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Abstract. This article proves that periodic trajectories are generically impossible in a class of

continuous-time growth models that allow a locally indeterminate steady state. Those models reducible to the

two-dimensional Lotka-Volterra system of equations constitute the class considered here. Knowledge of the

presence or absence of the limit cycles allows a global phase diagram of the system to be constructed. In

particular, an explosive steady state implies that all perfect-foresight trajectories diverge to infinity and that the

model cannot be used even locally.
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1 Introduction

Recently, a number of continuous-time growth models allowing indeterminacy of a steady state for some

parameter values have appeared (for a recent review, see Benhabib and Farmer 1999). In two dimensions,

local dynamics around a steady state can be saddle path stable (one negative eigenvalue and one positive),

stable (two eigenvalues with negative real parts), and absolutely unstable (two eigenvalues with positive real

parts). Configurations with one or both eigenvalues being zero or having zero real parts are not generic. One

of the necessary conditions for the Hopf bifurcation theorem is two eigenvalues passing through the

imaginary axis as some system parameter is varied (see Guckenheimer and Holmes 1997, 151). Therefore, it is

widely assumed that when a particular steady state can be both stable and absolutely unstable for different

parameter values, the Hopf bifurcation and limit cycles can occur. For example, note 6 in Benhabib and

Farmer 1994 states that it is impossible to rule out limit cycles for an absolutely unstable case. This note will

prove that for a particular class of two-dimensional growth models, stable or unstable limit cycles are

generically impossible even though eigenvalues can pass through the imaginary axis.

The question of the existence of limit cycles is very relevant for models that can have an explosive or

indeterminate steady state. Two scenarios are generally possible in a Hopf bifurcation. In one, the stable

steady state loses stability, becoming absolutely unstable, and a stable limit cycle forms around it. In the other,

an unstable limit cycle exists around the stable steady state and disappears when the steady state becomes
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absolutely unstable. Consider an unstable (explosive) steady state. If a stable limit cycle around it exists, then

for the state variable (say, capital) in some neighborhood of the steady state value, one can find an interval of

the control variable (say, consumption) values such that the resulting trajectory converges to the limit cycle.

The equilibrium dynamics is indeterminate and cyclical, but it stays finite. On the other hand, if no stable limit

cycle appears around the unstable steady state, then any perfect-foresight equilibrium trajectory potentially

diverges to infinity if initial capital is not equal to the steady-state value. Turning our attention to the stable

(indeterminate) steady state, we see that if an unstable limit cycle exists around it, then the dynamics

converges to the steady state only for the values of capital close to the steady-state value. Other initial values

probably lead to trajectories diverging to infinity. Absence of an unstable limit cycle might mean global

stability of the indeterminate steady state.

The schemes considered in the previous paragraph demonstrate the importance of knowledge of the

presence or absence of the limit cycles for global dynamic analysis of economic models described by

two-dimensional systems of differential equations. The model that makes sense locally can completely break

down if initial conditions are far from the steady state. There might be no bounded perfect-foresight trajectory

converging to an attractor. Limit cycles become especially important for models that allow indeterminate or

explosive steady states.

The class of models discussed here includes the model described in Benhabib and Farmer 1994 and

different modifications of it. The original model is a continuous-time optimal-growth model with endogenous

labor and a production function that has constant private returns to scale but increasing social returns to scale

because of externalities. For some calibrations, the steady state of the model is indeterminate, whereas for

others, it is absolutely unstable. Modifications of the model include Wen 1998, which introduces variable

capital utilization with a depreciation rate depending on the utilization rate; Schmitt-Grohe and Uribe 1997,

which considers income taxes; and Guo 1999 and Guo and Lansing 1998, which study separate progressive

taxes on interest and wage income. As the basis for discussion we will use a slightly modified version of Guo

1999. Section 2 briefly describes the model. Section 3 discusses steady states and their stability. The main

result of the paper is presented in Section 4, which also includes an analysis of the global behavior of the

model, and Section 5 concludes.

2 The Model

There is a continuum of identical households maximizing the utility∫ ∞
0

(
log C − A

N 1−χ

1− χ
)

e−ρt dt, A > 0 (2.1)

where C and N are household consumption and working hours. Households own capital that is rented to

firms, and the budget constraint is given by

·
K= (1− τk)(r − δ)K + (1− τn)wN − C , K (0) given (2.2)

with r being the interest rate, w the wage rate, and K the household’s capital stock. Tax rates are given by the

following expressions:

τk = 1− ηk

(
Y k

Yk

)φk

, ηk ∈ [0, 1], φk ∈ [0, 1) (2.3a)

τn = 1− ηn

(
Y n

Yn

)φn

, ηn ∈ [0, 1], φn ∈ [0, 1) (2.3b)

where Yn = wN and Yk = (r − δ)K are the household’s taxable labor and interest income. The tax code

includes depreciation allowance. Parameters φi and ηi , i ∈ {k, n}, determine the slope and the level of taxes.
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φ 6= 0 means a “progressive” tax, because in this case the marginal tax rate is higher than the average. In a

departure from Guo 1999, in which Y k and Y n were the steady state values of the taxable interest and wage

income, in this paper they will represent economy-wide averages of respective incomes. This difference

means that in a symmetric equilibrium in which every household has the same amount of capital and supplies

the same number of hours, tax rates will not depend on the current average output. In Guo 1999, the

symmetric equilibrium average tax rates were decreasing in the average level of output, thus generating

countercyclical government spending. In the variant used here, the average tax rate in the symmetric

equilibrium does not depend on the business cycle stage, which more closely resembles reality.

There is also a continuum of identical firms with the production function

Y = K aN bK
α−a

N
β−b

(2.4)

where a + b = 1, α > a, β > b, and K and N are economy-wide averages of K and N per firm, which are

taken as given by every individual firm. From the profit maximization, the interest rate and the wage rate are

given by

wN = bY

rK = aY
(2.5)

The government balances its budget at every point in time. Therefore, there is no government debt in the

model.

In a symmetric perfect-foresight equilibrium, every household has the same amount of capital and supplies

the same number of hours, and every firm employs the same quantity of capital and labor. Write the following

current-value Hamiltonian as

H = log C − A
N 1−χ

1− χ + µ
[
ηk

(
Y k

Yk

)φk

(r − δ)K + ηn

(
Y n

Yn

)φn

wN − C

]
(2.6)

Taking corresponding derivatives, one gets the necessary conditions:

1

C
= µ (2.7a)

AN −χ = (1− φn)µηn

(
Y n

Yn

)φn

w (2.7b)

·
µ = µρ − µ(1− φk)ηk

(
Y k

Yk

)φk

(r − δ) (2.7c)

lim
t→∞

e−ρt K

C
= 0 (2.7d)

together with the capital accumulation equation

·
K= ηk(r − δ)K + ηnwN − C , K (0) given (2.8)

Substituting (2.7a) into (2.7b) and (2.7c), recalling that by definition in the symmetric equilibrium

Y n = Yn = wN , Y k = Yk = (r − δ)K , and substituting (2.5), we obtain the following set of equations:

ACN 1−χ = (1− φn)ηnbY (2.9a)
·

C
C
= (1− φk)ηk

aY − δK
K

− ρ (2.9b)

·
K
K
= ηk

aY − δK
K

+ ηnb
Y

K
− C

K
(2.9c)
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Y = K αN β (2.9d)

lim
t→∞

e−ρt K

C
= 0 (2.9e)

Switching to logs, c = log(C ), k = log(K ), and y = log(Y ), and using (2.9a) and (2.9d) to obtain y as a

function of c and k, we arrive at the following two-dimensional system of differential equations:
·
c = (1− φk)ηk(a exp(w + uc − vk)− δ − ρ)
·
k = (aηk + bηn) exp(w + uc − vk)− ηkδ − exp(c − k) (2.10)

where

w = β

β + χ − 1
(log(A)− log(ηn(1− φn))− log(b))

v = β − (1− α)(1− χ)
β + χ − 1

(2.11)

u = β

β + χ − 1

Finally, changing the coordinates to

x = exp(w − vk + uc)

y = exp(c − k)
(2.12)

we get the system of equations presented below:
·
x = x{[au(1− φk)ηk − v(aηk + bηn)]x + vy − uρ − [u(1− φk)− v ]ηkδ}
·
y = y{[a(1− φk)ηk − (aηk + bηn)]x + y + φkηkδ − ρ} (2.13)

By construction, x and y are non-negative; therefore, only the first quadrant of the (x, y) space should be

considered. To simplify notation we will assume in the following that ηk = ηn = η and φk = φn = φ. The main

result of the paper, namely, the absense of limit cycles, is not sensitive to this assumption. Note that in the

case φ = 0 (flat tax) and η = 1 (tax rate is zero in equilibrium), the system in Equation (2.13) transforms into

the model described in Benhabib and Farmer 1994.

It is possible to characterize completely the global dynamics of Equation (2.13). We will construct its phase

portrait in the indeterminate or explosive case in the following sections.

3 Steady States and Stability

The positive steady state of Equation (2.13) is A = (x∗, y∗) = ( ρ−δφη+δη
(1−φ)aη ,

ρ−δφη+δη(1−a(1−φ))
(1−φ)a ). In the remainder of

the paper we assume that ρ − δφη > 0, and thus A lies in the first quadrant of the plane. Linearization of

Equation (2.13) around this steady state produces

J∗ =
[

x∗η(au(1− φ)− v) x∗v

y∗η(a(1− φ)− 1) y∗

]
The necessary and sufficient condition for explosive or indeterminate steady state (two stable or unstable

roots) is Det|J∗| = x∗y∗η(u − v)(1− φ) > 0. Assuming φ < 1 (progressivity of the tax code not at its topmost

level) and η > 0 (symmetric equilibrium tax rate less than 100%), this is equivalent to u − v > 0. Recalling

definitions of u and v and simplifying, one gets

u − v = (1− α)(1− χ)
β + χ − 1

> 0 (3.1)
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Following Benhabib and Farmer 1994, in which α < 1, χ < 0, Inequality (3.1) becomes β + χ − 1 > 0. This

is exactly the celebrated necessary condition for indeterminacy derived in Benhabib and Farmer 1994.

Therefore to obtain economically meaningful explosive or indeterminate steady state, we need the following

conditions to hold:

ρ − δφη > 0

β + χ − 1 > 0 (3.2)

There are other possible steady states of Equation (2.13):

B = (0, 0)

C = (0, ρ − δφη)

D =
(

uρ + [u(1− φ)− v ]δη

au(1− φ)− v
, 0

)
Steady state C lies on the positive half of the y-axis by virtue of Equation (3.2). In the expression for the

abscissa of D, the denominator is given by

au(1− φ)− v = β[a(1− φ)− 1]+ (1− α)(1− χ)
β + χ − 1

<
β(α − 1)− (1− α)(1− χ)

β + χ − 1
= −(1− α) < 0 (3.3)

For the numerator, one gets

uρ + [u(1− φ)− v ]δη > uδφη + [u(1− φ)δη − v ]δη

= δη(u − v) > 0 (3.4)

Therefore, D lies in the second quadrant and does not interest us.1

Linearizing Equation (2.13) around the origin, one gets the following Jacobian:

J =
[
−{uρ + [u(1− φ)− v ]δη} 0

0 −(ρ − δφη)

]
(3.5)

The first nonzero element was estimated in Equation (3.4) and is always negative, whereas the second is

negative by Equation (3.2). Therefore, the origin is also stable in Equation (2.13). Finally, for steady state C,

one gets

J =
[
−(u − v)(ρ − δφη + δη) 0

η(a(1− φ)− 1)(ρ − δφη) ρ − δφη

]

Here the (2,2) element of J is positive, and the (1,1) element is negative if Equation (3.2) holds. Therefore, C
is a saddle.

1Steady states B and C both represent trajectories diverging to (-∞,−∞) in the (c, k) space, but those trajectories have different asymptotic
behavior. Along the trajectory that converges to B, the consumption-to-capital ratio is falling exponentially, but it remains constant for the
path converging to C. The change of variables collapses infinity points from the lower half of the (c, k) space onto the vertical half-axis in
the (x, y) space. Trajectories with different asymptotic behavior at minus infinity are mapped into different points on the y-axis.
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4 Dulac Criterion and Limit Cycles

The Dulac criterion states that if for the analytic two-dimensional system
·
x = P(x, y)
·
y = Q(x, y) (4.1)

in a simply connected region G there exists a continuously differentiable function B(x, y), such that
∂(PB)
∂x + ∂(QB)

∂y does not change sign in G , then there are no simple closed curves in G that are unions of paths

of the system.2 In particular, there are no limit cycles (see Andronov et al. 1973).

Proposition 1. For a system 3

·
x = x(a1x + b1y + c1)

·
y = y(a2x + b2y + c2) (4.2)

the Dulac function is B(x, y) = xk−1yh−1, where k = b2(a2−a1)

1
, h = a1(b1−b2)

1
, and 1 = a1b2 − a2b1 6= 0. Then

∂(PB)

∂x
+ ∂(QB)

∂y
= (a1c2(b1 − b2)

1
+ b2c1(a2 − a1)

1
)xk−1yh−1 (4.3)

When ξ = a1c2(b1 − b2)+ b2c1(a2 − a1) 6= 0, ∂(PB)
∂x + ∂(QB)

∂y vanishes only along the integral curves x = 0 and

y = 0. It does not change sign in the interior of any of the four quadrants. Therefore, system (4.2) does not have

limit cycles when ξ 6= 0.

Also, it can be shown that in this case there can be no closed contours that are unions of paths. After some

algebraic transformations, it can be shown that the condition on ξ amounts to Tr(J∗) = a1x∗ + b2y∗ 6= 0,

where (x∗, y∗) denotes the steady state with nonzero x and y, and J∗ is the Jacobian of Equation (4.2) at this

steady state. When Tr(J∗) = 0, all trajectories of the system are closed orbits.

One of the necessary conditions of the Hopf bifurcation theorem is two eigenvalues crossing the imaginary

axis with Tr(J∗) = 0 for a critical value of some parameter. Further change of the parameter leads to the

appearance of a stable or unstable limit cycle around the steady state, with the magnitude depending on the

difference between the current and the critical value of the parameter. As follows from Equation (4.3), this

scenario is impossible in system (4.2), because closed periodic orbits exist only when Tr(J∗) = 0. Not all

necessary conditions of the Hopf bifurcation theorem are satisfied in system (4.2), and the Hopf bifurcation is

impossible as a result.

An obvious and quick calculation assures one that system (2.13) has the same structure as system (4.2).

Therefore, limit cycles are impossible in it generically. System (2.13) is obtained as a transformation of

Equation (2.10), and therefore we have just proven that closed orbits, in particular limit cycles, are impossible

in Guo 1999 except for a unique configuration of parameters when all the system’s trajectories are closed

orbits.

Absence of limit cycles allows us to construct a global phase portrait of Equation (2.13), which is presented

in Figure 1 for the case of indeterminate (stable) steady state. The whole state space is divided into regions of

attraction of two steady states, A and B. Any trajectory that starts above the stable manifold of C converges to

the positive steady state A. On the other hand, if A becomes explosive, then no trajectory converges to it, and

no trajectory remains bounded. All perfect-foresight paths diverge to infinity.4

2Note that Bendixson’s criterion is a special case of Dulac’s with B(x, y) = 1.
3This is a two-dimensional Lotka-Volterra system. Lotka-Volterra systems are studied extensively in mathematical biology.
4The only trajectory that remains bounded is the one that starts exactly at A. In this paper we do not consider trajectories converging to the
origin.
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Figure 1
Phase portrait of the transformed system in (x, y) variables.

It is obvious to check that in a special case φi = 0, ηi = 1, i = k,n, system (2.13) has the same general

form as Equation (4.2). Therefore, limit cycles are also impossible there.5 In this case, the tax rates are zero at

any level of income, and this is the model described in Benhabib and Farmer 1994. Immediate calculation

shows that in the case where interest income is taxed without the depreciation allowance, after the change of

variables similar to that in Equation (2.12), the resulting system of differential equations still has the structure

of Equation (4.2), and there are no limit cycles. Setting φk = φn = φ, ηk = ηn = η, in a model without

depreciation allowance, one arrives at the model described in Schmitt-Grohe and Uribe 1997. Calculations

similar to those performed above show that the model described in Wen 1998 also can be reduced to

Equation (4.2), therefore proving the absence of limit cycles in that model. In all these models the steady state

can be indeterminate or absolutely unstable for some parameter values.

5 Conclusion

In this paper we have shown that in a set of models derived from the one described in Benhabib and Farmer

1994, limit cycles are generically impossible even though a steady state can move from being absolutely stable

(locally indeterminate) to absolutely unstable by having two eigenvalues pass the imaginary axis. Such

passage is a necessary condition for the presence of the Hopf bifurcation and, consequently, a limit cycle.

This class of models can be reduced, however, to a two-dimensional Lotka-Volterra system of differential

equations that does not allow limit cycles.

Parameter values that lead to an explosive (unstable) steady state are not more “pathological” than those

resulting in an indeterminate one. For example, in Benhabib and Farmer 1994, the steady state becomes

absolutely unstable if labor externality is as high as in the indeterminate case but capital externality is small or

zero. In the case of an absolutely unstable steady state, no perfect-foresight trajectory converges to it, and the

5For more detailed study of the global deterministic and stochastic dynamics of this system, see Slobodyan 2001.
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model cannot be used even locally. Full characterization of the global dynamics allows new questions about

the model’s behavior to be studied (for an example, see Slobodyan 2001).
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