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Abstract. We examine the intraday and interday dynamics of both the level of and changes in the FTSE

(Financial Times–Stock Exchange) 100 index futures mispricing. Like numerous previous studies we find

significant evidence of mean reversion and hence predictability in mispricing changes measured over high

(minute-by-minute) and low (daily) frequencies. Contrary to other studies we show explicitly that for

high-frequency data, this predictability is due not to microstructure effects but to arbitrage activity. Using a

threshold autoregressive model that is consistent with arbitrage behavior, we show that such models imply

first-order autocorrelation in mispricing changes similar in magnitude to that actually observed. For

low-frequency data, we show that predictability is driven neither by arbitrage activity nor by microstructure

effects. Rather, it is a statistical illusion that is the result of overdifferencing a trend-stationary series.
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1 Introduction

Early studies of the arbitrage relationship between stock and stock index futures prices established a puzzling

empirical phenomenon: changes in stock index futures mispricing and in the stock index basis exhibit
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significant negative first-order autocorrelation and are hence predictable.1 Further, this finding appears to be

robust both across markets and across sampling frequencies. For example, such behavior has been

documented by MacKinlay and Ramaswamy (1988) for the S&P (Standard & Poor’s) 500 index futures basis in

the United States, by Yadav and Pope (1990, 1994) for the FTSE (Financial Times–Stock Exchange) 100 in the

United Kingdom, and by Lim (1990) for the Nikkei 225 in Japan. In response to this finding, attention has

focused on whether such predictability is a direct result of the underlying market microstructure, in particular,

nontrading in the underlying stock index. In this vein, Miller, Muthuswamy, and Whaley (1994) documented

that first-order autocorrelation in changes in the S&P 500 index futures basis increases from −0.37 to −0.25

when nontrading effects are removed from the underlying index. This suggests that much of the observed

predictability is a statistical illusion in that it is driven not by arbitrage but rather by the fact that the

underlying index exhibits autocorrelation because of nontrading in some of the constituent stocks.

Recent studies of arbitrage behavior have placed a great deal of emphasis on the nonlinear nature of

mispricing dynamics. Since the presence of profitable arbitrage opportunities is determined by transaction

costs, we might reasonably expect the behavior of mispricing to be determined by whether profitable

arbitrage opportunities are present. This suggests that the mispricing series exhibits nonlinearity. Yadav, Pope,

and Paudyal (1994), Dwyer, Locke, and Yu (1996), and Martens, Kofman, and Vorst (1998) used threshold

models to capture this nonlinearity. In the simplest version of the threshold model, mispricing can fall within

two regimes: it can be within the transaction cost bounds associated with an arbitrage transaction, in which

case there are no profitable arbitrage opportunities, or it can be outside them. The general finding of these

studies is that mispricing tends to have a near-unit root when arbitragers are unable to take profitable

positions but follows a stationary autoregressive process, and hence is predictable, when profitable arbitrage

opportunities are available. Given that in the threshold model, the trigger for arbitrage is typically the previous

value of mispricing, it follows that these studies have implicitly documented conditional predictability (in the

form of mean reversion) in mispricing behavior and hence in mispricing changes.

The interesting question that follows from this is whether such threshold autoregressive behavior implies

levels of unconditional predictability in mispricing changes, that is, whether threshold autoregressive behavior

in the level of mispricing implies negative first-order autocorrelation in mispricing changes irrespective of the

value of mispricing. To our knowledge, no attempt has been made to investigate this. It could be the case, as

Miller, Muthuswamy, and Whaley (1994) argue, that arbitrage activity constitutes a tiny fraction of total trading

and, as such, is highly unlikely to lead to unconditional predictability in mispricing changes or basis changes.

In this instance, such predictability may be due to microstructure effects. If arbitrage activity is sufficiently

large, however, then unconditional predictability in basis and mispricing changes should result.

Using both minute-by-minute and daily data on the FTSE 100 index and index futures contracts for the

United Kingdom, we examine whether threshold models are capable of generating levels of unconditional

first-order autocorrelation observed in both intraday (minute-by-minute) mispricing changes and daily basis

changes. We compare the results from the threshold model with those from assuming that the predictability is

the result of microstructure effects. Moreover, we conduct the analysis during different times of the trading

day to examine the effect of intraday seasonality in arbitrage activity on the results. To anticipate the results,

we find that for the high-frequency (minute-by-minute) mispricing series, predictability disappears once

arbitrage effects are removed from mispricing changes. By contrast, accounting for microstructure effects does

not remove the predictability. This suggests that arbitrage activity can fully account for unconditional

1Mispricing is the differential between the theoretical, or fair, futures price at time t for delivery at time T and the actual futures price, whereas
the basis is the differential between the actual futures price and the underlying spot price. On an intradaily basis, Miller, Muthuswamy, and
Whaley (1994) point out that the basis and mispricing will be essentially the same, since dividends and interest are paid overnight. Therefore,
ignoring the first few observations the following day will remove the impact of dividends and interest paid, leaving the basis as a measure of
mispricing.
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predictability. We also examine the robustness of these results to changes in the specification of the threshold

model. In particular, we compare the performance of simple threshold models with that of a smooth-transition

threshold model and find that a simple two-regime threshold model is sufficient to explain unconditional

predictability in intraday mispricing changes. For the daily basis series, we show that neither arbitrage nor

microstructure effects can explain the apparent predictability in basis changes, because at the daily frequency,

predictability in basis changes is a statistical illusion induced by overdifferencing a trend-stationary series.

The rest of the article is organized as follows. In the next section we outline the cost-of-carry model of

stock index futures pricing. Section 3 describes both the threshold autoregressive model of mispricing and the

various methods used to remove microstructure effects from mispricing. Section 4 offers a discussion of the

data that we use. The results are presented in Section 5, and Section 6 offers some concluding comments.

2 The Economic Model

The contemporaneous relationship between spot and forward prices can be described by the cost-of-carry

model, which is also capable of describing the relationship between spot and futures prices providing that the

term structure of interest rates is flat and constant. In the absence of arbitrage opportunities and transaction

costs, we have

F ∗t,T = St e
r (T−t) −

n∑
i=1

Die
r (T−τi ) (2.1)

where F ∗t,T is the theoretical (or fair) stock index futures price observed at time t for delivery at time T , St is

the price of the index, r is the risk-free continuous interest rate applicable over the contract life, (T − t) is the

time to maturity of the futures contract, and Di is the expected cash dividend paid at time τi , where t < τi ≤ T .

If the model holds at all times, then F ∗t,T = Ft,T , where Ft,T is the market price of the futures contract.

Provided the contract is held to maturity, then in the presence of proportional transaction costs, c, arbitrage

activity will take place when one of the following conditions holds:

Ft,T

F ∗t,T
< 1− c (2.2)

Ft,T

F ∗t,T
> 1+ c (2.3)

where c equals the sum of (1) round-trip spot and futures trading costs, (2) market impact costs from trading

in the spot and futures markets, and (3) a “stamp tax” of 0.5% that is charged when investors purchase U.K.

equities. Arbitragers, however, can and do unwind their spot and futures positions before maturity (Sofianos

1993; Neal 1996), closing out their positions when it is profitable to do so rather than at maturity of the futures

contract.2 Brennan and Schwartz (1988, 1990) model this behavior as arbitragers’ having an option, and this

ultimately leads to a lowering in the transaction cost bound. Indeed, Dwyer, Locke, and Yu (1996) argue that

c represents approximately one half the total round-trip transaction costs incurred by arbitragers.

As it takes time for arbitragers to take appropriate positions in the stock and stock index futures contracts,

this arbitrage opportunity is necessarily lagged by d time periods. Therefore, provided c is small, (2.2) and

(2.3) can be expressed as3

|zt−d | > c (2.4)

2Unless of course it is profitable to wait for the contract to mature.
3This assumes that the upper and lower transaction cost bounds are the same. Whether this assumption is reasonable in the context of the
econometric model is something we test later in the article.
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where zt = ln Ft,T − ln F ∗t,T is mispricing and d is the delay inherent in the arbitrage process. This formulation

of the arbitrage condition provides the foundation for the econometric model used in this article to describe

arbitrage behavior.

3 Modeling Mispricing

In this section we provide details of an econometric model frequently used to describe arbitrage activity and

an econometric model used to describe various microstructure effects.

3.1 The threshold autoregressive model

In the previous section we argued that (2.4) provides the foundation for the econometric model in this article.

The key to the econometric model is the behavior of mispricing within the transaction cost bound and outside

of it. If mispricing remains within the transaction cost bound, then it will follow a random-walk process,

because there will be no arbitrage activity driving prices back into equilibrium. If mispricing goes above or

below the transaction cost bound, however, then mispricing will follow a stationary process, because arbitrage

activity will force prices back into equilibrium. For instance, if mispricing goes above the upper transaction

cost bound, then arbitragers will sell the futures contract and buy the index, hence forcing futures prices

down and spot prices up until mispricing no longer violates the transaction cost bound.

The simplest way to model this dynamic price behavior is by means of a threshold autoregressive (TAR)

model (see, inter alia, Tong 1983, 1990; Tong and Lim 1980; Tsay 1989; Teräsvirta 1994; and Hansen 1997,

1999, 2000). Formally, zt−d is continuous on <, so that partitioning the real line defines the number of distinct

regimes into which zt−d can fall. The process is in regime h, denoted by rh, when rh−1 ≤ zt−d < rh, and when

in rh it follows a pth-order linear autoregressive process:

zt = φ{h}0 + φ{h}1 zt−1 + · · · + φ{h}p zt−p + ε{h}t (3.1)

where the parameters superscripted with {h} may vary across regime, εh
t ∼ i.i.d.(0, σ 2{h}), h = 1, 2, . . . ,Nr , and

Nr is the number of regimes. This model is quite flexible, in that it may be nonstationary within a regime in

the sense that some of the roots of φ{h}(L) = 1− φ{h}1 − · · · − φ{r }p may lie outside the unit circle, but stationary

overall because of the alternation of “explosive” and “contractionary” regimes, which generates limit cycle

behavior (Chan et al. 1985).

In the absence of arbitrage activity, mispricing follows a random walk, and mispricing changes follow a

white-noise process. By contrast, in the presence of arbitrage activity, mispricing changes have nonzero

first-order autocorrelation. The use of a TAR model enables us to capture the nature of the arbitrage process

and to predict the level of first-order autocorrelation in mispricing changes for given estimated parameter

values.

3.2 Microstructure effects

Miller, Muthuswamy, and Whaley (1994) argued that predictability in high-frequency mispricing changes is

(partially) due to microstructure effects. In particular, they demonstrated that predictability will occur if stocks

in the index trade infrequently and, to a lesser extent, if observed futures prices “bounce” between the bid

and ask prices of the contract.

The first of these microstructure effects is often referred to as the “nontrading effect” (Fisher 1966; Dimson

1979; Cohen et al. 1978, 1979; Lo and MacKinlay 1990; Stoll and Whaley 1990). At very high frequencies, say

minute by minute, not all stocks in an index/portfolio will trade during each minute. The well-known result of

this effect is positive autocorrelation in observed returns. Miller, Muthuswamy, and Whaley (1994) use a

modified AR(1) model to capture this effect. They correct for this autocorrelation by fitting an AR(1) model of

the form

1st = φ0 + φ11st−1 + εt (3.2)

136 Basis Dynamics



where 1st denotes the logarithmic index return and εt is an i.i.d. error term. The innovations from this

regression are defined as

ε̂∗t =
ε̂t

(1− φ̂1)
(3.3)

and these innovations represent the index return adjusted for nontrading.

The second microstructure effect considered by Miller, Muthuswamy, and Whaley is referred to as “bid-ask

bounce.” This effect is more likely to show up in futures prices than index levels, as these are individually

traded securities. Roll (1984) demonstrated that observed prices randomly bouncing between the bid and the

ask prices leads to negative first-order autocorrelation in returns. Miller, Muthuswamy, and Whaley model this

effect on futures returns as an MA(1) process:

1ft = θ0 + νt + θ1νt−1 (3.4)

where 1ft denotes the observed logarithmic futures return and νt is an i.i.d. error term. The larger the bid-ask

spread, the larger the bid-ask bounce effect as measured by θ1 and the greater the extent of the negative

first-order autocorrelation in futures returns. This effect is removed by fitting an MA(1) model to logarithmic

futures returns and taking the residual, ν̂t , as the futures return net of the bid-ask bounce effect.

Taking these two effects together, Miller, Muthuswamy, and Whaley demonstrate analytically that negative

first-order autocorrelation in mispricing changes is likely to occur under quite general conditions. They

provide an illustration by considering mispricing changes for the S&P 500 Index futures contract at a

15-minute frequency. In particular, they show that predictability is reduced (but not eliminated) when

nontrading effects are removed from spot returns.

4 Data

We analyze the relationship between spot and futures prices using both intraday and interday data. The

intraday data will be described first. The futures price of the nearest FTSE 100 contract was obtained for every

transaction carried out between January 5 and April 24, 1998. These data were obtained from the London

International Financial Futures and Options Exchange (LIFFE). The contract is changed when the volume of

trading in the next nearest contract is greater than the volume of trading in the nearest contract.4 To

synchronize the futures and spot prices, the futures price series was converted to a price series with a

frequency of one minute. The (spot) level of the FTSE 100 index was obtained from FTSE International. The

trading hours of the futures market and the spot market are 8:35 A.M. to 4:10 P.M. and 8:00 A.M. to 4:30 P.M.,

respectively.5 Thus one can obtain overlapping futures and spot data covering the period from 8:35 A.M. to

4:10 P.M. For convenience, however, we considered only the period between 9:01 A.M. and 4:00 P.M. A total of

77 trading days were considered, yielding a total of 32,417 (421× 77) one-minute-frequency observations.

The validity of the mispricing series thus constructed relies heavily on the use of appropriate ex ante

dividends and interest rates. To this end we make use of data supplied by Goldman Sachs. These data are

used by arbitragers employed by Goldman Sachs when making judgments about the mispricing (or otherwise)

of FTSE 100 futures contracts. Goldman Sachs constructs ex ante dividends by making individual forecasts for

each of the dividends paid by companies in the FTSE 100 index and then weight these by market

capitalization. The interest rate applicable over the contract life used by Goldman Sachs is the interpolated

4The volume cross-over method of changing futures contracts results in one change during the period under study, involving a switch from
the March 1998 contract to the June 1998 contract on March 11, 1998. On this day the volume of trading in the March contract was 6,312
contracts and the volume of trading in the June contract was 13,355 contracts.

5The futures market reopens at 4:32 P.M. under the automated pit trading (APT) system. This additional period of trading is not considered
here, however, because of the lack of data between 4:11 P.M. and 4:31 P.M.
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Figure 1
Intraday prices.

LIBOR rate. For instance, if a 25-day interest rate is required, then Goldman Sachs interpolates between the

two-week and the four-week rates.

The interday data consist of the end-of-day futures prices of every contract traded on LIFFE from the June

1986 contract to the December 1998 contract. The corresponding spot price of the index was obtained from

Datastream. We considered the last 80 trading days for each of the futures contracts.

5 Empirical Results

The spot and futures prices for the FTSE 100 index over the period from January 5 to April 24, 1998, are

plotted in Figure 1. There appears to be a close relationship between the two prices, with convergence

occurring when the contract is rolled over. This convergence in the difference between spot and futures prices

can be seen more clearly in Figure 2. The difference declines steadily as the maturity of the contract

approaches. By contrast, the difference between the market and theoretical futures prices appears to have a

constant zero mean over the period and suggests that on average the FTSE 100 Index futures contract is

correctly priced when the Goldman Sachs ex ante dividend and interest rate data are used.

The first-order autocorrelations for futures returns, spot returns, and mispricing changes are provided in

Table 1. These correlations are calculated over the whole period (9:01 A.M. to 4:00 P.M.), during the afternoon

period (12:01 P.M. to 4:00 P.M.), and during each hour of the trading day. Futures returns exhibit significant

negative autocorrelation during the afternoon period only, whereas spot returns tend to be significantly

positively autocorrelated throughout the day. From our earlier discussion, it seems that these autocorrelations

reflect microstructure effects. To illustrate more clearly, consider again futures returns. Futures returns are

most negatively autocorrelated between 12:01 P.M. and 2:00 P.M. This period coincides with the highest

effective bid-ask spread (and lowest trading volume) on the futures contract and hence is a time when bid-ask

bounce effects are likely to be at their most pronounced.6

6See Abhyankar, Copeland, and Wong 1999 and Tse 1999 for further evidence of intraday patterns in bid-ask spreads and trading volumes in
the FTSE 100 Index market.
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Figure 2
Intraday basis and mispricing.

Table 1
Intraday summary statistics

Unadjusted Adjusted

Interval T ρ̂1(1ft ) ρ̂1(1st ) ρ̂1(1zt ) ρ̂1(1ft ) ρ̂1(1st ) ρ̂1(1zt ) Volume Spread

9:01 to 10:00 4,616 0.0023 0.0958∗∗∗ −0.0707∗∗∗ −0.0008 −0.0043 −0.1100∗∗∗ 21.5017 3.3085
10:01 to 11:00 4,612 0.0354∗∗ −0.0801∗∗∗ −0.0930∗∗∗ −0.0000 −0.0193 −0.0577∗∗∗ 20.6667 3.3736
11:01 to 12:00 4,620 −0.0064 0.0936∗∗∗ −0.0568∗∗∗ −0.0001 −0.0053 −0.0987∗∗∗ 18.5983 3.3183
12:01 to 1:00 4,620 −0.0459∗∗∗ 0.0740∗∗∗ −0.0586∗∗∗ −0.0015 0.0046 −0.0671∗∗∗ 13.8485 3.4409
1:01 to 2:00 4,618 −0.1587∗∗∗ 0.1275∗∗∗ −0.1573∗∗∗ −0.0066 −0.0047 −0.1385∗∗∗ 14.8530 3.4190
2:01 to 3:00 4,620 0.0251∗ 0.0918∗∗∗ −0.0553∗∗∗ 0.0005 −0.0045 −0.1092∗∗∗ 23.7545 3.1958
3:01 to 4:00 4,620 0.0451∗∗∗ 0.0916∗∗∗ −0.0458∗∗∗ 0.0004 −0.0038 −0.1091∗∗∗ 29.9803 3.1997

9:01 to 4:00 32,326 −0.0044 0.0347∗∗∗ −0.0800∗∗∗ 0.0003 0.0018 −0.0934∗∗∗ 20.4576 3.3223

12:01 to 4:00 18,480 −0.0141∗ 0.1002∗∗∗ −0.0734∗∗∗ −0.0002 −0.0030 −0.1113∗∗∗ 20.6091 3.3138

Note: The number of observations (T ), first-order autocorrelation (ρ̂1) in logarithmic futures returns (1ft ), logarithmic spot returns (1st ),
mispricing changes (1zt ), mean volume of futures contracts traded per minute, and mean effective bid-ask spread (in basis points) on
these futures contracts are calculated using minute-frequency data. First-order autocorrelations are also calculated using futures returns,
spot returns, and mispricing changes adjusted for possible microstructure effects as described in Miller, Muthuswamy, and Whaley 1994.
The significance of the first-order autocorrelation is tested using the Box-Pierce Q-statistic and is denoted by ∗∗∗ (1% significance), ∗∗ (5%
significance), and ∗ (10% significance).

Mispricing changes exhibit significant negative first-order autocorrelation during each hour of the trading

day. The autocorrelation is at its most negative during the first few hours of trading and between 1:01 P.M. and

2:00 P.M. This intraday pattern could again be due to microstructure effects. The 1:01 to 2:00 period

corresponds to the smallest autocorrelation in futures returns, which, as we have just seen, coincides with the

highest effective bid-ask spread on the futures contract and with the highest autocorrelation in spot returns.

The significant negative autocorrelation for the first few trading hours is most likely the result of the high

bid-ask spreads observed during the beginning of trading in the spot market. For instance, Naik and Yadav

(1999) found evidence of high bid-ask spreads on all stocks making up the FTSE 100 index during the first

few hours of the trading day. These high spreads are most likely the result of a lack of liquidity during this

period. Shah (1999) argued that the lack of liquidity during the early morning period may be due to the

“absence of an opening auction facility for market on open orders.”
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To summarize thus far, then, there is evidence of positive first-order autocorrelation in index returns,

negative first-order autocorrelation in futures returns, and negative first-order autocorrelation in mispricing

changes. These findings seem to be consistent with a microstructure explanation for predictability in

mispricing changes, since the autocorrelation in mispricing changes is at its strongest when spreads are high

and liquidity is low in the futures and spot markets. Whether these findings are actually consistent with a

microstructure explanation of predictability in mispricing changes is the subject of the next section.

5.1 Removing microstructure effects

Miller, Muthuswamy, and Whaley (1994) argued that first-order autocorrelation in S&P 500 mispricing changes

is due to microstructure-induced first-order autocorrelation in spot and futures returns. To examine the validity

of this claim using U.K. data, we adjust the spot returns for nontrading and the futures returns for bid-ask

bounce effects using the methodology outlined in Section 3.2. The results for the adjusted series are given in

Table 1. Whereas autocorrelations in spot and futures returns are eliminated by the appropriate adjustment,

mispricing changes still exhibit significant negative first-order autocorrelation. Indeed, the autocorrelation

actually becomes more negative during most hours of the trading day and especially during the afternoon

period. Therefore, contrary to the S&P 500 market, the FTSE 100 market is not characterized by

microstructure-induced autocorrelation in mispricing changes. This leaves open the possibility that the

autocorrelation is arbitrage-induced, which is the subject of the next section.

5.2 Removing arbitrage effects

An important aspect of the argument by Miller, Muthuswamy, and Whaley that predictability in mispricing

changes is microstructure-induced is based on the fact that if spot and futures prices follow a random walk,

then in the absence of arbitrage activity, mispricing should also follow a random walk. Thus, mispricing will

persist indefinitely. By contrast, if arbitragers exist in the market, then mispricing will be removed within a

very short period of time. As such, mispricing will necessarily follow a mean reverting, stationary process. It

follows from this that an indirect, but straightforward, way of examining whether arbitragers are present in the

market is to examine whether mispricing contains a unit root since, if it does, mispricing will persist

indefinitely, which coincides with the null hypothesis that no (substantive) arbitrage activity takes place. We

test this hypothesis using the forward and reverse Dickey-Fuller regression methodology described by

Leybourne (1995).7 The results from this test are given in Table 2. Spot and futures prices appear to have unit

roots while returns on these assets are stationary. For mispricing, however, the null hypothesis of a unit root

can be rejected at the 1% level of significance. This means that mispricing is a stationary process rather than a

random walk, a result that suggests arbitrage activity is of some significance for the FTSE 100 market.

Given the finding that mispricing is a stationary process, the natural next step is to model mispricing in the

presence of transaction costs using the TAR model outlined in Section 3.1. We estimate the TAR over the

whole period, for each hour of the trading day, and for the afternoon period, following the methodology

described in Hansen 1997. From our earlier discussion, we consider a two-regime model; the regimes will be

referred to as the “inside regime” and the “outside regime.” When lagged mispricing is within the transaction

cost bound, the process is in the inside regime. When lagged mispricing is greater (in absolute terms) than the

transaction cost bound, then the process is in the outside regime. In both cases the first lag of absolute

mispricing is taken as the threshold variable. Longer lags were used but were found to produce an inferior fit.

Further, since we are interested in explaining first-order autocorrelation, the number of lags of mispricing used

in the TAR model is set equal to unity.

The results from estimating the TAR model are given in Table 3. As the errors from the model are

heteroskedastic, all inference is carried out using heteroskedasticity-consistent standard errors. The Lagrange

7Leybourne (1995) showed that this testing methodology is more powerful than the standard Dickey-Fuller methodology.
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Table 2
Testing for nonstationarity

d = 0 d = 1

Interval 1d ft 1d st 1d zt 1d ft 1d st 1d zt

9:01 to 10:00 −0.8983 −0.7467 −16.8399∗∗∗ −67.6873∗∗∗ −61.6831∗∗∗ −72.9229∗∗∗
10:01 to 11:00 −0.9079 −0.8744 −17.0691∗∗∗ −65.5850∗∗∗ −73.5099∗∗∗ −74.4642∗∗∗
11:01 to 12:00 −0.9150 −0.8922 −13.1765∗∗∗ −68.3814∗∗∗ −61.8619∗∗∗ −71.9197∗∗∗
12:01 to 1:00 −0.9091 −0.8873 −11.0174∗∗∗ −71.1344∗∗∗ −63.0969∗∗∗ −72.0441∗∗∗
1:01 to 2:00 −0.9394 −0.8774 −13.6719∗∗∗ −79.7413∗∗∗ −59.7800∗∗∗ −79.6285∗∗∗
2:01 to 3:00 −0.7978 −0.7156 −15.5093∗∗∗ −66.2594∗∗∗ −61.9782∗∗∗ −71.8138∗∗∗
3:01 to 4:00 −0.7334 −0.6638 −17.3553∗∗∗ −64.9462∗∗∗ −61.9892∗∗∗ −71.1410∗∗∗

9:01 to 4:00 −0.7863 −0.7031 −39.0341∗∗∗ −180.5319∗∗∗ −173.6754∗∗∗ −194.8339∗∗∗

12:01 to 4:00 −0.7419 −0.7575 −27.9556∗∗∗ −137.8559∗∗∗ −122.9339∗∗∗ −146.2966∗∗∗

Note: Nonstationarity tests were performed on various series using the forward and reverse Dickey-Fuller regression
methodology described by Leybourne (1995). The series considered are logarithmic futures prices ( ft ), logarithmic
spot prices (st ), and mispricing (zt ). The test statistics and an indication of whether the null hypothesis of a unit root
was rejected are given. Significance is denoted by ∗∗∗ (1% significance), ∗∗ (5% significance), and ∗ (10% significance).

Table 3
Estimated parameters of the TAR model

Inside Regime Outside Regime

Interval φ̂
r1
0 φ̂

r1
1 R2 φ̂

r2
0 φ̂

r2
1 R2 ĉ LM test

9:01 to 10:00 0.0000 0.9214∗∗∗ 0.8389 −0.0016 0.5372∗ 0.4595 56.86∗∗∗ 9.75∗
10:01 to 11:00 0.0000 0.9397∗∗∗ 0.8208 −0.0008 0.4400∗∗∗ 0.5124 105.75∗∗∗ 13.92∗∗∗
11:01 to 12:00 0.0000 0.9504∗∗∗ 0.8830 0.0000 0.7759∗∗∗ 0.9006 30.19∗∗∗ 23.67∗∗∗
12:01 to 1:00 0.0000 0.9714∗∗∗ 0.9174 0.0001 0.8361∗∗∗ 0.9203 26.23∗∗∗ 29.58∗∗∗
1:01 to 2:00 0.0000 0.9644∗∗∗ 0.8937 0.0005 0.6967∗∗∗ 0.6478 26.85∗∗∗ 24.16∗∗∗
2:01 to 3:00 0.0000 0.9217∗∗∗ 0.8360 0.0003 0.5452∗∗∗ 0.6142 36.90∗∗∗ 20.43∗∗∗
2:01 to 4:00 0.0000 0.9254∗∗∗ 0.6941 0.0002 0.8254∗∗∗ 0.8547 18.32∗∗∗ 28.13∗∗∗

9:01 to 4:00 0.0000 0.9243∗∗∗ 0.8439 −0.0005 0.4752∗∗∗ 0.4541 105.75∗∗∗ 55.70∗∗∗

12:01 to 4:00 0.0000 0.9442∗∗∗ 0.8477 0.0001 0.7989∗∗∗ 0.8239 26.23∗∗∗ 75.53∗∗∗

Note: The TAR model
zt = φ{h}0 + φ{h}1 zt−1 + ε{h}t

where h = r1 if |zt−1| ≤ c and h = r2 if |zt−1| > c, zt is mispricing, and ε{h}t is an error term in regime h, is estimated. The
estimated threshold ĉ is multiplied by 10,000 and is thus measured in terms of basis points. Heteroskedastic-consistent
standard errors associated with the TAR coefficients are calculated. The null hypothesis of no threshold autoregression is
tested using a Lagrange multiplier test, and the associated p-value is calculated using the bootstrap technique. Significance
is denoted by ∗∗∗ (1% significance), ∗∗ (5% significance), and ∗ (10% significance).

multiplier (LM) test of the null hypothesis that a linear autoregression is appropriate against the TAR

alternative clearly rejects the linear model. This shows that the threshold model is the appropriate model to

use, as is clearly demonstrated by the results from estimating the threshold model. There is strong support for

the notion that mispricing follows a different process depending upon whether arbitrage opportunities are

present. Taking the behavior of mispricing in the inside regime first, the coefficient on lagged mispricing is

close to unity, suggesting that mispricing behaves in a fashion similar to a random walk. Second, mispricing

follows an autoregressive process in the outside regime, with a lower coefficient on lagged mispricing. These

two findings are consistent with additional adjustment in mispricing when arbitrage profits are greater than

the transaction costs incurred. Third, transaction costs, as defined by the estimated threshold value, ĉ, have an

intraday pattern that is consistent with the behavior of bid-ask spreads in the spot market documented by
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Naik and Yadav (1999).8 As these spreads are considerably greater than futures spreads, we would expect

spreads in the spot market to exert a greater influence on transaction costs incurred by arbitragers than the

spreads in the futures market.

Arbitrage transaction costs incurred during the first few hours of the trading day are considerably greater

than those incurred during other periods of the day. Indeed, early-morning transaction costs appear to be

prohibitively high, and it would seem that very little arbitrage is carried out during the first few hours of the

day. From a statistical point of view this is somewhat problematic, as the outside regime contains a very

limited number of observations (typically less than 10) during these periods. Moreover, when the model is

estimated over the whole trading day, the transaction costs appear to be extremely high because of the

influence of the morning data. To avoid this effect the model is estimated during the afternoon period only.

The results indicate that there is a considerable decrease in the transaction costs incurred in the afternoon

period in comparison to the morning period. As such, in the subsequent analysis the focus is placed on the

afternoon period because of the lack of degrees of freedom present in the outside regime when other sample

periods are considered.

Having seen that the TAR model provides a good description of the behavior of mispricing in the presence

of transaction costs, we turn our attention toward investigating the effects of arbitrage on autocorrelation in

mispricing changes. To investigate whether the observed predictability in mispricing changes vanishes once

the effects of arbitrage have been accounted for, we need to remove the effects of arbitrage activity from

mispricing changes. We do this by estimating the TAR model for the afternoon period, with mispricing

changes replacing the level of mispricing.9 The coefficient on lagged mispricing changes is then an estimate of

the first-order autocorrelation in mispricing changes in the different regimes. Estimating the TAR model using

mispricing changes over this period gives

1zt = 0.9867− 0.00051zt−1 + ε̂r1
t , if |zt−1| ≤ 22.83 (5.1)

(0.3302) (0.0105)

1zt = −9.5276− 0.43031zt−1 + ε̂r2
t , if |zt−1| > 22.83 (5.2)

(3.2650) (0.1037)

where zt is measured in basis points and heteroskedastic-consistent standard errors are given in parentheses.

The threshold value (ĉ) of 22.83 basis points is significantly different from zero at the 1% level, and the LM

test statistic for testing the null hypothesis that there are no thresholds is 64.59 with a p-value less than 0.01.

This again provides strong evidence in support of the threshold model. The number of observations in the

inside and outside regimes is 17,421 and 1,059, respectively. The number of observed arbitrage violations

suggests that approximately 6% of trades are carried out by traders arbitraging perturbations in the FTSE 100

spot-futures relationship.

The coefficient on lagged mispricing changes is insignificantly different from zero in the inside regime. This

suggests that there is no first-order autocorrelation when arbitrage opportunities are not present. By contrast,

mispricing changes are characterized by significant negative first-order autocorrelation in the outside regime,

which is where arbitrage activity occurs. This finding lends support to the notion that negative first-order

autocorrelation in mispricing changes is an arbitrage phenomenon. Although this confirms the presence of

conditional prediction in mispricing changes, however, it could be argued that given the small number of

observations in the outside regime, arbitrage activity is likely to be infrequent and of insufficient magnitude to

cause unconditional negative first-order autocorrelation in mispricing changes. This proposition is examined

in more detail by considering the level of unconditional first-order autocorrelation in mispricing changes

implied by various nonlinear models of arbitrage.

8The reported estimated threshold is multiplied by 10,000 and is therefore reported in terms of basis points.
9The threshold variable is still defined as the lagged level of mispricing, because this remains as the trigger for arbitrage activity.
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Figure 3
TAR-implied autocorrelation.

5.3 Implied unconditional autocorrelations

To examine the ability of the TAR model to generate the levels of unconditional first-order autocorrelation that

we observe in mispricing changes, we use the parameters of the TAR model estimated using the level of

mispricing observed between 12:01 P.M. and 4:00 P.M. on each trading day to calculate the unconditional

distribution of first-order autocorrelation in mispricing. This distribution will give some indication of the

validity of the model in terms of explaining the negative autocorrelation in mispricing changes. If the likely

implied first-order autocorrelation is close to the empirical first-order autocorrelation, then the model provides

a satisfactory explanation for the negative autocorrelation. Otherwise, the arbitrage model, like the

microstructure model, is inadequate to explain the negative correlation in mispricing changes.

Given the nonlinear nature of the TAR model, we calculate the unconditional distribution of the first-order

autocorrelation by Monte Carlo simulation. The estimated parameters and residual variances obtained from

the actual data are used in the simulation. However, as theory suggests that the process should follow a

random walk when no profitable arbitrage opportunities are available, we impose the restriction that the

process follows a random walk in the inside regime, that is, we set φr1
1 equal to 1. We generate 1,000 TAR

processes, each with 18,480 observations. The first-differences of these series are then taken and the

first-order autocorrelation and the Box-Pierce Q-statistic testing for first-order autocorrelation are calculated. A

kernel estimate of the distribution of the first-order autocorrelation is then calculated using a normal window,

with bandwidth selected using the method of likelihood cross-validation.10

The estimated unconditional distribution of the first-order autocorrelation and the Box-Pierce Q-statistic are

given in Figures 3 and 4. We make two assumptions regarding the error term in the TAR model. The first is

that the errors are i.i.d. normal, and the second is that the errors follow a GARCH(1,1) process, with

parameters used in the simulation matching the parameters obtained from fitting a GARCH(1,1) model to the

residuals from an AR(1) model of mispricing. This second assumption captures the observed

heteroskedasticity in the residuals of the TAR model.11 Both of the implied distributions have modal points

close to the empirical first-order autocorrelation given in Table 1. For example, the TAR-GARCH model has a

10See Silverman 1986 for further details on density estimation using the kernel method.
11These results are available upon request.
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Figure 4
TAR-implied test statistic.

median implied first-order autocorrelation coefficient of −0.0745 (see Figure 3) compared to an empirical

first-order autocorrelation of −0.0734. Similar results are obtained when the implied distribution of the

Box-Pierce Q-statistic is considered. This evidence lends further support not only to the arbitrage explanation

of negative first-order autocorrelation in mispricing changes but also to the ability of a simple two-regime TAR

model to capture this behavior. In the next two sections, we turn our attention to an examination of whether

more sophisticated empirical models of arbitrage behavior offer an improvement over the simple two-regime

TAR model.

5.4 Short-selling restrictions

It could be argued that the above two-regime TAR model is inappropriate, as it imposes the restriction that the

upper and lower transaction bounds are of the same magnitude. Indeed, if short selling of the index is

restricted, then one would expect the lower transaction bound to be greater (in absolute value) than the

upper transaction bound. In the presence of short-selling restrictions, per unit negative mispricing (which

involves short selling the index) is less profitable than per unit positive mispricing. This results in asymmetric

transaction bounds.

To allow for asymmetric transaction bounds we fit a three-regime TAR model to the level of mispricing

observed between 12:01 P.M. and 4:00 P.M. on each trading day. Having fitted this model we then test the null

hypothesis that mispricing follows a two-regime TAR process against the alternative that mispricing follows a

three-regime TAR process. Testing inference is carried out using the (general) heteroskedastic-consistent

bootstrap methodology of Hansen (1999). We use 1,000 bootstrap replications to generate the distribution of

the test statistic under the null hypothesis.

The fitted three-regime TAR model is given by the following set of equations:

zt = −56.1222+ 0.6183zt−1 + ε̂r1
t , if zt−1 ≤ −17.84 (5.3)

(23.0995) (0.1083)

zt = 1.6403+ 0.9565zt−1 + ε̂r2
t , if − 17.84 < zt−1 ≤ 18.75 (5.4)

(0.3464) (0.0039)

zt = 69.8995+ 0.6301zt−1 + ε̂r3
t , if zt−1 > 18.75 (5.5)

(11.1702) (0.0487)
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where zt is measured in basis points, heteroskedastic-consistent standard errors are given in parentheses, and

the number of observations in the three regimes is 711, 16,037, and 1,731, respectively. The test statistic

associated with the null hypothesis that the two-regime TAR model provides an adequate fit equals 77.11 and

has an associated p-value of 0.62. Therefore, we can conclude that short-selling restrictions have an

insignificant effect on the symmetry of the transaction bounds. The fact that short-selling restrictions are

unimportant can also be seen by noting the similarity of the threshold values in the above equation. The

failure to reject the null hypothesis means that these threshold values are insignificantly different from each

other and, therefore, that a two-regime TAR model provides an adequate description of mispricing.

5.5 Alternative models of arbitrage behavior

Recent literature on arbitrage activity has made use of smooth transition autoregressive (STAR) models (see

Anderson 1997 and Taylor et al. 2000) to model mispricing dynamics. These models allow for heterogeneous

transaction cost exposure by imposing a smooth parametric function on the regime space. The TAR framework

essentially uses a discontinuous transition function in which the process makes abrupt switches from one

regime to another. Smooth transition models, on the other hand, allow for gradual changes of regime.

A commonly used smooth transition function is the exponential STAR model (see Teräsvirta 1994 for further

details). The version of the model that results in the best fit here is

zt = (φ0 + φ1zt−1)(1− g(γ ; zt−1))+ (φ2 + φ3zt−1)g(γ ; zt−1)+ εt (5.6)

where the transition function g(γ ; zt−1) = 1− exp(−γ z 2
t−1). It is clear from this transition function that the

higher the level of mispricing in the previous period, the greater the value of the transition function. Indeed,

the transition function is bounded from zero (when zt−1 = 0) to unity (when |zt−1| is large). Therefore, when

there is no arbitrage, time dependency is measured by the coefficient φ1, and when there is full arbitrage, time

dependency is measured by φ3. At all other times the coefficients reflect a mixture of arbitrage activity.

The specification given in (5.6) is estimated using the level of mispricing observed between 12:01 P.M. and

4:00 P.M. on each trading day. The methodology is the same as that used by Teräsvirta (1994). Ignoring the

(insignificant) constant terms, the estimated model is (heteroskedasticity-consistent standard errors in

parentheses)

zt = 0.9472zt−1(1− g(γ ; zt−1))+ 0.5512zt−1g(γ ; zt−1)+ ε̂t (5.7)
(0.0048) (0.1760)

where

g(γ ; zt−1) = 1− exp(−0.0672z 2
t−1) (5.8)

(0.6669)

The first point to note is that γ is insignificantly different from zero, suggesting that the STAR model may not

be an inappropriate way of modeling mispricing. Notwithstanding this, the others parameters take on

reasonable values with the no-arbitrage coefficient (φ1) being close to unity, whereas the full-arbitrage

coefficient (φ3) is somewhat less than unity but is still positive. In both cases the coefficients are significantly

different from zero.

We use the estimated parameters from (5.7) and (5.8) to generate the unconditional distribution of the

first-order autocorrelation using a 1,000-repetition Monte Carlo simulation. As with the previous simulation,

we assume that mispricing follows a random walk in the absence of arbitrage. Thus, we set φ1 = 1. The

number of observations used in each repetition is 18,480. The errors in the STAR model are drawn from a

GARCH(1,1) process with parameter values matching the empirical estimates, as before. The kernel estimate

of the unconditional distribution of first-order autocorrelation is plotted in Figure 5. In comparison to the

distribution implied by the TAR-GARCH model, the STAR-GARCH model implies a negative autocorrelation
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Figure 5
STAR-implied autocorrelation.

that is far less than the empirical autocorrelation. In particular, the median STAR-GARCH-implied first-order

autocorrelation is −0.1171 compared to the empirical value of −0.0745. Moreover, the density function

implied by the STAR model suggests that there is little chance of observing the empirical first-order

autocorrelation. Similar results are obtained when alternative specifications of the transition function are

considered. For instance, when a logistic STAR model12 is used, there is an excessive amount of negative

first-order autocorrelation in mispricing changes. These results suggest that the STAR model is not capable of

generating the appropriate level of first-order autocorrelation observed empirically, and hence it is an

inadequate and inappropriate model of arbitrage in this case.

5.6 Explaining predictability in interday basis changes

The dividends paid to owners of FTSE 100 shares tend not to be seasonal (Shah 1999). Therefore, it is

reasonable to assume that the sum of the dividends paid out during the life of the futures contract is

approximately equal to some constant (annualized) dividend amount, D, multiplied by the time to maturity of

the contract. Under this assumption, (2.1) can be rewritten as

F ∗t,T = St e
r (T−t) − D(T − t)er (T−t) (5.9)

Expressing the dividend level as a proportion of the current price gives

F ∗t,T = St e
r (T−t) − Stδ(T − t)er (T−t) = St e

r (T−t)
(
1− δ(T − t)

)
(5.10)

where δ = D/St and denotes the (annualized) dividend yield on the index. If δ(T − t) is small, then

(1− δ(T − t)) ≈ e−δ(T−t), and (5.10) becomes

F ∗t,T = St e
(r−δ)(T−t) (5.11)

When considering daily mispricing, differences between the logarithmic market price ( ft,T ) and the

logarithmic theoretical price ( f ∗T ,t ) are unlikely to follow the same process as that of minute-by-minute

12See Teräsvirta 1994 for more details on STAR models with a logistic transition function.
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mispricing. As arbitrage profits are unlikely to persist over a day, mispricing is unlikely to be autocorrelated. It

is therefore reasonable to assume that mispricing is a mean zero i.i.d. process which we can denote by εt .

Using this assumption, taking logarithms of both sides of (5.11) and rearranging, we obtain the following

expression for the basis:

bt ≡ ft,T − st = µt (T − t)+ εt (5.12)

where µt = r − δ and represents a time-varying trend coefficient. If we assume that µt follows a process with

random perturbations away from the mean, that is, µt = µ+ νt , where νt is an error term that is identically

distributed over time but can be autocorrelated, then (5.12) becomes

bt = (µ+ νt )(T − t)+ εt = µ(T − t)+ ξt (5.13)

where ξt = ν(T − t)+ εt and represents a mixture of an i.i.d. error term (εt ) and an error term with

time-varying first and second moments (νt (T − t)). Taking first differences of (5.13) gives an expression for

changes in the basis:

1bt = −µ+ (ξt − ξt−1) (5.14)

This equation shows that the change in the basis is an MA process with a unit root. As the basis is stationary

around a trend, taking differences of this process amounts to overdifferencing the series. It is this

overdifferencing that induces the autocorrelation in the process. Ignoring the time variation in the first two

moments of ξt , it is a trivial exercise to show that first-order autocorrelation in basis changes equals − 1
2 .13

To summarize, there are three testable predictions that arise from this theory. First, the net-of-trend basis

will be heteroskedastic if νt (T − t) dominates ξt . We test this proposition using the Goldfeld-Quandt test

statistic. Second, basis changes will have an MA unit root. We test this proposition using the Kwiatkowski,

Phillips, Schmidt, and Shin (KPSS) test.14 This test is reasonably robust to time variation in the first and second

moments. Third, the first-order autocorrelation coefficient for basis changes should be − 1
2 . Results from tests

of these propositions are provided in Table 4.

The results indicate that heteroskedasticity is present in roughly one third of the contracts considered. The

nature of the heteroskedasticity can also be seen in the box plot given in Figure 6. The basis appears to fall in

a linear fashion up to maturity, with the distribution of the basis around the mean becoming less dispersed as

the time to maturity of the contract decreases. As far as the second proposition is concerned, the results in

Table 4 suggest that the null hypothesis of an MA unit root cannot be rejected in roughly half of all cases.

Moreover, when contracts that have traded since 1990 are considered, the median KPSS test statistic indicates

an inability to reject the null. Thus, in general, basis changes have an MA unit root.

Finally, the first-order autocorrelation in basis changes is calculated. The results indicate that this

autocorrelation is significantly less than zero in almost all cases. Moreover, the autocorrelation is close to its

predicted value of − 1
2 . For instance, the median value of this autocorrelation equals −0.4 when one considers

contracts that have traded since 1990. An explanation as to why this correlation is greater than − 1
2 is provided

in Figure 7, which gives the distribution of basis changes based on a 10,000-repetition Monte Carlo simulation.

Eighty values of the basis are generated using (5.12). The error term, εt , is drawn from an i.i.d. normal

distribution, and µt is drawn from a normal distribution with first-order autocorrelation values of

ρµ = {0, 0.2, 0.4, 0.6}. The first two moments of these series are based on their empirical counterparts.15

13In general, an MA(1) process with coefficient θ has first-order autocorrelation equal to θ/(1 + θ2). Equation (5.14) shows that θ = −1 and
hence first-order autocorrelation equals − 1

2 .
14See Kwiatkowski et al. 1992 for more details of this test.
15The series used were obtained from LIFFE, Goldman Sachs, and Datastream and cover the period from January 1, 1990, to December 31,
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Table 4
Interday summary statistics

Contract Volume FH KPSS ρ̂1

Jun 1986 606.2750 3.3842∗∗∗ 0.1068 −0.2679∗∗
Sep 1986 357.7875 0.4714 0.1442∗ −0.2060∗
Dec 1986 411.4750 1.5130 0.1450∗∗ −0.1815∗
Mar 1987 684.4500 0.7442 0.0631 −0.4415∗∗∗
Jun 1987 1091.5625 3.4802∗∗∗ 0.1219∗ −0.3149∗∗∗
Sep 1987 1541.8875 0.8210 0.1617∗∗ −0.3066∗∗∗
Dec 1987 1773.0250 2.7568∗∗∗ 0.1426∗ −0.3762∗∗∗
Mar 1988 1039.6625 1.4733 0.1902∗∗ −0.5537∗∗∗
Jun 1988 999.1500 3.0976∗∗∗ 0.1975∗∗ −0.1697
Sep 1988 1234.3125 2.3194∗∗∗ 0.1608∗∗ −0.4990∗∗∗
Dec 1988 1817.0250 1.1456 0.0864 −0.3566∗∗∗
Mar 1989 1947.8375 1.0834 0.1874∗∗ −0.3424∗∗∗
Jun 1989 2170.9125 1.9035∗∗ 0.1024 −0.2663∗∗
Sep 1989 1902.2750 7.6173∗∗∗ 0.1241∗ −0.2318∗∗
Dec 1989 2510.6125 1.9720∗∗ 0.1687∗∗ −0.5318∗∗∗
Mar 1990 2410.9750 0.0298 0.1559∗∗ −0.5002∗∗∗
Jun 1990 2297.4375 1.6446∗ 0.1170 −0.3975∗∗∗
Sep 1990 2567.4375 0.4052 0.0743 −0.3856∗∗∗
Dec 1990 3193.5750 2.6993∗∗∗ 0.0569 −0.2505∗∗
Mar 1991 2268.2750 2.3854∗∗∗ 0.1768∗∗ −0.2534∗∗
Jun 1991 2302.2375 1.5327 0.0683 −0.3610∗∗∗
Sep 1991 3050.0625 1.4504 0.0785 −0.3721∗∗∗
Dec 1991 4964.7000 0.6786 0.1130 −0.3786∗∗∗
Mar 1992 3148.2625 2.2938∗∗∗ 0.1319∗ −0.3295∗∗∗
Jun 1992 3184.8750 1.3014 0.1374∗ −0.4020∗∗∗
Sep 1992 5396.6625 0.7200 0.2104∗∗ −0.4713∗∗∗
Dec 1992 4695.4000 3.4799∗∗∗ 0.0680 −0.4027∗∗∗
Mar 1993 5253.7875 1.3722 0.1330∗ −0.3849∗∗∗
Jun 1993 4018.5500 2.4891∗∗∗ 0.0669 −0.4119∗∗∗
Sep 1993 5074.7000 1.7888∗∗ 0.1413∗ −0.1998∗
Dec 1993 7683.8750 0.6811 0.0825 −0.2884∗∗∗
Mar 1994 7683.7625 0.5199 0.1013 −0.4624∗∗∗
Jun 1994 6745.8625 0.9111 0.1197 −0.4136∗∗∗
Sep 1994 5178.3875 0.9566 0.1785∗∗ −0.5630∗∗∗
Dec 1994 5225.2375 1.8901∗∗ 0.0984 −0.4399∗∗∗
Mar 1995 7110.8750 1.2728 0.1032 −0.3550∗∗∗
Jun 1995 7374.8375 3.3138∗∗∗ 0.1845∗∗ −0.5203∗∗∗
Sep 1995 4278.5875 2.4720∗∗∗ 0.0654 −0.4215∗∗∗
Dec 1995 7665.9125 1.9503∗∗ 0.0654 −0.4051∗∗∗
Mar 1996 5286.6250 1.5515 0.1223∗ −0.4816∗∗∗
Jun 1996 5928.7125 2.5575∗∗∗ 0.1400∗ −0.3699∗∗∗
Sep 1996 5667.3250 1.4341 0.1456∗ −0.4162∗∗∗
Dec 1996 8244.0250 0.3804 0.1214∗ −0.4647∗∗∗
Mar 1997 5870.8750 2.3940∗∗∗ 0.1365∗ −0.3411∗∗∗
Jun 1997 6553.6625 1.1525 0.2040∗∗ −0.3728∗∗∗
Sep 1997 6920.0500 0.8113 0.0747 −0.3041∗∗∗
Dec 1997 6434.3375 1.1359 0.0918 −0.4606∗∗∗
Mar 1998 4461.9250 0.8004 0.2155∗∗ −0.4666∗∗∗
Jun 1998 17035.0500 1.1564 0.0565 −0.4041∗∗∗
Sep 1998 20012.2000 0.6585 0.0934 −0.5773∗∗∗
Dec 1998 21300.2375 1.1150 0.0749 −0.5652∗∗∗

1986–1989 1234.3125 1.9035∗∗∗ 0.1442∗ −0.3149∗∗∗
1990–1998 5270.2063 1.3368 0.1150 −0.4034∗∗∗

Note: Average daily futures volume, the Goldfeld-Quandt test statistic (FH ), the KPSS test
statistic, and estimated first-order autocorrelation (ρ̂1) applied to daily basis are calculated.
Median statistics are given in the last two rows. Significance is denoted by ∗∗∗ (1% signifi-
cance), ∗∗ (5% significance), and ∗ (10% significance).
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Figure 6
Interday basis convergence.

Figure 7
Interday basis change autocorrelation.

As predicted by the theory, the distribution of the first-order autocorrelation of basis changes is centered

around − 1
2 when ρµ = 0. When the degree of autocorrelation in µt increases, however, this series starts to

resemble a nonstationary series. For instance, if ρµ is set equal to unity, then the resulting basis becomes a

mix of a stationary series (εt ) and a nonstationary series (µt ). If µt dominates, then any differencing yields a

stationary series, and the resulting autocorrelation will approach zero. The weights assigned to this mixture of

1998. The price of the nearest futures contract is taken as the futures price and was obtained from LIFFE. The theoretical price of the futures
contract is obtained using (2.1) and is based on the Goldman Sachs data set, and annual dividend yields and interest rates were obtained
from Datastream. When the futures contract matures, the next nearest contract is used.
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errors are given by the respective variances of the two error terms. The empirical evidence suggests that the

stationary error dominates and, as such, the first-order autocorrelation in basis changes is only slightly less

than − 1
2 . For instance, when ρµ = 0.6, the median value of the autocorrelation is −0.42. This compares to an

empirical median value of −0.4 when all contracts traded between 1990 and 1998 are considered. Moreover,

this ρµ value closely resembles the empirical estimate of the autocorrelation in µt . Therefore, using realistic

parameter values and the assumption of i.i.d. mispricing, the above theory seems to be able to predict the

observed first-order autocorrelation in basis changes with a considerable degree of accuracy.

6 Concluding Remarks

In this article we have examined whether observed intra- and interday first-order autocorrelation in mispricing

changes and basis changes, respectively, for the FTSE 100 Index futures market is a result of arbitrage

behavior or a manifestation of market microstructure effects such as nontrading in the underlying stock index.

The microstructure explanation of predictability (see Miller, Muthuswamy, and Whaley 1994) revolves around

the proposition that in the absence of arbitrage opportunities, mispricing should follow a random walk, and

hence mispricing changes should exhibit zero first-order autocorrelation. Miller, Muthuswamy, and Whaley

(1994) argue that the level of arbitrage activity observed is insufficient to generate predictability in mispricing

changes and hence such predictability must be a reflection of the autocorrelation nontrading induces in the

underlying stock index.

More recent studies of arbitrage behavior have focused on the implications of transaction costs for the

behavior of mispricing. Since the presence of arbitrage opportunities is determined by transaction costs, recent

studies of the behavior of index futures mispricing have made use of TAR models, since they allow mispricing

to behave differently according to whether there are profitable arbitrage opportunities present or not. The

general finding of these studies is that when arbitrage opportunities are not present, mispricing follows a near

random walk, whereas it follows a stationary autoregressive process when arbitrage opportunities are present.

The first question we address is whether this conditional predictability in mispricing changes that the TAR

model implies translates into unconditional predictability in mispricing changes on an intradaily basis.

We find that microstructure effects cannot explain the observed first-order negative autocorrelation in

minute-by-minute mispricing changes. Indeed, even though adjusting for microstructure effects purges

autocorrelation from observed spot and futures returns, the negative autocorrelation in mispricing changes

becomes more pronounced after microstructure effects are adjusted for. When we consider the arbitrage

explanation via the use of the TAR model, however, we find that the TAR model is capable of generating

unconditional negative first-order autocorrelation in mispricing changes that is very similar to that which is

observed empirically. Indeed, once arbitrage effects are accounted for, we find that unpredictable mispricing

changes result.

We show that predictability in daily basis changes is the result of neither microstructure effects nor

arbitrage activity. Rather, it is a statistical illusion that arises because of overdifferencing a series that is

stationary around a trend.
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