Title page for ETD etd-01032005-074039


Type of Document Master's Thesis
Author Fleming, Dara Lynn
URN etd-01032005-074039
Title Evaluating bacterial cell immobilization matrices for use in a biosensor
Degree Master of Science
Department Materials Science and Engineering
Advisory Committee
Advisor Name Title
Love, Brian J. Committee Chair
Love, Nancy C. Committee Member
Meehan, Kathleen Committee Member
Keywords
  • alginate
  • NIPA
  • photopolymer
  • bacterial immobilization
Date of Defense 2004-12-07
Availability unrestricted
Abstract
A biosensor is proposed that contains bacteria that naturally effluxes potassium ions when threatened by electrophilic species. Pseudomonas aeruginosa is an activated sludge isolate and possesses the characteristic potassium efflux response. It has been immobilized in calcium alginate beads, photopolymer disks, and a thermally reversible gel in order to ultimately incorporate the immobilized system into a functional biosensor. The potassium efflux and cell viability were measured in the immobilized matrices.

Wastewater treatment is of utmost importance; however, processes are easily upset. Upsets can be caused by various electrophiles found in the environment, and can cause serious health effects to people or the environment downstream from an upset. Electrophiles can cause the activated sludge in wastewater treatment facilities to deflocculate, and untreated water can be lost downstream. Devising a detection system for proactively sensing electrophiles prior to an upset is an important complementary goal.

Immobilization systems have been evaluated including photopolymer coated alginate beads and sol gel coated alginate beads. The thermally reversible gel, NIPA-co-AAc (N-isopropylacrylamide-co-acrylic acid), shows promise as an immobilization matrix for the bacteria; however its high lower critical solution temperature (LCST) of ~33oC is problematic for typical, ambient applications. Another thermally reversible copolymer, N-isopropylacrylamide-co-N-acryloyl-6-amino caproic acid (NIPA-co-AcACA) was synthesized; however, it did not form a continuous matrix; making it useless as an immobilization scheme for biosensors. Alginate beads fall apart easily in bacteria media, but are structurally stable in potassium solutions. Cells immobilized in alginate beads seemed to efflux four times less potassium than did planktonic controls, while cells in thermally reversible gels effluxed a comparable amount of potassium as planktonic controls. This result may indicate a tighter matrix around the alginate immobilized cells, not allowing proper diffusion of potassium out of the matrix.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Flemingthesis.pdf 639.70 Kb 00:02:57 00:01:31 00:01:19 00:00:39 00:00:03

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.