, (c) discrete-valued observations as the price change in

consecutive trades is in a multiple of tick size, (d) irregular time intervals between trades, and (e) large sample

size. Wood (2000) provides a brief history of transaction data in finance.

As an illustration, there were more than 134,000 intraday trades of IBM stock in December 1999. The

trading intensity exhibits a U-shaped diurnal pattern, with heavier activities during the beginning and closing

of trading hours. Associated with each trade are time of the trade, measured in seconds starting from midnight;

transaction price; transaction volume; and the prevailing bid and ask quotes. A thorough analysis of the

transaction-by-transaction data of IBM stock in December 1999 alone would require techniques of multivariate

analysis, time-series methods, and generalized linear models. The purpose of this paper is twofold. First, we

consider time duration between trades and find that a threshold duration model fits better than a conditional

autoregressive duration model. In other words, nonstationarity is likely to become a major problem in

analyzing such data. Secondly, we jointly model durations and price levels. Here we define duration to be the

time between transactions associated with a price change. We also consider the transaction data as a panel of

time series in which each series corresponds to a particular day. We use a parametric model to describe the

structure of the data within a day, then use a hierarchical model to analyze data from all days in the sample.

We demonstrate the proposed analysis by analyzing intraday trades of IBM stock from November 1, 1990,

to January 31, 1991. The data were obtained from the Trades, Orders Reports and Quotes (TORQ) database

(see Hasbrouck 1992). We use this data set because it has been widely used in the literature (see Engle and

Russell 1998).

The paper is organized as follows. Section 2 provides some summary statistics of the data used and shows

evidence of diurnal pattern by considering the time series of number of trades in 5-min time intervals. A

linear-regression method consisting of four quadratic time functions and three indicator variables is used to

remove the diurnal pattern of the time durations between trades. Section 3 focuses on the nonlinearity in time

durations and shows that a simple threshold autoregressive model can adequately model the adjusted time

duration process when the data span is not too long. In Section 4, we introduce variables for modeling price

changes and time durations between price changes. The price change is decomposed into two components

consisting of the direction and size of the change. The size is measured in multiples of tick size, which was

one eighth of a dollar during the sample period. Within each time duration between price changes, we

employ a counting process that enumerates the number of trades with no price change. These trades are

important in measuring trading intensity but provide no information on price change. To allow for different

dynamics when the price is going up or coming down, we postulate two different models for the size of a

price change given the direction of price change. In short, we use six simple generalized linear models to

describe the dynamic of price change and time duration between price changes in a trading day. A nonlinear

hierarchical model is then proposed in Section 5 to model the day-to-day variation of the two variables of

interest. Results of the hierarchical model are given and discussed.

2 Data and Their Characteristics

The data used in this study are the transaction data of IBM stock from November 1, 1990, to January 31, 1991,

from the TORQ data set. This data set was used in Engle and Russell 1998 to demonstrate autoregressive

conditional duration (ACD) models. There were 63 trading days and 60,328 transactions. For simplicity, we

focus on the intraday transactions that occurred in the normal trading hours from 9:30 A.M. to 4:00 P.M. Eastern

time. Each transaction contains a time stamp measured in seconds starting from midnight, the transaction

price and volume, and the prevailing bid and ask quotes. The price change occurred in a multiple of tick size,

which was one eighth of a dollar.
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Table 1
Frequencies of price change in multiples of tick size for IBM stock from November 1, 1990, to January 31, 1991

Number (tick) ≤ −3 −2 −1 0 1 2 ≥ 3

Percentage 0.66 1.33 14.53 67.06 14.53 1.27 0.63

To better understand transaction data, we consider some empirical characteristics of the data (see Tsay

2000, chap. 5, for further details). Table 1 shows the frequencies of price change in intraday transactions.

From the table, we observe the following:

1. About two thirds of the intraday transactions are without price change.

2. The price changed in 1 tick approximately 29% of the intraday transactions.

3. Only 2.6% of the transactions are associated with 2-tick price changes.

4. Only about 1.3% of the transactions resulted in price changes of 3 ticks or more.

5. The distribution of positive and negative price changes is approximately symmetric.

Consider next the number of transactions in a 5-min time interval. Denote the series by xt . That is, x1 is the

number of IBM transactions from 9:30 A.M. to 9:35 A.M. on November 1, 1990, Eastern time, x2 is the number

of transactions from 9:35 A.M. to 9:40 A.M., and so on. The time gaps between trading days are ignored.

Figure 1(a) shows the time plot of xt and Figure 1(b) the sample ACF of xt for lags 1 to 260. Of particular

interest is the cyclical pattern of the ACF with a periodicity of 78, which is the number of 5-min intervals in a

trading day. The number of transactions thus exhibits a diurnal pattern. Figure 2 shows the average number of

transactions within 5-min time intervals over the 63 days. There are 78 such averages. The plot exhibits a

“smiling” shape, indicating heavier trading at the openings and closings of the market and thinner trading

during the lunch hours.

Since we focus on transactions that occurred in the normal trading hours of a trading day, there are 59,838

time intervals in the data. These intervals are called the intraday durations between trades. For the IBM stock,
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Figure 1
IBM transactions data from November 1, 1990, to January 31, 1991: (a) number of transactions in 5-min time intervals; (b) sample
ACF of the series in part (a).
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Figure 2
Time plot of the average number of transactions in 5-min time intervals. There are 78 observations, averaging over the 63
trading days from November 1, 1990, to January 31, 1991, for IBM stock.

there were 6,531 zero time intervals. That is, during the normal trading hours of the 63 trading days from

November 1, 1990, to January 31, 1991, multiple transactions in a second occurred 6,531 times, which is about

10.91%. Among these multiple transactions, 1,002 had different prices, which is about 1.67% of the total

number of intraday transactions. Therefore, multiple transactions, that is, zero durations, may become an issue

in statistical modeling of the time durations between trades. For simplicity, we follow Engle and Russell (1998)

by focusing on nonzero time durations.

A simple approach to modeling the diurnal pattern of transaction durations is to assume that the diurnal

pattern is deterministic and follows a smooth quadratic function. Let 1ti be the time duration between trades.

The assumption implies that the adjusted duration

1t∗i = 1ti/ f (ti) (2.1)

where f (ti) is a smooth deterministic function, has no diurnal pattern. For the IBM data, we assume

f (ti) = exp[d(ti)], d(ti) = β0 +
7∑

j=1

βj fj (ti) (2.2)

where

f1(ti) = −
(

ti − 43200

14400

)2

, f3(ti) =
{−( ti−38700

7500 )2 if ti < 43,200

0 otherwise

f2(ti) = −
(

ti − 48300

9300

)2

, f4(ti) =
{−( ti−48600

9000 )2 if ti ≥ 43,200

0 otherwise

f5(ti) and f6(ti) are indicator variables for the first and second 5 min of market opening, that is, f5(.) = 1 if and

only if ti is between 9:30 A.M. and 9:35 A.M. Eastern time, and f7(ti) is the indicator for the last 30 min of daily

trading, that is, f7(ti) = 1 if and only if the trade occurred between 3:30 P.M. and 4:00 P.M. Eastern time.

Figure 3 shows the plot of fi(.) for i = 1, · · · , 4, where the time scale in the x-axis is in minutes. Note that

f3(43,200) = f4(43,200), where 43,200 corresponds to 12:00 noon.
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Figure 3
Quadratic functions used to remove the deterministic component of IBM intraday trading durations: (a)–(d) are the functions
f1(.) to f4(.), respectively, of Equation (2.2).

The coefficients βj of Equation (2.2) are obtained by the least squares method of the linear regression

ln(1ti) = β0 +
7∑

i= j

βj fj (ti)+ εi

The fitted model is

ln(1̂ti) = 2.555+ .159 f1(ti)+ .270 f2(ti)+ .384 f3(ti)+ .061 f4(ti)− .611 f5(ti)− .157 f6(ti)+ .073 f7(ti)

Figure 4 shows the time plot of average durations in 5-min time intervals over the 63 trading days before and

after adjusting for the deterministic component. Panel (a) shows the average durations of 1ti and as expected,

it exhibits a diurnal pattern. Panel (b) shows the average durations of 1t∗i , that is, after the adjustment, and

the diurnal pattern is largely removed.

3 Nonlinear Models for Duration

Duration models, such as the autoregressive conditional duration (ACD) model of Engle and Russell (1998),

are concerned with the dynamic structure of the adjusted duration in Equation (2.1). For simplicity in notation,

we let xi = 1t∗i be the adjusted time duration between trades. Let Fi−1 be the σ -field generated by xi− j for

j > 0 and ψi = E (xi |Fi−1) be the conditional expectation of the adjusted duration. An ACD model assumes

xi = ψiεi (3.1)

where {εi} is a sequence of independent and identically distributed positive random variables satisfying E (εi)

= 1 and ψi follows the model

ψi = α0 +
r∑

v=1

αvxi−v +
s∑

v=1

βvψi−v

where r and s are non-negative integers, and αi and βj satisfy some positiveness conditions so that ψi is

positive. Engle and Russell (1998) use standardized exponential or Weibull distribution for ei , and Zhang,
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Figure 4
IBM transactions data from November 1, 1990, to January 31, 1991: (a) average durations in 5-min time intervals; (b) average
durations in 5-min time intervals after adjusting for the deterministic component.

Russell, and Tsay (2001) use generalized Gamma distribution. Maximum likelihood method can be used to

estimate the ACD model.

Stationarity, however, often becomes an important issue in high-frequency data analysis. For the IBM data

considered in this paper, Zhang, Russell, and Tsay (2001) detect several highly significant structural changes

using an ACD model with generalized Gamma distribution. For the purpose of this paper, we focus on time

durations between trades for the first 5 trading days from November 1 to November 7, 1990. There were 3,534

observations (see Figure 5a). If ACD models with Weibull distribution are entertained, we obtain the model

xi = ψiεi, ψi = 0.291+ 0.077xi−1 + 0.836ψi−1 (3.2)
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Figure 5
Time plots of durations for IBM traded in the first five trading days of November 1990: (a) adjusted series; (b) normalized
residuals of an ACD(1,1) model. There are 3,534 nonzero durations.
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Table 2
Nonlinearity tests for IBM transaction durations from November 1 to November 7, 1990

(a) Normalized residuals of an ACD(1,1) model

Type Ori-F Tar-F (1) Tar-F (2) Tar-F (3) Tar-F (4)

Test 0.343 3.288 3.142 3.128 0.297

p-value 0.969 0.006 0.008 0.008 0.915

(b) Normalized innovations of a threshold ACD(1,1) model

Type Ori-F Tar-F (1) Tar-F (2) Tar-F (3) Tar-F (4)

Test 0.163 0.746 1.899 1.752 0.270

p-value 0.998 0.589 0.091 0.119 0.929

Note: Only intraday durations are used. Ori-F denotes the nonlinearity
test of Tsay 1986 and Tar-F(d) is the threshold nonlinearity test of Tsay
1989 with delay d .

where εi follows a standardized Weibull distribution with parameter η̂ = 0.878, the standard error of which is

0.011. The standard errors of the three coefficients of model (3.2) are 0.076, 0.012, and 0.029, respectively.

Let ε̂t = xi/ψ̂i be the normalized residual of model (3.2) (see Figure 5b). The Ljung-Box statistics of ε̂i give

Q(12) = 5.7 and Q(24) = 19.9, indicating that there is no serial correlation in the normalized residuals.

Furthermore, the Ljung-Box statistics of the squared residuals ε̂2
i give Q(12) = 6.5 and Q(24) = 15.1. There

exists no conditional heteroscedasticity in the normalized residuals, either. These diagnostic statistics suggest

that model (3.2) captures adequately the linear dynamic structure and the volatility of the data.

The model in (3.2), however, fails to pass some nonlinearity tests. For illustration, we apply the F -test of

Tsay 1986 and the threshold test of Tsay 1989 to the normalized residual ε̂i . Using an AR(4) model, the test

results are given in part (a) of Table 2, where Ori-F denotes the nonlinearity test of Tsay 1986 and Tar-F (d) is

the threshold nonlinearity test of Tsay 1989 with delay d . As expected from the results of Ljung-Box statistics,

the Ori-F test indicates no quadratic nonlinearity in the normalized residuals. However, the Tar-F test statistics

suggest strong nonlinearity.

Based on the test results in Table 2, we entertain a threshold duration model with two regimes for the IBM

intraday durations. The threshold variable is xt−1, that is, lag-1 adjusted duration. The estimated threshold

value is 3.79. The fitted threshold ACD(1,1) model is xi = ψiεi , where

ψi =
{

0.020+ 0.257xi−1 + 0.847ψi−1, εi ∼ w(0.901), if xi−1 ≤ 3.79

1.808+ 0.027xi−1 + 0.501ψi−1, εi ∼ w(0.845), if xi−1 > 3.79
(3.3)

where w(α) denotes a standardized Weibull distribution with parameter α. The numbers of observations in

the two regimes are 2,503 and 1,030, respectively. In Equation (3.3), standard errors of the parameters for the

first regime are 0.043, 0.041, 0.024, and 0.014, whereas those for the second regime are 0.526, 0.020, 0.147,

and 0.020, respectively.

Considering the normalized residuals ε̂i = xi/ψ̂i of the threshold ACD(1,1) model in Equation (3.3), we

obtain Q(12) = 9.8 and Q(24) = 23.9 for ε̂i and Q(12) = 8.0 and Q(24) = 16.7 for ε̂2
i . Thus, there is no

significant serial correlation in the ε̂i and ε̂2
i series. Furthermore, applying the same nonlinearity tests as before

to this newly normalized residual series ε̂i , we detect no nonlinearity (see panel (b) of Table 2).

Consequently, the two-regime threshold ACD(1,1) model in Equation (3.3) is adequate.

If we classify the two regimes as heavy and thin trading periods, then the threshold model suggests that the

trading dynamics measured by intraday transaction durations are different between heavy and thin trading

periods for the IBM stock, even after the adjustment of diurnal pattern. This is not surprising, as market

activities are often driven by arrivals of news and other information.
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4 A Model for Price Change and Duration

In this section we consider jointly the process of price change and the associated time duration. As mentioned

before, many intraday stock transactions result in no price change. These transactions are highly relevant to

trading intensity, but they do not contain direct information on price movement. Therefore, to simplify the

complexity involved in modeling price change, we shall focus on transactions that result in a price change

and propose a price change and duration (PCD) model to describe the multivariate dynamics of price change

and the associated time duration.

4.1 The PCD model

Let ti be the calendar time of the ith price change of an asset. As before, ti is measured in seconds from

midnight of a trading day. Let Pti be the transaction price when the ith price change occurred and

1ti = ti − ti−1 be the time duration between price changes. In addition, let Ni be the number of trades in the

time interval (ti−1, ti) that result in no price change. This new variable is used to represent trading intensity

during a period of no price change. Finally, let Di be the direction of the ith price change, with Di = 1 when

price goes up and Di = −1 when the price comes down, and Si be the size of the ith price change measured

in ticks. Under the new definitions, the price of a stock evolves over time by

Pti = Pti−1 + DiSi (4.1)

and the transaction data consist of {1ti,Ni,Di, Si} for the ith price change. The proposed PCD model is

concerned with the joint analysis of (1ti,Ni,Di, Si).

Focusing on transactions that result in a price change can reduce the sample size dramatically. For

example, consider the intraday transaction data of IBM stock from November 1, 1990, to January 31, 1991.

There were 60,265 intraday trades, but only 19,022 of them resulted in a price change. In addition, there is no

diurnal pattern in time duration associated with a price change.

The decomposition of a price change into direction and size follows that of Rydberg and Shephard (1998),

who consider all intraday trades and decompose the price series as

Pi = Pi−1 + AiDiSi,

where Ai = 1 if the trade results in a price change and Ai = 0 otherwise (see also Ghysels 2000). We focus on

trades associated with a price change and introduce the variable Ni to simplify the analysis.

To illustrate the relationship between price movements of all transactions and those of transactions

associated with a price change, we consider the intraday tradings of IBM stock on November 21, 1990 (day

15). There were 726 transactions on that day during the normal trading hours, but only 195 trades resulted in

a price change. Figure 6 shows the time plot of the price series for both cases. As expected, the price series

are the same.

The proposed PCD model decomposes the conditional joint distribution of (1ti,Ni,Di, Si) as follows:

f (1ti,Ni,Di, Si |Fi−1) = f (Si |Di,Ni,1ti, Fi−1) f (Di |Ni,1ti, Fi−1) f (Ni |1ti, Fi−1) f (1ti |Fi−1) (4.2)

This partition enables us to specify suitable econometric models for the conditional distributions and hence to

simplify the modeling task. There are many ways to specify models for the conditional distributions. A proper

specification might depend on the asset under study. Here we use some generalized linear models for the

discrete-valued variables and a simple time-series model for the continuous variable ln(1ti).

For the time duration between price changes, we use the model

ln(1ti) = β0 + β1 ln(1ti−1)+ β2Si−1 + σεi (4.3)

8 Nonlinearity in Financial Data
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Figure 6
Time plots of the intraday transaction prices of IBM stock on November 21, 1990: (a) all transactions; (b) transactions that
resulted in a price change.

where σ is a positive number, and {εi} is a sequence of independent N (0, 1) random variables. Here N (µ, σ 2)

denotes a normal distribution with mean µ and variance σ 2. This is a simple regression model with lagged

variables. Other explanatory variables can be added if necessary.

The conditional model for Ni is further partitioned into two parts, because empirical data suggest a

concentration of Ni at 0. The first part of the model for Ni is the logit model

p(Ni = 0|1ti, Fi−1) = logit[α0 + α1 ln(1ti)] (4.4)

where logit(x) = exp(x)/[1+ exp(x)], whereas the second part of the model is

Ni |(Ni > 0,1ti, Fi−1) ∼ 1+ g(λi), λi = exp[γ0 + γ1 ln(1ti)]

1+ exp[γ0 + γ1 ln(1ti)]
(4.5)

where ∼ means “is distributed as” and g(λ) denotes a geometric distribution with parameter λ, which is in the

interval (0,1).

The model for direction Di is

Di |(Ni,1ti, Fi−1) = sign(µi + σiε) (4.6)

where ε is a N (0, 1) random variable, and

µi = ω0 + ω1Di−1 + ω2 ln(1ti)

ln(σi) = β|
4∑

j=1

Di− j | = β|Di−1 + Di−2 + Di−3 + Di−4|

In other words, Di is governed by the sign of a normal random variable with mean µi and variance σ 2
i . A

special characteristic of the above model is the function for ln(σi). For intraday transactions, a key feature is

the price reversal between consecutive price changes, that is, the bid-and-ask bounce. This feature is modeled

by the dependence of Di on Di−1 in the mean equation. However, there exists an occasional local trend in the

price movement. The above variance equation allows for such a local trend by increasing the uncertainty in

Robert E. McCulloch and Ruey S. Tsay 9
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Figure 7
Histograms of intraday transactions data for IBM stock on November 21, 1990 (day 15): (a) log durations; (b) direction of price
movement; (c) size of price change measured in ticks; (d) number of trades without a price change.

the direction of price movement when the past data showed evidence of a local trend. For a normal

distribution with a fixed mean, increasing its variance makes a random draw have the same chance to be

positive and negative. This in turn increases the chance for a sequence of all positive or all negative draws.

Such a sequence creates a local trend in price movement.

To allow for different dynamics between positive and negative price movements, we use different models

for the size of a price change. Specifically, we have

Si |(Di = −1,Ni,1ti, Fi−1) ∼ p(λd,i)+ 1, with

ln(λd,i) = ηd,0 + ηd,1Ni + ηd,2 ln(1ti)+ ηd,3Si−1 (4.7)

Si |(Di = 1,Ni,1ti, Fi−1) ∼ p(λu,i)+ 1, with

ln(λu,i) = ηu,0 + ηu,1Ni + ηu,2 ln(1ti)+ ηu,3Si−1 (4.8)

where p(λ) denotes a Poisson distribution with parameter λ, and 1 is added to the size because the minimum

size is 1 tick when there is a price change.

In this paper, to estimate the models in Equations (4.3)–(4.8), we use a Bayesian analysis with proper, but

diffuse, priors. Markov chain Monte Carlo methods are used to compute the posteriors; this facilitates the

hierarchical model in Section 5.

4.2 Illustration

Consider the intraday transactions of IBM stock on November 21, 1990 (day 15). There are 194 price changes

within the normal trading hours. Figure 7 shows the histograms of ln(1ti), Ni , Di and Si . The data for Di are

about equally distributed between “upward” and “downward” movements. Only a few transactions resulted in

a price change of more than 1 tick; as a matter of fact, there were 7 changes with 2 ticks and 1 change with 3

ticks. Using Markov chain Monte Carlo (MCMC) methods, we obtained the following models for the data. The

reported estimates and their standard deviations are the posterior means and standard deviations of MCMC

draws with 9,500 iterations. The model for the time duration between price changes is

ln(1ti) = 4.023+ 0.032 ln(1ti−1)− 0.025Si−1 + 1.403εi

10 Nonlinearity in Financial Data



where standard deviations of the coefficients are 0.415, 0.073, 0.384, and 0.073, respectively. The fitted model

indicates that there was no dynamic dependence in the time duration. For the Ni variable, we have

Pr (Ni > 0|1ti, Fi−1) = logit[−0.637+ 1.740 ln(1ti)]

where standard deviations of the estimates are 0.238 and 0.248, respectively. Thus, as expected, the number

of trades with no price change in the time interval (ti−1, ti) depends positively on the length of the interval.

The magnitude of Ni when it is positive is

Ni |(Ni > 0,1ti, Fi−1) ∼ 1+ g(λi), λi = exp[0.178− 0.910 ln(1ti)]

1+ exp[0.178− 0.910 ln(1ti)]

where standard deviations of the estimates are 0.246 and 0.138, respectively. The negative and significant

coefficient of ln(1ti) means that Ni is positively related to the length of duration 1ti , because a large ln(1ti)

implies a small λi , which in turn implies higher probabilities for larger Ni .

The fitted model for Di is

µi = 0.049− 0.840Di−1 − 0.004 ln(1ti)

ln(σi) = 0.244|Di−1 + Di−2 + Di−3 + Di−4|
where standard deviations of the parameters in the mean equation are 0.129, 0.132, and 0.082, respectively,

whereas that for the parameter in the variance equation is 0.182. The price reversal is clearly shown by the

highly significant negative coefficient of Di−1. The marginally significant parameter in the variance equation is

exactly as expected. Finally, the fitted models for the size of a price change are

ln(λd,i) = 1.024− 0.327Ni + 0.412 ln(1ti)− 4.474Si−1

ln(λu,i) = −3.683− 1.542Ni + 0.419 ln(1ti)+ 0.921Si−1

where standard deviations of the parameters for the “down size” are 3.350, 0.319, 0.599, and 3.188,

respectively, whereas those for the “up size” are 1.734, 0.976, 0.453, and 1.459. The interesting estimates of

the above two equations are the negative estimates of the coefficient of Ni . A large Ni means there were more

transactions in the time interval (ti−1, ti) with no price change. This can be taken as evidence that no new

information was available in the time interval (ti−1, ti). Consequently, the size for the price change at ti should

be small. A small λu,i or λd,i for a Poisson distribution gives precisely that.

In summary, granted that a sample of 194 observations in a given day does not contain sufficient

information about the trading dynamic of IBM stock, the fitted models appear to provide some sensible results.

5 A Hierarchical Model

In Section 4 we applied the PCD model of Section 3 to data arising from a single day. In practice, we have

data for many trading days, and an important question is how to analyze such data. At one extreme, we could

simply apply the PCD model separately to each trading day. At the other extreme, one could concatenate the

data from all days together into one long series and then fit a single PCD model. The first extreme does not

combine information from all trading days. On the other hand, the second extreme assumes that the same

model applies to each day, and this may not be the case.

Hierarchical models have been extensively used in recent years to deal with this situation (see Gelman et

al. 1995, chap. 5). We employ a PCD model for each trading day and model the variation in parameters from

day to day. The PCD model actually consists of six model components. There are the four basic models for

1t , N , D, and S , with the models for S and N each having two components. We apply the hierarchical

modeling strategy separately to each of these six components.

We first provide detailed discussion of hierarchical modeling of the simple logit component of the model

for N in order to illustrate the approach. We then present results for all six model components.
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Figure 8
Time series plots of posterior means for the logit component of N by applying the PCD model to each trading day: (a) intercept
α0 j ; (b) slope α1 j .

5.1 The hierarchical modeling for the logit component of N

Let θj = (α0 j , α1 j ) from Equation (4.4), in which j indexes the day. Thus, θj represents the parameters for the

logit component of the N model on day j . Note that in order to roughly orthogonalize the intercept and slope

parameters, the overall (using all the days) mean of ln(1t) = 3.5 has been subtracted from all of the ln(1t)

values (on all days).

Figure 8 displays the time series of estimates (posterior means) of α0 j and α1 j obtained by applying the

PCD to each day. The average intercept estimate is about .04, and the values range from −1.2 to .93. The

average slope estimate is about 1.08, and the slopes range from .65 to 1.8. The average intercept is small

(logit(.04) = exp(.04)/(1 + exp(.04)) = .51). However, logit(−1.2) = .22 and logit(.93) = .74, so that the

day-to-day variation in the intercepts is substantial. Since the .1 and .9 quantiles of ln(1t) are 1.4 and 5.3 (see

Figure 7a), we see that the slopes suggest dependence of the event N > 0 on ln(1t) and the day-to-day

variation in the slope estimates is substantial.

From Figure 8 we might wonder if day 28 is unusual because of the relatively large slope and small

intercept. There is also the suggestion that the intercepts are larger after day 53 (inclusive). Neither of these

features, however, is clearly distinguishable from the overall variation. In addition, we must remember that the

quantities plotted are only estimates and that no attempt is made in the figure to represent our uncertainty.

We would like to elaborate our model to include a description of the variation in parameters from day to

day. The way in which we elaborate our model depends on the goal of our study. If our goal were prediction

for subsequent days, capturing any temporal pattern (structural shift, etc.) would be quite important. Instead,

we ask the pair of somewhat simpler questions: (1) overall (that is, over all the days in our sample), what are

the PCD parameters like, and (2) for which days is there strong evidence that the parameter values are

“different”? For this goal the standard i.i.d. shrinkage model is suitable and convenient: we let θj ∼ N (θ∗, 6∗)
i.i.d. Given choices for the prior distribution of (θ∗, 6∗), we can compute the posterior distribution of these

quantities and each θj . The parameter θ∗ can be regarded as the “overall mean” of the parameter θj across all

trading days, and the parameter 6∗ describes the day-to-day variation. This model also allows for adaptive

shrinkage of the θj toward the overall mean θ∗. If the data for a day j suggest a vector θj different from the

rest relative to the overall variation, but the strength of the evidence in the data is weak, then the support of
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Figure 9
Comparison between hierarchical and nonhierarchical models: (a) Scatterplots of posterior means of the intercept; (b) scat-
terplots of posterior means of the slope; (c) time-series plots of intercept posterior means, with solid line denoting estimates
of the hierarchical model; (d) time-series plots of slope posterior means, with solid line denoting estimates of the hierarchical
model.

the posterior will be shrunk toward the overall mean. If the evidence is strong, however, the shrinkage will be

negligible. In this way our model strikes an adaptive compromise between the extremes of treating each day

separately and lumping them all together. Thus, the posterior distribution of θ∗ answers question (1) and days

for which the posterior of θj is not shrunk to θ∗ are the days corresponding to question (2).

To implement this approach we must first choose a prior for (θ∗,Σ∗) and then compute the posterior. The

approach of Barnard, McCulloch, and Meng (2000) is used. The chosen priors are extremely diffuse. θ∗ and

Σ∗ are independent. The components of θ∗ are i.i.d. normal with mean 0 and standard deviation 1,000. The

square roots of the diagonals of Σ∗ (the standard deviations) are i.i.d. log-normal with a mean of −.5 and a

standard deviation of 1.5. The diagonal elements of Σ∗ are independent of the correlation matrix, which is

uniformly distributed on the set of positive definite matrices having unit diagonals.

Figure 9 compares the estimates (posterior means) of θj obtained by applying the PCD separately to each

day (those displayed in Figure 8) with those obtained from the hierarchical model. Panel (a) plots the daily

intercept estimates obtained from the hierarchical model on the vertical axis versus the nonhierarchical

estimates on the horizontal axis. Panel (b) is the corresponding plot for the slopes. The line y = x is drawn

through both panels (a) and (b). Panel (c) plots the time series of intercept estimates where the hierachical

estimates are connected by the line and the nonhierarchical estimates are plotted with an O. Panel (d) is the

slope version of panel (c). We see that whereas most intercept estimates are only slightly altered by the

shrinkage, the few unusually small values are substantially shrunk toward zero so that, for example, day 28 no

longer looks like a dramatic outlier. The shrinkage of the slope is quite dramatic, as the shrunk values are

much more tightly clustered near one. Even with the shrinkage, there is still the suggestion that the intercepts

jump to larger values for the last several days.

Figure 10 displays the posterior of (θ∗,Σ∗). Panels (a)–(e) display, respectively, draws from the marginal

posteriors of the first component of θ∗ (the “overall” intercept), the second component of θ∗ (the “overall”

slope), the square root of the first diagonal of Σ∗ (the standard deviation describing the day-to-day variation

in intercepts), the square root of the second diagonal of Σ∗ (the standard deviation describing the day-to-day

variation in slopes), and a single correlation from the two-by-two Σ∗ (the day-to-day correlation between
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Figure 10
Posterior density functions of overall parameters of the hierarchical model.

intercepts and slopes). The solid line in panel (f) displays a kernel estimate of the posterior of the overall

intercept (same quantity displayed in panel (a)), and the dashed line displays the kernel estimate of the

posterior of the intercept where only the data from the first day in our sample is used. The relative tightness

of the solid kernel illustrates the effect of pooling information from all 63 days.

5.2 Hierarchical results for all model components

We now present results obtained from applying the hierarchical model to each of the six components of the

PCD model. For each model we present the .025, .5, and .975 posterior quantiles for the “overall mean” and

the standard deviation of each parameter (components of θ∗ and square roots of diagonal elements of Σ∗ in

Section 5.1). The mean gives us an overall idea of the parameter over all 63 days, and the standard deviation

describes the variation of the parameter from day to day. We do not report the posterior distributions of the

day-to-day correlations between pairs of parameters.

Table 3 contains the quantiles. The table has three columns. The first column (labeled “parameter”)

identifies the particular parameter of the model, using the notation of Section 4.1. The second and third

columns (labeled “mean” and “stan dev”) give the overall mean and standard deviation quantiles. The three

quantiles are listed from least to largest.

So, for example, the two rows labeled α0 and α1 under the heading “Logit Model for N Positive” give the

intervals for the logit model discussed in detail in Section 5.1. To connect the table with our detailed

discussion, the quantiles (−.029, .069, .164) and (.283, .351, .436) in the row labeled α0 summarize panels (a)

and (c) of Figure 10. The quantiles (1.01, 1.05, 1.10) and (.065, .116, .172) summarize panels (b) and (d). Note

that for the time duration model (Equation (4.3)) only the βs are modeled hierarchically, so that the error

standard deviation σ varies “freely” from day to day. In all other model components, all parameters are

included in the hierarchical setup.

The table reveals how spread out our priors are relative to the posteriors. For all the mean parameters the

prior was N (0, 1,0002). All of the posterior intervals in the mean column are extremely tight relative to this

prior. For all the standard deviation parameters the prior was σ ∼ exp(N (−.5, 1.52)). This prior is again very

diffuse relative to the posterior intervals. The prior is very skewed, with a 99% quantile of about 20. The 1%
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Table 3
95% posterior intervals for the hierarchical parameters

parameter mean stan dev

Time Duration Model

β0 (3.74, 3.85, 3.97) (.319, .395, .494)
β1 (.072, .094, .118) (.045, .066, .090)
β2 (−.281, −.212, −.152) (.077, .132, .204)

Logit Model for N Positive

α0 (−.029, .069, .164) (.283, .351, .436)
α1 (1.01, 1.05, 1.10) (.065, .116, .172)

Geometric Model for Positive N

γ0 ( −.167, −.064, .044) (.314, .384, .476)
γ1 (−.807, −.771, −.737) (.057, .088, .124)

Direction Model

ω0 (−.011, .012, .034) (.010, .031, .065)
ω1 (−.914, −.879, −.844) (.064, .099, .139)
ω2 (−.048, −.032, −.017) (.004, .016, .038)
β (−.056, −.022, .012) (.047, .082, .125)

Poisson Model for Price Down

ηd,0 (−3.04, −2.80, −2.58) (.608, .750, .938)
ηd,1 (−.144, −.089, −.044) (.096, .131, .182)
ηd,2 (−.232, −.175, −.114) (.026, .106, .174)
ηd,3 (.526, .614, .713) (.177, .245, .340)

Poisson Model for Price Up

ηu,0 (−3.43, −3.13, −2.86) (.773, .973, 1.21)
ηu,1 (−.433, −.319, −.231) (.179, .257, .367)
ηu,2 (−.177, −.125, −.067) (.041, .101, .170)
ηu,3 (.817, .939, 1.07) (.315, .409, .518)

and 99% prior quantiles of the σ |σ < 1 (the prior conditional on which most of posterior supports are) are

.014 and .98, so that restricted to this more realistic interval, the prior is still quite spread out.

The results for α1 and γ1 both reflect a strong dependence of N on the duration. Detailed results for α1

have been presented in Figure 9. The interval for the mean of γ1 is quite tight around values that are of

practical significance. If we take the median of −.77 as a point estimate and consider a change of 4 in ln(1t)

as possible, then an increase in duration could lead to a substantial decrease in the probability parameter of

the geometric distribution (λ of Equation (4.5)). Since for the geometric distribution, smaller probabilities

make larger outcomes more likely, this means that conceivable increases in ln(1t) suggest larger values of N .

The relatively small interval for the standard deviation (point estimate .088) tells us that the day-to-day

variation in γ1 is such that essentially the same result is obtained for all days.

Another parameter that clearly suggests an effect of practical importance for all days is ω1 in the direction

model. The posterior median of the overall mean is −.879. Since this parameter is the coefficient of lagged D,

which is always ±1, the estimate suggests an important effect given the probit-type specification in

Equation (4.6). The estimate (.099) and quantiles of the daily standard deviation of ω1 clearly indicate that a

comparable and important effect is likely to be present in most days. The negative sign indicates that this

parameter captures the “bounce” behavior of the price: an increase is often followed by a decrease and vice versa.

The posteriors of other parameters suggest additional patterns in the data, although not as strongly: a large

change in price (large S) is more likely if the previous change was large (ηd,3 and ηu,3), a longer duration
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Figure 11
(a) Time plot of the price series for day 3; (b) time plot of daily shrunk estimates of the parameter ηu,2 in the Poisson model
from price increases.
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Figure 12
(a) Time plot of the price series for day 25; (b) time plot of the daily shrunk estimates of the parameter ω0 in the direction
model.

makes a price fall more likely (ω2), and a large price change leads to a shorter duration. Overall, the only

parameters whose 95% posterior intervals for the mean parameter include zero are the three intercepts α0, γ0,

and ω0, and β.

Some days are identified as unusual in that even estimates obtained from the shrinkage model look unusual

compared to those of other days. Panel (b) of Figure 11 plots the time series of daily shrunk estimates of the

parameter ηu,2 in the Poisson model from price increases. We see that the estimate for day 3 is unusually

large. Panel (a) of Figure 11 plots the time series of prices for that day (with the first price of the first day

subtracted). In the price plot there are five “spikes,” indicating a sharp price increase followed by an offsetting

decrease. The reader may wish to compare panel (a) to panel (b) of Figure 6, which is a more “typical” day in

the judgment of the authors. Another unusual day is illustrated by Figure 12. Panel (a) shows the price series

for day 25, and panel (b) shows the daily shrunk estimates of the parameter ω0 in the direction model. The

estimate for day 25 is unusually small. Actually, several parameters have unusual estimates for this day. The

price series for this day has a drop followed by several spikes that seem to reach back up to the predrop
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level. A plausible explanation for the sharp price changes in day 25 is the limit orders, because the transaction

price of a trade associated with a sharp price increase was close to those of trades that occurred in the

morning of that day.
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