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Abstract. In this paper, it is shown how one can employ the wavelet analysis to reconstruct data based only

on the subset of information that differentiates the two fundamentally related time series: spot and futures

indices. Such an analysis allows researchers to focus on examining the relationship between the two price

series. Furthermore, it also enables examination and comparison of reconstructed prices based on different

levels of information detail. It is found that the lead-lag relationship described in the empirical literature still

exists between the spot and the futures index prices. Such a relationship is more persistent when more detailed

information is used for price reconstruction. This implies that, if market imperfection is to be blamed for the

noncontemporaneous relationship between the spot and the futures indices, one should concentrate solely on

those imperfections that are likely to occur within very short time horizons.
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1 Introduction

Prices in spot and futures markets are contemporaneously related according to the famous cost-of-carry (COC)

model in the theory of finance. A primary assumption of the COC model is that the two markets are perfectly

efficient and frictionless and act as perfect substitutes. As new information arrives simultaneously to both

markets and is reflected immediately in both the spot and the futures prices, profitable arbitrage should not

exist. Consequently, the theoretical COC model suggests that the “fair value” of a futures contract is equal to

the “fair value” of the underlying spot index, plus the cost of carrying the spot index for the duration of the

contract (see Cornell and French 1983). This model is widely used by traders to determine whether futures are

correctly priced.
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In the empirical literature, however, numerous studies have established the existence of a lead-lag

relationship between price changes in most international futures and spot markets. Namely, futures index

price changes are usually found to lead spot index price changes by up to 45 min. On the other hand, when

information is firm specific, the underlying index price may lead the futures index price. These studies include

Kawaller, Koch, and Koch 1987, Stoll and Whaley 1990, Harris 1989, Wahab and Lashgari 1993, and Tse 1995,

to name a few. It has been argued that persistence in the lead-lag relationship between the spot index and the

futures index prices may be caused by one or more market imperfections, such as transaction costs, liquidity

differences between the two markets, nonsynchronous trading effects, the automation of one or the other

market, short-selling restrictions, different taxation regimes on futures and stocks, dividend uncertainties, the

market-to-market cash flows, and nonstochastic interest rates. Interestingly, one common feature of most of

the above empirical studies is that they use price changes (or equivalently returns) rather than prices in the

empirical studies. Although the relationship between the spot and the futures market returns is itself an

interesting topic to investigate, it is worth noting that it is prices, rather than price changes, that are the

variables of interest in the COC model. Therefore, instead of trying to identify whether or not any form of

market imperfection contributes to the documented lead-lag relationship among price changes, and if so, by

how much, the focus of this paper is to offer an approach that would allow one to examine price series

directly.

Since the futures index is a derivative security of the spot market index, it is safe to say that both are

subject to the same impact from changes in market fundamentals. Also, as a consequence, it is very likely that

these two time series are highly co-integrated. The main thrust of this paper is to focus on the information

subset that differentiates the two markets in reconstructing the two price series. By doing so, we need not

take first differences on the price series and would be able to maintain discussion on the variables of interest,

prices, as suggested in the COC model. Wavelet analysis provides an ideal tool for the kind of question raised

here. Specifically, by examining data at different time locations and levels of resolution, wavelet analysis

enables data reconstruction based only on the subset of information that is of interest to researchers. Such an

analysis not only allows a focus on examining prices, but also enables examination and comparison of

reconstructed prices based on different levels of information detail.

In the past decade or so, wavelet analysis has been a rapidly evolving topic in many scientific fields, such

as mathematics, quantum physics, electrical engineering, seismology, and signal processing. Wavelet analysis

is a new development, however, in the area of computational economics, econometrics, and finance. To the

best of our knowledge, applications in these fields include outlier detection (Greenblatt 1995), processing of

nonstationary data (Goffe 1994), study of the statistical self-similarity of financial data (Ramsey, Zaslavsky, and

Usikov 1995), discussion of potential difficulties involved in shifting from deterministic models to stochastic

processes in the analysis of economic and financial data (Priestly 1996), examination of the time-frequency

(Wigner) distributions (Ramsey and Zhang 1997), examination of the relationship among key macroeconomic

variables (Ramsey and Lampart 1998), analysis of commodity price behavior (Davidson, Labys, and Lesourd

1998), investigation of the potential stochastic relationship between the S&P 500 index price and S&P

dividend yields in a state space framework (Pan and Wang 1998), and estimation of long-memory processes

(Jensen 1999a, 1999b, 2000). In addition, Ramsey (1999) reviews numerous applications of the wavelet

technique in the economics and finance literature and suggests possible future research potential in these

fields. It is worth pointing out that Davidson, Labys, and Lesourd (1998) have contributed to this line of

research by placing wavelet analysis in a semi-nonparametric regression framework. Not only does doing this

allow one to easily handle some inherent restrictions in wavelet analysis, but it also allows one to utilize the

well-established statistical properties of semi-nonparametric regression to assess output from such an analysis.

It is the algorithm of Davidson, Labys, and Lesourd that we use in conducting wavelet analysis in this paper.

The rest of the paper is organized as follows. In Section 2, an introduction is given to wavelets and wavelet

analysis. In particular, we demonstrate how one could use the algorithm of Davidson, Labys, and Lesourd
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(1998) to construct information-based prices. In Section 3, data is presented and used to reconstruct both the

spot and the futures indices based on information existing at different time horizons according to the wavelet

analysis introduced in Section 2. In Section 4, a vector autoregression (VAR) model is set up to examine the

relationship between the wavelet-reconstructed prices. It is found that the lead-lag relationship still exists

between spot and futures index prices. Such a relationship is more pronounced and persistent when more

detailed information is used for reconstructing prices. The implication of this result is that, if market

imperfection is to be blamed for the noncontemporaneous relationship between index prices from the two

markets, one should concentrate solely on those imperfections that are likely to occur at very short time

horizons. Section 5 incorporates a discussion of the empirical implications and the conclusions of the paper.

2 Wavelets and Wavelet Analysis

A wavelet is a “small wave” that has its energy concentrated in a short interval of time.1 Wavelet analysis

allows researchers to decompose signals into a parsimoniously countable set of basis functions at different

time locations and resolution levels. Because of the compact support property of wavelets, wavelet analysis is

capable of capturing short-lived, transient components of data in shorter time intervals, as well as capturing

trends and patterns in longer time intervals. Consequently, wavelet analysis is ideal for analyzing

nonstationary data, which certainly include most economic and financial time series. The following gives a

brief account of wavelets and wavelet analysis and an introduction to the algorithm of Davidson, Labys, and

Lesourd (1998). How one can apply this algorithm in reconstructing price series based on a subset of

information that is of interest to researchers is then described.

2.1 Wavelet functions

The building blocks of wavelet analysis consist of father wavelets (often called scaling functions in the

wavelet literature) and mother wavelets. Similar to sine and cosine functions in spectral analysis, wavelet

functions are functional bases onto which data are projected to extract information that is not available in the

time domain. Unlike sine and cosine functions, however, wavelet functions usually do not have a closed

functional form. Instead, the basis functions are usually numerically derived based on some desired

mathematical properties and characteristics imposed by researchers.

Consider the square-integrable functional space, L2(<) (i.e.,
∫ | f (t)|2dt <∞, ∀ f (t) ∈ L2(<)). Based on the

basis function φ(t), the father wavelets, φk(t) ≡ φ(t − k), are a set of functions that span the subspace V0 of

L2(<), that is,

V0 = Span
k
{φk(t)} (2.1)

where the subscript k ∈ Z is called the translation parameter and is associated with a shift in the time

location t . This means that any function in the V0 subspace can be represented as a linear combination of the

father wavelets

f (t) =
∑

k

αkφk(t), ∀ f (t) ∈ V0 (2.2)

To make these father wavelet functions useful, it is required that if a set of signals can be represented by a

weighted sum of φ(t − k), then a larger set of signals can be represented by a weighted sum of φ(2t − k).

This is usually called the multiresolution condition. To show this, we define the scaled father wavelet function

as the following:

φj,k(t) ≡ φ(2 j t − k) (2.3)

1Both Chui (1992) and Daubechies (1992) provide a thorough review of wavelet analysis. For a good review of the basics, see Strang 1989
and Graps 1995.
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where the subscript j , called the dilation parameter, is associated with the level of time resolution and where

a larger number indicates a higher level of resolution. For j > 0, the scaled father wavelet φj,k(t) has a

narrower support and is translated by a smaller step, 2− j · k.2 They are therefore capable of capturing more

detail from signals than φ0,k(t). The converse is true for j < 0. Denote the subspace Vj of L2(<), spanned by

these scaled father wavelet functions, as

Vj = Span
k
{φj,k(t)}

The multiresolution condition requires that

Vj ⊂ Vj+1 ∀ j ∈ Z (2.4a)

V−∞ = ∅ (2.4b)

V∞ = L2(<) (2.4c)

A direct implication of this condition is that if any basis function φ(t) is in the V0 subspace, it is also in the V1

subspace. This means that φ(t) can be represented as a linear combination of φ(2t) as in the following:

φ(t) =
∑

k

h(k)φ(2t − k), ∀ k ∈ Z (2.5)

where h(k) is the coefficient attached to the basis function φ(2t − k).3 To complete the wavelet system, define

the orthogonal complement of Vj in Vj+1 as Wj , that is

Vj+1 = Vj ⊕Wj (2.6)

This, together with Equation (2.4c), implies that the L2(<) space can be decomposed such that

L2(<) = V0 ⊕W0 ⊕W1 ⊕ · · · (2.7)

Essentially, one can think of V0,W0,W1,W2, . . . as a partition of the information set, as demonstrated in

Figure 1. It is this information decomposition that allows us to reconstruct variables of interest based on the

subset of relevant information. Let’s define the mother wavelet function, ψ(t), as the functions that span the

subspace W0. Since W0 ⊂ V1, ψ(t) can also be written as a linear combination of the father wavelet function

φ(2t), that is

ψ(t) =
∑

k

g(k)φ(2t − k) ∀ k ∈ Z (2.8)

where g(k) is the coefficient attached to the basis function φ(2t − k) and is related to h(k) in Equation (2.5)

by the following equation:

g(k) = (−1)kh(1− k) (2.9)

Equations (2.5) and (2.8) are called dilation equations of the wavelet system. As mentioned earlier, wavelet

functions rarely have analytical forms. Indeed, numerous wavelet systems can be built by recursively

2Assume that φ(t) has a finite support [l,m]. Since φk (t) ≡ φ(t − k), the support of φk (t) is the same as the support of φ(t). Similarly, since
φj,k (t) ≡ φ(2 j t − k), the support of φj,k is given by [ l+k

2 j ,
m+k
2 j ]. Therefore, the support of φj,k is shorter than the support of φk .

3In the wavelet literature, different normalization has been used. In particular

φ(t) =
∑

k

√
2h(k)φ(2t − k), ∀ k ∈ Z

where the factor
√

2 merely serves to normalize the functions.
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Figure 1
Decomposition of information.

evaluating those two dilation equations together with Equations (2.3) and (2.9).4 Since the above conditions

do not exhaust the degrees of freedom, there generally exists an infinite number of very different wavelet

systems. As suggested in Davidson, Labys, and Lesourd 1998, we use the Daubechies wavelets in our

application. What makes Daubechies wavelets really useful is that they have compact support and a certain

number of vanishing moments.5 The design of {h(k)} in the Daubechies wavelet functions is to transform the

functions φ(t − k) and ψ(t − k) into an orthonormal basis of the space they span. For each set of Daubechies

wavelets, there is an integer m such that, for any integer l with 0 ≤ l ≤ m,∫ ∞
−∞

t lψ(t)dt = 0 (2.10)

In other words, the moment properties of the first few orders (up to m) are completely captured by the

coarsest-level father wavelets. This allows one to intuitively explain that the father wavelets are capable of

capturing the underlying patterns or trends of signals. There is a trade-off, however, between the length of

support of the wavelets and the number of vanishing moments. An increase in m is bought at the cost of

extending the length of support; that is, lessening the degree of localization achieved by the wavelets. We use

m = 2, as suggested in Davidson, Labys, and Lesourd 1998, to allow the first two moment properties of the

data to be captured by the coarsest father wavelets.

2.2 Wavelet analysis

Based on the multiresolution decomposition in Equation (2.7) and the constructed father and mother

wavelets, any discrete signal f (t) ∈ L2(<) can be written in terms of wavelet functions as the following:

f (t) =
∞∑

k=−∞
αj0,kφj0,k(t)+

∑
j≥ j0

∞∑
k=−∞

βj,kψj,k(t) (2.11)

where j0 is a positive integer that represents the coarsest level of resolution chosen by researchers, and

αj0,k =
∫

f (t)φj0,k(t)dt , and βj,k =
∫

f (t)ψj,k(t)dt are the expansion coefficients.6 In the wavelet literature, the

4Two popular numerical approaches of building wavelet functions are the forward and the backward pyramid algorithms. For more detail
about these numerical algorithms, refer to Strang 1989, Daubechies 1992, and Chui 1992.

5Symmelets, another wavelet system constructed by Daubechies, have the same support length, number of vanishing moments, and number of
derivatives. The main difference between Daubechies wavelets and symmelets is that symmelets are nearly symmetric, whereas Daubechies
wavelets are highly asymmetric. Ramsey and Lampart (1998) use symmelets in their study of expenditure and income relationship.

6The scale, j0, of the initial subspace is arbitrary. In practice, it is usually chosen to represent the coarsest details of interest in a signal.
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procedure of obtaining the expansion coefficients is called the discrete wavelet transform (DWT). In reality,

the magnitude of αj,k and βj,k drops off rapidly with j and k for a large class of signals. Therefore, the

dimensions of the summation in Equation (2.11) are practically finite. In other words, only a parsimoniously

countable set of wavelet functions and the associated transformation coefficients need to be evaluated. The

DWT procedure usually requires, however, that discrete data be equally spaced and that the number of

observations be some integer power of two. These requirements turn out to be too restrictive to be applicable

for analyzing most economic and financial data. Furthermore, what is more interesting is when the observed

data are contaminated with noise, that is,

yt = f (xt )+ εt (2.12)

where yt is the dependent variable, f (xt ) represents the signal, xt is the explanatory variable (which could be

time t if no other explanatory variable is imposed), and εt represents noise. In such a situation, we would be

interested in removing as much noise εt while retaining the main features of the data f (xt ). Wavelet

shrinkage, pioneered by Donoho and Johnstone (1994), is popular for this task in scientific applications. It

involves nonparametrically estimating the signal f (xt ) by significantly reducing or completely eliminating

some wavelet coefficients φj0k and ψj,k that are attributed to noise (see Donoho and Johnstone 1994, 1995;

Donoho 1995; and Donoho et al. 1995 for detail principles of this technique). Since it involves applications of

the DWT, however, wavelet shrinkage inherits the same restrictions of the DWT. Hence, it would not be most

suitable for analyzing our data.

Alternatively, Davidson, Labys, and Lesourd (1998) suggest a semi-nonparametric regression to overcome

the problems of unequally spaced data and the number of observations being a power of two. The algorithm

of Davidson, Labys, and Lesourd involves the following steps:

1. To circumvent the problems of potential edge effects or the periodic nature of data, Davidson, Labys, and

Lesourd suggest padding some m observations at the beginning and the end of the sample in the

following way:

ym, ym−1, . . . , y1, y1, y2, . . . , yn−1, yn, yn, yn−1, . . . , yn−m+1 (2.13)

They claim this ensures continuity at the edge and helps to fit the data better.

2. Perform the same padding to the independent variable xt as done to the dependent variable yt .

Compress the padded series xt into the [0, 1] interval.7

3. For each level of resolution, starting from j0 and ending with J , select only those wavelet functions that

intersect the [0, 1] interval.8 Evaluate these functions at 2i grid points, where i is some positive integer

that gives a much finer partition of the [0, 1] interval than xt does.9

4. Evaluate f (xt ) by a set of father wavelet functions and several sets of mother wavelet functions, all of

which are evaluated at the grid points x̃t that are closest to xt . Based on this, construct a regression vector

7When the data are equally spaced, one can use the sequence ( 1
n+2m ,

2
n+2m , . . . , 1) as the associated grid points at which the function f (xt )

is evaluated. This is certainly the case in Davidson, Labys, and Lesourd 1998, where yt is equally spaced and xt = t (time).
8 J is the highest level of resolution. Despite the formula in Equation (2.11), J is practically a finite number in applications, because of the
finite nature of the available data (hence concerns about the degrees of freedom) and the fact that the significance of wavelet coefficients
actually drops quite rapidly as the level of resolution increases. Therefore, researchers can judiciously choose a finite number for the desired
highest resolution level J .

9The numerical evaluation of the Daubechies wavelet function at numerous grid points is completed by employing the S-Plus command
“wavelet.”
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of the following form:

ΨT
t = (φj0,a0(x̃t ), . . . , φj0,b0(x̃t )

ψj0,a0(x̃t ), . . . , ψj0,b0(x̃t )

ψj0+1,a1(x̃t ), . . . , ψj0+1,b1(x̃t )

...

ψ J,aJ− j0
(x̃t ), . . . , ψ J,bJ− j0

(x̃t )) (2.14)

where the newly introduced subscripts ai and bi are respectively the upper bound and the lower bound

of translation at resolution level j0 + i such that the support of the associated wavelet function intersects

the [0, 1] interval.

5. Regress yt on Ψt .

By employing Davidson, Labys, and Lesourd’s algorithm, as illustrated by the above five steps, not only are

the restrictions associated with the DWT and the wavelet shrinkage accounted for, but statistical properties of

semi-nonparametric regression can also be directly applied to assess output from such an analysis.

In essence, the main contribution of Davidson, Labys, and Lesourd lies in placing the wavelet shrinkage

procedure into an econometric framework to enable application of wavelet analysis to nonstationary

economic and financial data. By following their algorithm, one can reconstruct variables of interest according

to information contained in each of the V0,W0,W1,W2, . . . , subspaces as described in Equation (2.7) and

Figure 1. In other words, instead of regressing yt on Ψt , we regress yt on subsets of Ψt corresponding to

V0,W0,W1,W2, . . . , etc.10 Alternatively, we can regress yt on V0,V1,V2,V3, . . . , if we are interested in

examining the impact of information contained at a particular frequency and above rather than the marginal

information contained in the information subsets W0,W1,W2, . . . . This allows examination of the impact of

the level of information detail on the economic relationship under investigation. A description of our data and

the reconstructed data series is presented in the next section.

3 Original and Wavelet-Reconstructed Data

Data used in this study are 5-min price observations for four Share Price Index (SPI) contracts maturing in

March, June, September, and December 1995 and the correspondingly recorded prices of the All Ordinaries

Index (AOI).11 SPI futures contracts began trading on the Sydney Futures Exchange (SFE) in 1983. Since these

contracts track the movement of the share market, they serve as a substitute for owning a diversified portfolio

of the shares that form the AOI.12 The trading floor of the SFE operates from 9:50 A.M. to 12:30 P.M. and from

2:00 P.M. to 4:10 P.M. Australian Eastern Standard Time (EST). As most trading occurs in the nearest expiry

month, we use the index futures time series based on the near contract, shifting to the next near contract on

expiration day. Trading on the Australian Stock Exchange (ASX) is fully automated and operates from 10:00

A.M. (EST) to the close of trade at 4:00 P.M. Opening times for trading are staggered, with all stocks trading by

10:10 A.M.

10“Subset of Ψt corresponding to Vi ,∀i” refers to a collection of father wavelets at resolution level j0 + i, that is, (φj0+i,a0 (x̃t ), . . . , φj0+i,b0 (x̃t ));
whereas “subset of Ψt corresponding to Wi ,∀i” refers to a collection of mother wavelets at resolution level j0 + i, that is,
(ψj0+i,a0 (x̃t ), . . . , ψj0+i,b0 (x̃t )).

11Intraday price observations for both series used in this study have been obtained from the Securities Industry Research Centre of Asia-Pacific
(SIRCA).

12At maturity, the value of a contract in 1995 was the actual AOI on the last day of trading, multiplied by 25 Australian dollars.
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Table 1
Descriptive statistics of time series examined

N µ̂ σ̂ 2 k̂3 k̂4 B J ACF

Mar95aomg 1764 1877.3 608.6 −0.11 −0.98 74.1 0.995
Mar95spmg 1764 1890.5 746.4 −0.09 −0.79 48.3 0.993
Mar95aoaf 1512 1876.5 615.1 −0.07 −1.02 66.8 0.994
Mar95spaf 1512 1889.0 743.5 −0.06 −0.91 53.1 0.992
Jun95aomg 1708 2014.0 1209.3 −0.76 0.82 212.3 0.993
Jun95spmg 1708 2038.3 1489.0 −0.48 −0.07 65.9 0.992
Jun95aoaf 1464 2013.4 1197.2 −0.76 0.82 182.0 0.993
Jun95spaf 1464 2037.3 1485.9 −0.51 0.00 63.5 0.993
Sep95aomg 1820 2118.4 1268.6 −1.51 2.31 1096.3 0.995
Sep95spmg 1820 2143.0 1233.3 −1.53 2.53 1195.5 0.993
Sep95aoaf 1560 2118.2 1268.4 −1.64 2.91 1249.7 0.994
Sep95spaf 1560 2142.0 1215.2 −1.75 3.37 1534.4 0.991
Dec95aomg 1736 2137.4 2510.1 0.25 −1.19 120.5 0.998
Dec95spmg 1736 2153.7 2521.7 0.07 −1.10 88.9 0.997
Dec95aoaf 1488 2137.6 2510.5 0.21 −1.22 103.2 0.998
Dec95spaf 1488 2153.2 2505.4 0.00 −1.12 77.8 0.997

Note: aomg: All Ordinaries A.M.; spmg: Sydney Futures Index A.M.; aoaf: All Ordinaries
P.M.; spaf: Sydney Futures Index P.M.; N : number of observations; µ̂: sample mean; σ̂ 2:
sample variance; k̂3: sample skewness; k̂4: sample kurtosis; B J : Jarque-Bera statistics. ACF :
first-lag autocorrelation.

Because of the break between 12:30 P.M. and 2:00 P.M. on the SFE, there is a problem of matching up the

index prices from the two markets. Rather than assuming that the data-generating process is the same for both

morning and afternoon trading sessions, we divide our analysis between mornings and afternoons over the

four 1995 futures contracts. This enables a determination to be made as to whether the relationship between

index prices differs systematically over the two sessions, while at best aiding compliance with the time-series

assumption of continuous, equally spaced observations. Consequently, data are used from both exchanges

from 10:15 A.M. to 12:30 P.M. to cover each morning trading session, discarding the first 5 min of trading from

10:10 A.M. to account for possible anomalous trading after the start-up procedure for the AOI. For a similar

reason, we discard the first 5 min of trading in the SPI in the afternoon session, which runs from 2:05 P.M. to

4:00 P.M. The nearby futures prices and those of the underlying index are matched for each 5-min interval on

a morning and afternoon basis for each of the four futures contracts during 1995. This pairing provides 28

paired observations for each morning and 24 for each afternoon.

As reported in Table 1, the number of 5-min price observations for the morning series totaled 1,764, 1,708,

1,820, and 1,736 for the March, June, September, and December contracts, respectively. For the afternoon

series, there were 1,512, 1,464, 1,560, and 1,488 5-min price observations, respectively. These index prices

from both markets are clearly non-normally distributed and have large first order autocorrelation. Figure 2

presents time-series plots for both the AOI and SPI price series for the March 1995 contract. From Figure 2, it

is clear that these two price series are co-integrated. This comes as no surprise, given that the futures index is

a derivative security of the spot market index, with both subject to the same impact from changes in market

fundamentals.

As described in Equation (2.10), we now reconstruct our data using the Daubechies wavelet with two

vanishing moments, that is, m = 2. The support of this particular wavelet function lies in the interval [0, 5].

Since the time domain of data is compressed into the [0, 1] interval, we choose the coarsest level of resolution

( j0) to be three, with the associated support length 5
8 < 1, and translation step 1

8 .13 This would correspond to

13As discussed in Section 2, the choice of a zero subscript for the coarsest level of time resolution was arbitrary. In the discussion of the
reconstruction procedure here, we chose this level to be three based solely upon our choice of wavelet function and its associated support.
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1995 March AO and SPI (A.M.).

Figure 3
Decomposition of information starting from level 3.

an information subset with a time horizon of roughly eight morning or afternoon trading sessions

((13 weeks× 5 sessions per week)/23). Just enough translations of the father and mother wavelet functions

are constructed at this level of resolution to cover the [0, 1] interval. Then, we increase the level of resolution

by one and construct the mother wavelet function and all of its associated translations at this higher level. This

process is repeated until the level of resolution reaches seven. This would correspond to an information

subset with a time horizon of roughly one-half of a trading section ((13× 5 sessions) /27), or 70 min for

morning sessions and 60 min for afternoon sessions. At each level of time resolution, these constructed

wavelet functions span the information subset as shown in Figure 3. We then conduct semi-nonparametric

regressions of yt on subsets of Ψt corresponding to V3,V4,V5,V6, . . . , as described at the end of Section 2.

Figures 4 and 5 demonstrate examples of such reconstruction.14 From these figures, it is clear that the

coarsest-level father wavelet functions trace out the underlying low-frequency trend of the data very well.

14Because of space limitations, figures of other contracts are not reproduced here but are available from the authors upon request.
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Figure 4
Original and reconstructed 1995 March AOI (A.M.).
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Original and reconstructed 1995 March SPI (A.M.).

Furthermore, as the level of resolution being used is increased, the reconstructed data more closely track the

original data. In particular, when the top-level resolution is approached, there is virtually no difference

between the original and the reconstructed data by visual inspection. Intensities of variation across different

time scales are compared by determining the overall contribution of any time scale by its marginal

contribution to the explained sum of squares of the regression. We also measure the importance of the

residual variation at time scales shorter than that of the highest resolution actually considered. The R2 is

calculated, as in Davidson, Labys, and Lesourd 1998, by ignoring the variation in the trend of the series. Thus,

the total “sum of squares” is the increase in the explained sum of squares when going from level 3 to level 7.

The results reported in Table 2 confirm what we have just found by visually inspecting Figures 4 and 5.
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Table 2
Contribution to the explained sum of squares and the goodness of fit (R2)

M3 M4 M5 M6 M7 R2

Mar95aomg 0.389 0.344 0.159 0.078 0.030 0.968
Mar95spmg 0.402 0.357 0.138 0.074 0.029 0.965
Mar95aoaf 0.410 0.298 0.176 0.089 0.027 0.969
Mar95spaf 0.435 0.311 0.152 0.077 0.026 0.969
Jun95aomg 0.435 0.263 0.210 0.065 0.027 0.972
Jun95spmg 0.405 0.258 0.241 0.067 0.030 0.968
Jun95aoaf 0.513 0.155 0.275 0.035 0.022 0.981
Jun95spaf 0.461 0.180 0.304 0.033 0.022 0.977
Sep95aomg 0.816 0.010 0.079 0.064 0.031 0.977
Sep95spmg 0.738 0.143 0.055 0.042 0.022 0.980
Sep95aoaf 0.801 −0.007 0.120 0.054 0.031 0.977
Sep95spaf 0.687 0.133 0.101 0.054 0.025 0.976
Dec95aomg −0.044 0.516 0.327 0.132 0.069 0.942
Dec95spmg 0.207 0.441 0.214 0.083 0.055 0.954
Dec95aoaf 0.103 0.405 0.323 0.097 0.071 0.953
Dec95spaf 0.293 0.364 0.210 0.079 0.053 0.961

Note: Mi corresponds to contribution to the explained sum of squares from the
information subset Vi . Other abbreviations are as in Table 1.

This study seeks to examine the relationship between index prices from the spot and futures markets. In

particular, it is interested in the contribution to price formation from information contained within a certain

frequency band. To examine this, we denote the information subset that is complementary to Vi as CI i . It

follows that

CI i = IÄ − Vi (3.1)

where IÄ is the information universe. Further, denote the price associated with information CI i by PCI i , which

can be calculated as the fitted residual from regressing yt on wavelet functions that span Vi . By construction,

the PCIs at lower levels of time resolution are dominated by economic fundamentals driving both markets. We

expect the contemporaneous price assumptions of the COC to hold at these lower levels of resolution. As one

moves to higher levels of resolution, however, where the effect of market imperfections is likely to dominate,

a more noncontemporaneous relationship between prices would be expected. These hypotheses are

examined in the next section.

4 Econometric Model and Empirical Results

This section analyzes the relationship between the PCIs of indices from the cash and the futures markets at

increasingly higher levels of time resolution. Since there is both theoretical and empirical evidence that points

to bidirectional causality between spot and futures index prices, the price relationships are examined in a

bivariate VAR model so that the level of persistence of the lead-lag phenomenon between the futures and

underlying spot index prices can be determined. In this framework, each variable is a linear function of past

realizations of itself and the other variable. Specifically, the econometric model contains two equations. In one

equation, the PCIs for the futures index (PCISP) at a particular level of resolution are regressed on past

realizations of themselves and the PCIs for the underlying index (PCIAO) at the same resolution level. In the

other equation, the PCIAOs are regressed on past realizations of themselves and the PCISPs. This bivariate

VAR model can be represented by the following equation system:

PCIAOt = α1 +
k∑

j=1

γj PCIAOt− j +
k∑

j=1

βj PCISP t− j + e1t (4.1a)
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PCISP t = α2 +
k∑

j=1

πj PCISP t− j +
k∑

j=1

θj PCIAOt− j + e2t (4.1b)

where α1 and α2 are intercept terms, γj and πj are coefficients for the lagged dependent variables, βj and θj

are the coefficients of the lagged independent variables, and e1t and e2t are the random-error terms. The lag

length, k, for each variable in both equations is chosen to be 15, based on the number of 5-min time periods

required to span the time horizon of the information subset at the highest level of time resolution.15

To make sure the VAR model is correctly specified, two associated statistical issues are addressed. First, the

use of a VAR model is strictly appropriate only when the variables are stationary. When variables are

nonstationary, they may be valid only approximately or not at all (see Charemza and Deadman 1997). Using

the Augmented Dickey-Fuller test, we tested each PCI series from both markets for the existence of a unit

root process. From the results reported in Table 3, it is concluded that the PCI series for both markets, at all

levels of time resolution and all contracts, are I (0) processes. It follows that the PCI series corresponding to

the SPI and the AOI at different levels of resolution are not co-integrated. As a consequence, a VAR model

will be correctly specified.

The second statistical issue is related to the significantly large autocorrelation that is typical of high frequency

data. As pointed out by Wahab and Lashgari (1993), if this autocorrelation is left unpurged, its presence will

tend to reduce the degree of association between the spot and futures index prices. Following the procedure

advocated by Stoll and Whaley (1990), we filtered our PCI series using autoregressive moving average (ARMA)

processes. The innovations from the ARMA models resulted in time series with no significant autocorrelation.

These innovations were then used as instruments for the cash and the futures price series. Further, there was

no evidence of remaining autocorrelation in the residuals from the estimated bivariate VAR models.

Tables 4 and 5 summarize the estimation results of the bivariate VAR models. The persistence of a lead-lag

effect in both markets is determined by the number of significant (at the 2.5% level of significance)

coefficients of the lagged independent variables in each equation. Significant βj coefficients on lags of the

PCISP variable in Equation (4.1a) are evidence of the PCISP leading the PCIAO. Similarly, significant θj

coefficients of lags of the PCIAO variable in Equation (4.1b) indicate leads in the PCIAO relative to the PCISP.

From Tables 4 and 5, it is evident that, for the three lowest resolution levels (with frequency band no

smaller than 1.2 trading hours), the number of significant βj is small for most contracts.16 This indicates

short-lived persistence in the lead of the PCISP over the corresponding PCIAO at low resolution levels. On

the other hand, when information of higher resolution (with frequency band less than 1.2 trading hours) is

considered, the lead-lag relationship between the two markets is markedly different. For all morning trading

contracts studied, as well as the December afternoon contract, the lead of the PCISP over the PCIAO is much

longer. This implies greater persistence of PCISP leading over corresponding PCIAO at higher resolution

levels, although for the afternoon contracts in March, June, and September, the lead-lag persistence at the

second-highest resolution level (where the frequency band of information is within 1 trading hour) is rather

short-lived. Namely, the persistence is at most for two 5-min trading periods for the March afternoon contract.

Next, we examine the estimated coefficients of θj as defined in Equation (4.1b). This is shown in the last

columns of Tables 4 and 5. Overall, we find that there is little evidence supporting a reciprocal lead of the

PCIAO over the PCISP for the first three lower resolution levels (with frequency band no less than 1.2 trading

hours).17 In contrast, at the two highest resolution levels (that is, CI with frequency band less than 1.1 trading

15In practice, k is usually determined by some information criterion, such as Akaike information criterion (AIC ) or Bayesian information criterion
(BIC). As a result, lag lengths in the two equations are often different from one another. Sims (1980), however, argues against purging those
lags with insignificant parameter estimates. Accordingly, we include the same number of lags in each equation.

16The only two exceptions are the March and the December morning trading sessions at the third level, where the frequency band is less than
2.3 trading hours. In those two situations, we observe much longer leads of the PCISP over the PCIAO.

17The December afternoon contract is the only exception. In that case, however, the persistence is at most for one 5-min trading period.
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Table 3
Unit root tests for prices of complementary information at different levels of time resolution for both morning and afternoon
trading sessions

Contract (1995)
March June September December

Series ADF ADF ADF ADF

AOV3MG −4.15 −3.36 −3.91 −3.78
SPV3MG −4.36 −3.29 −4.02 −3.99

AOV3AF −4.41 −2.98 −3.56 −3.74
SPV3AF −4.66 −2.88 −3.93 −4.00

AOV4MG −5.09 −5.47 −5.48 −4.76
SPV4MG −5.11 −5.46 −5.42 −4.97

AOV4AF −4.61 −4.17 −6.14 −4.63
SPV4AF −4.76 −4.12 −6.33 −4.76

AOV5MG −7.13 −6.78 −6.24 −5.96
SPV5MG −7.09 −6.79 −6.56 −5.96

AOV5AF −4.94 −6.39 −5.08 −6.65
SPV5AF −4.99 −6.55 −5.39 −6.65

AOV6MG −7.62 −7.34 −7.10 −7.16
SPV6MG −7.47 −7.40 −7.21 −6.85

AOV6AF −7.23 −6.14 −7.54 −5.96
SPV6AF −7.75 −6.31 −7.51 −6.67

AOV7MG −7.12 −7.27 −8.30 −8.65
SPV7MG −6.70 −7.38 −8.30 −8.78

AOV7AF −5.67 −3.69 −6.25 −3.75
SPV7AF −5.30 −4.30 −6.40 −4.03

Note: Each series is indexed by three sets of double-digit sym-
bols. For the first two digits, AO indicates the All Ordinaries
Index, and SP indicates the Share Price Index. For the next two
digits, Vi (i = 3, 4, 5, 6, and 7) denotes that the complemen-
tary information set CI i is used to construct the series. For the
last two digits, MG represents the morning data, and AF rep-
resents the afternoon data. For example, AOV3MG represents
reconstructed morning All Ordinaries Index using the CI 3 infor-
mation set.

ADF is the Augmented Dickey-Fuller test. Critical values are
−3.44(1%), −2.86 (5%), and −2.57 (10%). Number of lags to
remove serial correlation is 150.

hours), there is some evidence of persistence in the lead of the PCIAO over the PCISP, such as the June

morning, the September afternoon, and the December afternoon contracts.

In summary, the results of this study suggest that

1. When information of lower time resolution is considered, index price levels of the futures market PCISP

(reconstructed from complementary information subsets) lead the corresponding reconstructed index

price levels of the cash market PCIAO. On the other hand, at the same lower levels of time resolution,

there is little evidence that there is any lead from the PCIAO to the PCISP.

2. In contrast, when information of higher time resolution is considered, there is evidence of greater

lead-lag persistence in both directions.

These results suggest that both market-wide and stock-specific influences as well play a role in the

relationship between the two indices. The difference in the degree of persistence in the lead-lag phenomenon
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Table 4
Number of leads and lags between cash and futures index prices during the morning trading session

Contract CI with Number of 5-min periods in which
(morning) frequency band PCISP leads PCIAO leads

< trading hours PCIAO PCISP

9.20 1 0
March 4.60 1 0

2.30 7 0
(n = 1,764) 1.10 7 0

0.57 13 0

8.90 2 0
June 4.40 2 0

2.20 2 0
(n = 1,708) 1.10 11 7

0.56 11 7

9.50 2 0
September 4.70 2 0

2.40 2 0
(n = 1,820) 1.20 3 0

0.59 9 0

9.00 2 0
December 4.50 2 0

2.30 9 0
(n = 1,736) 1.10 11 0

0.57 11 0

Note: Coefficients on lagged variables in the VAR model were deemed
significant at the 2.5% level of significance.

Table 5
Number of leads and lags between cash and futures index prices during the afternoon trading session

Contract CI with Number of 5-min periods in which
(afternoon) frequency band PCISP leads PCIAO leads

< trading hours PCIAO PCISP

7.90 0 0
March 3.90 0 0

2.00 2 0
(n = 1,512) 0.98 2 0

0.49 8 4

7.60 1 0
June 3.80 1 0

1.90 1 0
(n = 1,464) 0.95 1 1

0.48 11 0

8.10 1 0
September 4.10 1 0

2.00 1 0
(n = 1,560) 1.00 1 6

0.51 10 4

7.80 1 0
December 3.90 1 1

1.90 1 1
(n = 1,488) 0.97 8 1

0.48 13 1

Note: Coefficients on lagged variables in the VAR model were deemed
significant at the 2.5% level of significance.
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from lower to higher levels of time resolution is unambiguous. This is evidence in favor of price discovery by

both markets when dealing with information subsets defined over shorter time intervals.

To conclude, the evidence is consistent with our conjecture that the effect of market imperfection could be

an explanation for the increased persistence of the lead-lag effect the higher the level of time resolution

considered.

5 Implications and Conclusions

In this paper, wavelet analysis is employed to reconstruct index price series from the cash and the futures

markets. These reconstructed price series are based only on subsets of information that differentiate between

the two fundamentally related prices. Using a VAR approach, we modeled the interrelationship between the

PCI s from both markets at different levels of time resolution. In the lower levels of time resolution, where

market fundamentals dominate both markets, evidence was found of short-lived lead-lag persistence, where

the PCISP led PCIAO. We argue that this is evidence of price discovery in the futures market. In contrast,

increased lead-lag persistence of PCIs from both markets was found for the higher levels of time resolution.

Although this indicates price discovery in both markets, on the balance of the evidence, we conclude that

price discovery is greater in the futures market.

A further conclusion that can be drawn from the results of this study concerns the difficulty of examining

the assumption of contemporaneous prices in the COC model by determining the persistence of the lead-lag

relationship. If our conjecture that market imperfections are a possible explanation for lead-lag effects is true,

to determine the appropriateness of the assumption, market imperfections will need to be controlled for when

determining lead-lags. With a number of causes of market imperfections attributable to market operational

differences, it is difficult to imagine how one could adequately control for effects generic to the structure of

both markets. In the event that this is possible, then our results suggest that concentration should be on those

imperfections that are likely to occur within very short time horizons.
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