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Abstract. This paper presents the asymptotic and finite sample properties of the efficient method of moments

and indirect inference, when applied to estimating stationary ARMA models. Issues such as identification,
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maximum likelihood using Monte Carlo experiments for both invertible and noninvertible ARMA models.

Keywords. Monte Carlo, efficient method of moments, indirect inference, ARMA, identification, model

selection

Acknowledgments. This research received support from the Research Fund of the Department of

Economics of the University of Chile. I would like to thank Miguel Basch, Bruce Mizrach, George Tauchen,

the participants in the Economics Workshop at the University of Chile, the Fifth International Conference of

the Society for Computational Economics at Boston College, the 17th Meeting of the Latin American

Econometric Society, and an anonymous reviewer for helpful comments. The usual disclaimer applies.

1 Introduction

There is a long-standing tradition of estimating stationary ARMA models using likelihood-based methods, the

estimation of a sequence of long autoregressions, or nonlinear least squares.1 Gallant and Tauchen (1996)

developed a kind of minimum chi-square estimator (called the efficient method of moments, or EMM) that is

also suitable for estimating stationary ARMA models. In fact, Gouriéroux, Monfort, and Renault (1993) estimate

an invertible MA(1) model using a method that is similar in spirit to EMM (indirect inference, or II).

Nevertheless, simulation-based methods (such as EMM and II) are not routinely applied to estimate ARMA

models because of evident shortcomings: first, the maximum-likelihood estimator (MLE) performs efficiently

(in the root-mean-square error [RMSE] sense), so it is not clear why less-efficient alternative methods should

be considered. Second, simulation-based methods are costly to use, because they require more computer time

than simpler alternatives. Finally, tests based on simulation-based estimators may be cumbersome and, as

reported elsewhere (Chumacero 1997), may present important size problems.

The conventional view, therefore, is that although EMM and II may be useful in different setups

(particularly when the alternative is the conventional method of moments or when MLE is unfeasible), they do

not appear to offer any practical advantage when estimating ARMA models.

1See Ghysels, Khalaf, and Vodounou 1994 or Galbraith and Zinde-Walsh 1994 or 1997 for references.
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This article challenges that view by showing that if the asymptotic properties of both the EMM and II

moment conditions are exploited, computationally efficient algorithms can be developed to estimate ARMA

models. In this sense, efficiency could therefore be defined more broadly. The article also presents other

contributions that may be useful to EMM and II users in setups other than those considered here. In particular,

issues such as identification, testing, and model selection are explicitly discussed.

The article is organized as follows. Section 2 presents a brief description of EMM and II. Section 3 describes

the class of estimators considered, discusses the issue of identification, and derives the asymptotic properties

of the estimators. Section 4 presents the results of Monte Carlo experiments to assess the finite-sample

properties of the estimators described in the previous section. Finally, Section 5 summarizes the main findings.

2 The Estimation Methods

Consider a stationary stochastic process p(yt |xt , ρ), describing yt in terms of exogenous variables (xt ) and

structural parameters (ρ), which the econometrician is interested in estimating. Consider also an auxiliary

model f (yt |xt , θ) that can be expressed analytically, whereas p(yt |xt , ρ) cannot. Gallant and Tauchen (1996)

proposed using the scores of the auxiliary model:

(∂/∂θ) ln f (yt |xt , θ̂T )

to generate the generalized method of moments (GMM) moment conditions

mT (ρ, θ̂T ) =
∫ ∫

(∂/∂θ) ln f (yt |xt , θ̂T ) p(y|x, ρ)dy p(x |ρ)dx (1)

where θ̂T is defined as the MLE of f (·) for a sample of size T ; that is:

θ̂T = arg max
θ∈2

T∑
t=1

ln f (yt |xt , θ̂T ) (2)

When analytical expressions for (1) are not available, simulations may be required to compute them, in

which case we approximate the moments by

mT (ρ, θ̂T ) ∼= mN (ρ, θ̂T ) = 1

N

N∑
n=1

(∂/∂θ) ln f (ỹn(ρ)|x̃n(ρ), θ̂T ) (3)

where N is the sample size of the Monte Carlo integral approximation drawn from a sample of y and x for a

given value of ρ. When (3) is used to approximate the moments, the GMM estimator of ρ, with an efficient

weighting matrix, is given by

ρ̂ = arg min
ρ∈R

m′N (ρ, θ̂T )(ÎT )
−1mN (ρ, θ̂T ) (4)

If the auxiliary model constitutes a good statistical description of the data-generating process of y, the outer

product of the gradients (OPG) can be used in the weighting matrix

ÎT = 1

T

T∑
t=1

[(∂/∂θ ln f (yt |xt , θ̂T ))][(∂/∂θ ln f (yt |xt , θ̂T ))]
′ (5)

Gallant and Tauchen (1996) demonstrated the strong convergence and asymptotic normality of the estimator

presented in (4):2

√
T (ρ̂ − ρ0)

D→ N [0, (d ′ρI
−1dρ)

−1]

where dρ = ∂m(ρ0, θ0)/∂ρ ′, θ̂T
a.s.→ θ0, and ÎT

a.s.→ I .

2See Tauchen 1996 for a step-by-step derivation of these results.
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By standard arguments, the asymptotic distribution of the objective function that ρ̂ minimizes is given by

TJ T = Tm′N (ρ̂, θ̂T )(ÎT )
−1mN (ρ̂, θ̂T )

D→ χ2
h−r (6)

with r and h denoting the dimensions of ρ and θ , respectively.

Equation (6) corresponds to the familiar overidentifying restrictions test described by Hansen (1982). As in

GMM, the order condition for identification requires that h ≥ r . The rank condition is more involved, given

that in this setup we require the existence of a unique function linking ρ and θ in a sense that will be defined

more precisely below.

Given the results described, and provided identification conditions are met, statistical inference may be

carried out the same way as in GMM. Depending on the complexity of the auxiliary model, however, it may

be difficult to construct Wald-type tests based on the variance-covariance matrix obtained by differentiating

the moments (Chumacero 1997).

If (1) can be obtained analytically, all the expressions using mN (·) should be replaced by mT (·). As the next

section indicates, a simple analytical expression for (1) is available when estimating Gaussian ARMA models,

thus making simulation-based methods for computing (3) both unnecessarily costly and inefficient.

The II estimator is similar to EMM, the main difference being the choice of moment conditions. II mimics

the optimization underlying (2), instead of the first-order conditions, in which case we define

θ̃N (ρ) = arg max
θ∈2

N∑
n=1

ln f (ỹn(ρ)|x̃n(ρ), θ) (7)

That is, we find the MLE of the auxiliary model for a given value of ρ and an artificial realization of size N of

y and x . The moment conditions that II uses are given by (8) instead of (3):

mN (ρ, θ̂T ) = [θ̃N (ρ)− θ̂T ] (8)

There is a major difference between EMM and II. Whereas the former carries out only one optimization of

the auxiliary model and uses the parameters estimated there while evaluating the scores with simulated data,

II requires optimization of the auxiliary model for each value of the structural model under consideration,

making it computationally more demanding.

In the next section, we show that in the case of Gaussian ARMA models, simulations are not required,

because there is an analytical expression for the relationship between the parameters of the auxiliary and

structural models.

3 Estimating ARMA Models with EMM and II

3.1 The general case

Consider a stationary Gaussian ARMA(p, q) model with q 6= 0 that we are interested in estimating, and denote

by γi(i = 0, 1, . . .) its autocovariances:

yt =
p∑

i=1

δi yt−i + εt +
q∑

i=1

αiεt−i, εt ∼ N (0, σ 2)

The auxiliary model used for estimating this process is given by

yt =
j∑

i=1

βi yt−i + vt , vt ∼ N (0, σ 2
v )

So that we may remain consistent with the notation system used in the previous section, the structural

parameters of this model are ρ = (δ1, . . . , δp, α1, . . . , αq, σ
2), and the auxiliary model’s parameters are

θ = (β1, β2, . . . , βj , σ
2
v ).
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The order condition for identification requires j ≥ p + q. The rank condition can be studied by evaluating

the asymptotic properties of the estimators of the AR( j) auxiliary model.

In this case, it is a simple matter to verify that

β̂ =


β̂1

β̂2

...

β̂j


a.s.→


γ0 γ1 · · · γj−1

γ1 γ0 · · · γj−2

...
...

. . .
...

γj−1 γj−2 · · · γ0



−1
γ1

γ2

...

γj

 =

β0,1

β0,2

...

β0, j

 = β0

σ̂ 2
v =

T∑
t= j+1

(
yt −

j∑
i=1

β̂i yt−i

)2

T − j
a.s.→ γ0

(
1+

j∑
i=1

β2
0,i

)
+ 2

j∑
i=1

γi

(
j−i∑
l=1

β0,lβ0,i+l − β0,i

)
(9)

Thus, all the auxiliary model’s parameters are (asymptotically speaking) a nonlinear function of the first j

autocovariances of y. As (9) makes clear, approximating moment conditions for II is unnecessary, given that

this equation can be used directly instead of (7).

In the case of EMM, identification requires a unique set of parameters in the structural model that,

accompanied with the consistent auxiliary model estimators, make (1) equal to 0. As will be shown shortly,

this condition is equivalent to the identifiability condition that must also be imposed for estimating ARMA

models with maximum likelihood (ML) (see Hamilton 1994 or Tanaka 1996). Given that for every invertible

stationary ARMA model there is an observationally equivalent noninvertible ARMA model, the same

requirements imposed on any stationary ARMA model estimated using maximum likelihood should apply

when estimating with EMM or II.

As the structural model is assumed to be Gaussian, the scores of the auxiliary model can be expressed as

mT (ρ, θ̂T ) =



(
γi +

i∑
l=1

β̂lγi−l +
j∑

l=i+1

β̂lγl−i

)
σ̂ 2

v

, i = 1, . . . , j,

− 1

2σ̂ 2
v

+
γ0

(
1+

j∑
i=1

β̂2
i

)
+ 2

j∑
i=1

γi

(
j−i∑
l=1

β̂l β̂i+l − β̂i

)
2σ̂ 4

v


(10)

where the dimension of (10) is ( j + 1)× 1 and corresponds to the unconditional expectation of the scores of

the auxiliary model. The last moment condition is equal to zero when β̂ is replaced by β0. This is also the

case for the first j moments (up to a reparameterization discussed below). As with II, approximating the

moment conditions using Monte Carlo simulations (as in Equation 3) is unnecessary, because these can be

derived analytically.

Gouriéroux, Monfort, and Renault (1993), Ghysels, Khalaf, and Vodounou (1994), Chumacero (1997), and

Michaelides and Ng (1997) used Monte Carlo methods to approximate either (9) or (10) for the case of

Gaussian MA(1) models. Nevertheless, as these equations show, the moments can be obtained directly. To

estimate the parameters of the ARMA process one can simply replace the autocovariances with functions of

the structural model’s parameters.

Next, we apply these results to two particular processes, an MA(1) and an ARMA(1,1) and then go on to

conduct Monte Carlo experiments to assess the finite sample properties of different EMM and II estimators,

comparing them with those of ML.
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3.2 The MA(1) model

The model that we are interested in estimating is

yt = εt + αεt−1, εt ∼ N (0, σ 2)

and the auxiliary model is again an AR( j) process. In this case the autocovariances are given by

γ0 = σ 2(1+ α2), γ1 = σ 2α, γi = 0, for i > 1

It is trivial to verify that for any AR( j) auxiliary model, estimates converge to[
β̂i

σ̂ 2
v

]
a.s.→ 1

1− α2( j+1)

[
(−1)i−1αi(1− α2( j+1−i))

σ 2(1− α2( j+2))

]
for i = 1, . . . , j

when |α| 6= 1, and to [
β̂i

σ̂ 2
v

]
a.s.→ 1

j + 1

[
(−1)i−1αi( j + 1− i)

σ 2( j + 2)

]
for i = 1, . . . , j

in the unit root case. Once analytical expressions for the asymptotic values of auxiliary model’s parameters are

found, it is easy to verify (by direct substitution) that (9) is equal to zero.

Note, however, that given that the auxiliary model’s parameters are functions of the autocovariances, there

is always an invertible MA model that is observationally equivalent to a noninvertible MA model. In this case,

the following MA(1) model reproduces the same autocovariances and the same estimates for the auxiliary

model, thus also satisfying (10):

yt = εt + α∗εt−1, εt ∼ N (0, σ 2
∗ )

with α∗ = 1/α and σ 2
∗ = σ 2α2. Thus, the only case in which EMM or II can satisfy the rank condition (exactly)

is when α = ±1.

3.3 The ARMA(1,1) model

The other model that we are interested in estimating is

yt = δyt−1 + εt + αεt−1, εt ∼ N (0, σ 2)

while the auxiliary model is once again an AR( j) process. In this case the autocovariances are given by

γ0 = σ 2(1+ α2 + 2αδ)

1− δ2
, γ1 = γ0δ + σ 2α, γi = δγi−1 for i > 1

This process yields auxiliary model and moment conditions estimates expressed by (9) and (10). As with the

MA(1) process discussed above, when α∗ = 1/α and σ 2
∗ = σ 2α2 are replaced by α and σ 2, both processes are

observationally equivalent. Again, identification requires a stance with respect to the invertibility of the

process.

The next section develops several Monte Carlo experiments to assess the finite-sample properties of several

EMM and II estimators for these two cases, discusses choosing the auxiliary model and testing, and compares

results with those obtained using ML.

4 The Monte Carlo Experiments

There have been at least four Monte Carlo experiments to assess the finite-sample properties of

simulation-based methods for invertible MA(1) processes. Gouriéroux, Monfort, and Renault 1993 used II with
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AR(1), AR(2), and AR(3) auxiliary models, setting α equal to −0.5. Ghysels, Khalaf, and Vodounou (1994)

compared several simulation-based estimators for different specifications of the invertible MA(1) but used

simulations to approximate the moment conditions. Michaelides and Ng (1997) also performed Monte Carlo

experiments for different sample sizes and different values of N to approximate the moment conditions in (3).

Nevertheless, as their histograms show, even though they are estimating an invertible MA(1) model, they

allow for estimates of α greater than 1 (in absolute value) and so do not impose the necessary identification

conditions. In their study, they set the auxiliary model at AR(3). Chumacero (1997) also studied the case of the

finite-sample properties of the invertible MA(1) model with fixed AR auxiliary models ((2) and (3)), along with

two other Monte Carlo experiments for more complex setups, which show the superior performance of EMM

over that of GMM in several counts. In a different setup, Gallant and Tauchen (1999) also presented Monte

Carlo evidence showing the gains in efficiency of using EMM over the conventional method of moments

estimators. These articles, however, leave a number of questions unanswered that are addressed here:

• From a practical standpoint, how should one choose the auxiliary model? Do any model selection criteria

offer better results in terms of efficiency?

• Chumacero (1997) and Michaelides and Ng (1997) presented evidence that the finite-sample properties of

the overidentifying-restrictions test described in (6) present problems of size. In particular, there is strong

evidence of over-rejections. Is there a simple way to correct this problem and provide a better

approximation of the asymptotic distribution of this test?

• How well do Wald-type tests perform under different specifications for ARMA models?

• How well do EMM and II perform when estimating noninvertible ARMA models?

• What are the gains from using the exact moment conditions instead of the simulation-based

approximations?

• Is there any gain from estimating stationary ARMA models with EMM or II instead of ML?

4.1 Design of the experiments

To answer the questions posed above, two types of experiments were implemented: one for different

specifications of an MA(1) model (both invertible and noninvertible), and the other for different specifications

of an ARMA(1,1) model. In each case, results were compared with the properties of MLEs that were estimated

using the conditional likelihood, when the true process was invertible, and the unconditional (exact)

likelihood, when the process was not.

Each setup used 1,000 samples, each of size T = 100 and T = 200, values chosen to allow comparison

with previous studies (particularly Ghysels, Khalaf, and Vodounou 1994 and Michaelides and Ng 1997). In the

case of EMM and II, two different types of estimators were chosen, one using the exact moment conditions

and the other approximating them, using N = 2,500. Finally, three selection criteria for the choice of the lag

length of the auxiliary model were used. These are the Akaike information criterion (AIC), the Schwarz

criterion (BIC), and the Hannan & Quinn criterion (HQ). Given that the auxiliary model assumes normality,

they are defined as follows:

AIC( j) = ln σ̂ 2
v + (2 j/T )

BIC( j) = ln σ̂ 2
v + ( j ln T /T )

HQ( j) = ln σ̂ 2
v + (2 j ln(ln T )/T ) (11)

where j is chosen to minimize (11) in all cases.
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Table 1
Properties of the estimators: MA(1) model (T = 100)

EMM II

α = −0.5 Mean RMSE Time Mean RMSE Time j

ML −0.508 0.098 1.038 −0.508 0.098 1.038
AIC −0.506 0.136 1.000 −0.540 0.144 1.113 2.927
AIC-N −0.506 0.137 6.519 −0.540 0.146 2.982 2.927

α = −0.95 Mean RMSE Time Mean RMSE Time j

ML −0.910 0.072 1.536 −0.910 0.072 1.536
AIC −0.908 0.113 1.000 −0.965 0.068 5.687 7.598
AIC-N −0.905 0.115 7.569 −0.964 0.068 17.777 7.598

α = −1.05 Mean RMSE Time Mean RMSE Time j

MLX −1.041 0.045 2.231 −1.041 0.045 2.231
AIC −1.116 0.161 1.000 −1.042 0.086 5.188 7.660
AIC-N −1.119 0.165 7.775 −1.043 0.086 16.242 7.660

α = −1.5 Mean RMSE Time Mean RMSE Time j

MLX −1.508 0.210 2.808 −1.508 0.210 2.808
AIC −1.509 0.346 1.000 −1.394 0.300 1.986 4.110
AIC-N −1.511 0.346 6.781 −1.381 0.321 2.155 4.110

Note: The results were obtained by estimating 1,000 samples. RMSE = root-mean-square error;
Time = mean of the ratio between time to convergence of a method and time to convergence
of EMM using analytical moments and the AIC information criterion; j = average lag length of
the auxiliary model; ML = results obtained with the conditional MLE; MLX = results obtained
with the unconditional (exact) MLE; AIC = results using AIC as information criterion and
the analytical moment conditions; AIC-N = results using AIC as information criterion and a
numerical approximation for the moments.

Chumacero (1997) showed that the choice of weighting matrix is not as crucial in EMM as in GMM and that

(5) provides results basically identical to other procedures requiring the computing of HAC matrices, when the

auxiliary model is chosen correctly, in the sense of providing a good statistical description of all data features.

Here, therefore, we concentrate on comparing model selection criteria described in (11) and their implications

for the properties of the coefficients and the statistics commonly used for inference. In all the samples the

maximum and minimum lags for the auxiliary model were set to 20 and 2 respectively. The minimum lag was

set in order to force the model to be overidentified. For each sample, each expression in (11) was minimized,

and j was chosen accordingly.

4.2 Results for the MA(1) model

Tables 1 to 4 report the results for different specifications of the MA(1) model,3 comparing results obtained

using EMM and II to those obtained by ML. The main findings are as follows:

• As known, BIC tends to select more parsimonious models, followed by HQ, and AIC always chooses

larger auxiliary models.

• The three selection criteria provide no discernable differences in terms of bias. Nevertheless, AIC tends to

provide more efficient estimates, followed by HQ, and finally BIC. This is because BIC is too conservative

in the choice of lag length, particularly in cases near a unit root.

• In this simple example, a choice of N = 2,500 approximates the exact moment conditions well. Because

moments can be computed exactly for any stationary ARMA model, however, these approximations are

3Results for alternative data-generating processes are available upon request.
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Table 2
Properties of the estimators: MA(1) model (T = 200)

EMM II

α = −0.5 Mean RMSE Time Mean RMSE Time j

ML −0.505 0.065 2.717 −0.505 0.065 2.717
AIC −0.505 0.081 1.000 −0.526 0.085 1.006 3.455
BIC −0.505 0.085 0.985 −0.518 0.089 0.982 2.159
HQ −0.509 0.084 0.985 −0.525 0.089 0.983 2.456

α = −0.95 Mean RMSE Time Mean RMSE Time j

ML −0.926 0.046 2.741 −0.926 0.046 2.741
AIC −0.936 0.069 1.000 −0.972 0.052 19.818 10.313
BIC −0.930 0.092 0.991 −0.964 0.068 17.777 5.114
HQ −0.938 0.076 0.976 −0.973 0.056 19.381 7.398

α = −1.05 Mean RMSE Time Mean RMSE Time j

MLX −1.045 0.031 5.106 −1.045 0.031 5.106
AIC −1.072 0.084 1.000 −1.031 0.057 17.955 10.338
BIC −1.085 0.122 1.005 −1.042 0.084 16.242 5.137
HQ −1.073 0.096 0.993 −1.031 0.063 17.930 7.432

α = −1.5 Mean RMSE Time Mean RMSE Time j

MLX −1.501 0.133 7.993 −1.501 0.133 7.993
AIC −1.498 0.190 1.000 −1.432 0.184 1.407 4.873
BIC −1.470 0.241 1.104 −1.414 0.238 2.155 2.780
HQ −1.477 0.208 1.034 −1.417 0.202 1.666 3.516

Note: MLX = results obtained with the unconditional (exact) MLE; AIC, BIC, HQ = results using
AIC, BIC, or HQ, respectively, as information criterion and the analytical moment conditions.

Table 3
Properties of the overidentifying restrictions test: MA(1) model (T = 100)

EMM II

TJT TJT−q TJT TJT−q

α = −0.5 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 4.2 6.0 12.7 12.9 4.2 10.2 0.1 33.5 35.5 1.4 31.2 34.5
AIC-N 3.8 6.8 13.1 11.6 4.4 10.5 0.9 33.0 35.8 1.7 31.1 34.4

α = −0.95 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 0.1 9.8 18.9 13.6 4.5 9.4 0.1 70.1 73.3 0.1 67.9 71.3
AIC-N 0.1 10.6 19.0 8.7 4.7 10.0 0.1 69.8 72.4 0.1 67.4 70.7

α = −1.05 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 0.1 10.3 18.7 13.3 4.3 8.4 0.1 70.7 73.9 0.1 68.9 71.6
AIC-N 0.1 10.2 18.6 8.8 4.5 9.8 0.1 70.2 72.7 0.1 67.8 71.1

α = −1.5 M 5% 10% M 5% 10% M 5% 10% M 5% 10%

AIC 3.3 7.6 13.4 15.1 5.4 9.4 0.3 18.1 20.9 0.2 16.0 19.2
AIC-N 2.3 8.0 14.2 11.9 5.6 10.1 0.3 17.7 20.9 0.2 16.2 19.0

Note: TJ T = overidentifying restrictions test; (T −q) JT−q = overidentifying restrictions test adjusted by degrees of freedom;
M = p-value of the Mann-Whitney-Wilcoxon test; 5%, 10% = size of the test for the nominal counterpart; AIC = results using
AIC as information criterion and the analytical moment conditions; AIC-N = results from EMM using AIC as information
criterion and a numerical approximation for the moments.
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Table 4
Properties of the Wald test: MA(1) model (EMM)

T = 100 T = 200

α = −0.5 WT WT−q WT WT−q

Estimator M 5% 10% M 5% 10% M 5% 10% M 5% 10%

ML 20.0 7.2 12.6 20.0 7.2 12.6 36.6 5.2 12.0 36.6 5.2 12.0
AIC-N 15.2 8.4 13.3 19.4 8.1 13.0 13.0 7.9 13.3 15.1 7.6 12.5
AIC 17.7 9.1 13.0 22.4 8.3 12.7 19.5 6.7 11.5 22.3 6.5 11.2
BIC-N 47.4 6.3 11.0 48.1 6.0 10.9 25.5 6.5 10.8 27.5 6.1 10.7
BIC 49.1 6.8 10.6 44.5 6.6 10.6 39.2 5.0 8.8 41.7 4.8 8.8
HQ-N 33.4 6.4 11.5 38.1 6.2 11.5 17.9 6.7 11.4 19.7 6.5 11.3
HQ 36.0 7.3 11.3 40.9 7.0 11.3 26.9 5.3 9.6 29.4 5.2 9.6

α = −1.5 WT WT−q WT WT−q

Estimator M 5% 10% M 5% 10% M 5% 10% M 5% 10%

MLX 38.7 8.6 11.1 38.7 8.6 11.1 47.2 7.5 11.3 47.2 7.5 11.3
AIC-N 8.0 1.6 4.8 5.9 1.2 3.5 48.3 4.9 10.7 48.1 4.8 9.4
AIC 7.5 1.8 5.0 5.6 1.2 4.4 15.4 4.2 9.0 41.8 3.9 8.8
BIC-N 0.2 0.3 1.9 0.2 0.3 1.7 5.8 1.5 4.5 5.2 1.2 4.0
BIC 0.2 0.3 2.0 0.2 0.3 1.8 4.6 0.9 3.9 4.0 0.9 3.8
HQ-N 0.6 0.5 2.4 0.4 0.4 1.9 23.1 2.8 6.3 21.0 2.4 5.5
HQ 0.6 0.5 2.3 0.5 0.5 2.0 15.9 2.3 6.1 14.3 2.1 5.9

Note: WT = Wald test for the null; WT−q = Wald test for the null adjusted by degrees of freedom; M = p-value of the
Mann-Whitney-Wilcoxon Test; 5%, 10% = size of the test for the nominal counterpart; ML = results obtained using the
conditional MLE; MLX = results obtained using the unconditional (exact) MLE; AIC-N, BIC-N, HQ-N = results from EMM
using AIC, BIC, or HQ, respectively, as information criterion and a numerical approximation for the moments (N = 2,500);
AIC, BIC, HQ = results from EMM using AIC, BIC, or HQ, respectively, as information criterion and the exact moment
conditions.

unnecessary.4 Aside from the fact that using the exact moment conditions yields better finite sample

results, there is also a practical reason to do so: the gains in computing time are substantial. In fact, even

in this simple setup, and even for moderate sample sizes, obtaining EMM estimates using the exact

moment conditions can be up to eight times faster than using ML. Although inefficient (in the RMSE

sense), numerical approximation is also very costly in terms of computing time, particularly in the case of

II, which can take 22 times longer to compute than when analytical moments are used.5

• When comparing EMM and II, the latter tends to dominate EMM in the RMSE for the case of MA(1)

models. There is, however, an important caveat. As Tauchen (1996) noted, EMM provides a numerically

stable environment for optimizing the GMM objective function. This is not the case for II, particularly

when we are dealing with MA processes close to the unit circle. In fact, for these specifications,

convergence had to be “forced” in about 52% of the cases, where the objective function turned out to be

unstable even when analytical moments were supplied. This is not the case for EMM, where convergence

was never “forced.”

• As documented in Chumacero 1997 and Michaelides and Ng 1997, in this setup, EMM tends to over-reject

the null when using the standard over-identifying restrictions test. Furthermore, the less parsimonious the

auxiliary model, the greater the size problem. Thus, AIC tends to over-reject more than HQ, which does

the same compared to BIC. The magnitude of over-rejections is rather important; thus a simple correction

is suggested. Instead of using the actual sample size, T − q should be used for scaling (6). As Table 3

4All previous Monte Carlo experiments conducted in this setup use the approximation to the moment conditions instead of the exact moments.
5These gains are even more impressive when we are dealing with more complex ARMA models.
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shows, this simple modification allows for an almost complete correction of the size distortion around

standard levels of significance. At any rate, size distortions are still important for levels of more than 15%.

Due in part to the unstable nature of the II objective function, its size distortions are more significant and

cannot be corrected with the simple procedure described above.

• With respect to Wald-type tests, when we are using EMM and when the parameter is relatively distant

from the unit circle, they behave well (Table 4). Nonetheless, they tend to become unstable near the unit

root, thus making the inversion of chi-square tests preferable. Note, however, that in all these cases, a

correction such as the one described above is also needed. For II, results were not even reported,

because even when it was distant from the unit circle, the objective function was so unstable that

singularities were common.

To conclude, EMM tends to perform well when estimating MA(1) models, particularly for cases

approaching a unit root where the bias usually associated with conditional ML is less. At any rate, ML is still

more efficient in terms of RMSE. There is, however, one important advantage to using EMM, and that involves

the time needed to estimate these models. In fact, EMM is at least twice as fast as ML. When the

overidentifying-restrictions test is suitably transformed, AIC should become the selection criterion of choice,

because it usually provides more efficient estimates. AIC should not be chosen for inference, however, if the

objective function is not transformed. In the case of II, even when the reported RMSEs are generally smaller

than with EMM, the objective function is particularly unstable, and in most cases convergence had to be

forced. Given the unstable nature of this objective function, overidentifying-restrictions tests and Wald tests

present significant size distortions that cannot be corrected.

4.3 Results for the ARMA(1,1) model

As in the previous exercise, several specifications for the ARMA(1,1) process were estimated. In all cases, the

parameter associated with the autoregressive coefficient was set equal to −0.8 and the coefficient associated

with the MA component was allowed to vary. Once again 1,000 samples each of sizes 100 and 200 were

artificially generated and estimated by ML and three EMM and II estimators. In the latter cases, we used the

exact moment conditions, choosing the auxiliary models using the three selection criteria discussed above.

The results of these experiments are reported in Tables 5 and 6 and can be summarized as follows:

• The selection criterion that renders the smallest RMSE for the autoregressive coefficient is BIC, followed

by HQ, and finally AIC. This order is reversed when we compare the RMSE for the MA coefficient. The

inference is clear: particularly where the process is invertible, the auxiliary model that best captures the

dynamics of the MA coefficient requires several lags. To better capture the characteristics of the AR

component, parsimony is preferred (BIC).

• All models do equally well in terms of bias. As discussed above, particularly where the MA coefficient is

close to the unit circle, EMM reduces ML-associated bias.

• The gains in computing time rise substantially when EMM is used instead of ML. In particular, the average

estimation for a sample size of 200 is 20 times faster with EMM than with ML. These gains are increased

to a factor of 35 if the exact likelihood is used when estimating using ML.

• There is another compelling reason, besides computational efficiency, to use EMM. The EMM objective

function is numerically stable, thus one could use EMM (with analytical moments) to compute starting

values and then proceed with ML.

• Compared to EMM, II still shows significant numerical stability problems. This time, however, EMM

tended to outperform II in the RMSE for several specifications. Again, II required “forced” convergence in

more than 60% of the cases.
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Table 5
Properties of the estimators: ARMA(1,1) model (δ = −0.8, T = 100)

EMM II

Estimator δ α δ α

α = −0.7 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.793 0.064 −0.704 0.085 −0.793 0.064 −0.704 0.085
AIC −0.771 0.125 −0.742 0.170 −0.743 0.336 −0.832 0.216 5.40
BIC −0.774 0.096 −0.755 0.185 −0.813 0.169 −0.796 0.225 3.48
HQ −0.775 0.102 −0.754 0.175 −0.774 0.228 −0.828 0.225 4.06

α = −0.8 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.795 0.063 −0.797 0.075 −0.795 0.063 −0.797 0.075
AIC −0.775 0.127 −0.829 0.155 −0.812 0.323 −0.922 0.173 6.42
BIC −0.779 0.097 −0.843 0.167 −0.863 0.198 −0.891 0.189 3.88
HQ −0.777 0.105 −0.842 0.155 −0.838 0.248 −0.919 0.180 4.83

α = −0.9 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.797 0.061 −0.880 0.067 −0.797 0.061 −0.880 0.067
AIC −0.777 0.135 −0.893 0.148 −0.961 0.390 −0.967 0.106 7.89
BIC −0.783 0.097 −0.897 0.139 −0.941 0.267 −0.939 0.136 4.28
HQ −0.782 0.110 −0.901 0.127 −0.960 0.332 −0.962 0.111 5.67

α = −0.95 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.801 0.061 −0.909 0.072 −0.801 0.061 −0.909 0.072
AIC −0.779 0.139 −0.912 0.133 −0.997 0.479 −0.976 0.091 8.72
BIC −0.785 0.100 −0.909 0.140 −0.971 0.301 −0.950 0.117 4.46
HQ −0.783 0.114 −0.914 0.165 −0.997 0.388 −0.973 0.131 5.99

Note: See Table 2 for definitions.

Table 6
Properties of the estimators: ARMA(1,1) model (δ = −0.8, T = 200)

EMM II

Estimator δ α δ α

α = −0.7 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.797 0.044 −0.702 0.057 −0.797 0.044 −0.702 0.057
AIC −0.784 0.064 −0.724 0.097 −0.689 0.273 −0.797 0.156 6.13
BIC −0.786 0.058 −0.746 0.132 −0.745 0.145 −0.805 0.178 3.94
HQ −0.785 0.060 −0.737 0.113 −0.714 0.189 −0.809 0.167 4.72

α = −0.8 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.798 0.043 −0.799 0.049 −0.798 0.043 −0.799 0.049
AIC −0.785 0.068 −0.823 0.093 −0.711 0.254 −0.899 0.139 7.93
BIC −0.788 0.057 −0.853 0.129 −0.785 0.144 −0.918 0.161 4.69
HQ −0.787 0.060 −0.840 0.113 −0.752 0.184 −0.912 0.151 5.84

α = −0.9 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.799 0.043 −0.889 0.042 −0.799 0.043 −0.889 0.042
AIC −0.788 0.070 −0.911 0.076 −0.844 0.255 −0.970 0.090 10.42
BIC −0.791 0.064 −0.924 0.100 −0.884 0.189 −0.969 0.099 5.59
HQ −0.790 0.062 −0.921 0.086 −0.877 0.217 −0.974 0.094 7.45

α = −0.95 Mean RMSE Mean RMSE Mean RMSE Mean RMSE j

ML −0.801 0.042 −0.926 0.046 −0.801 0.042 −0.926 0.046
AIC −0.790 0.073 −0.942 0.065 −0.967 0.337 −0.982 0.077 11.94
BIC −0.793 0.063 −0.941 0.089 −0.936 0.235 −0.976 0.067 5.97
HQ −0.793 0.062 −0.944 0.073 −0.960 0.283 −0.985 0.090 8.19

Note: See Table 2 for definitions.
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5 Concluding Remarks

This article develops a methodology for estimating stationary Gaussian ARMA models (both invertible and

noninvertible) using EMM and II. In contrast to the prevailing practice, simulation is not required to compute

the moment conditions used by these methods. The gains in terms of efficiency and computing time are

substantial.

Where the ARMA process is close to the unit circle, EMM may be preferred because it reduces bias. In any

case, ML still yields lower RMSE than EMM and II.

This article also addresses how to choose the auxiliary model, examining three automatic selection criteria.

This examination revealed that AIC tends to perform better than BIC and HQ (in terms of RMSE) when one is

estimating pure MA models.

Experiments performed also indicated a simple way of correcting the over-rejection problem that typically

occurs when using Hansen’s (1982) test. If this correction is not performed, large-scale auxiliary models will

present significant size distortions. This correction does not apply when using II, because its objective

function is numerically unstable near the unit root.

When dealing with ARMA models that are relatively close to the unit circle, Wald-type tests do not perform

adequately when compared to their asymptotic properties. Thus, inverting chi-square tests are preferable once

a (T − q) correction is performed.
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