Title page for ETD etd-01092004-090614


Type of Document Dissertation
Author Schultz, Jeffrey Patrick
Author's Email Address jeschult@vt.edu
URN etd-01092004-090614
Title Modeling Heat Transfer and Densification during Laser Sintering of Viscoelastic Polymers
Degree PhD
Department Materials Science and Engineering
Advisory Committee
Advisor Name Title
Kander, Ronald G. Committee Chair
Aning, Alexander O. Committee Member
Corcoran, Sean Gerald Committee Member
Kampe, Stephen L. Committee Member
Love, Brian J. Committee Member
Suchicital, Carlos T. A. Committee Member
Keywords
  • laser sintering
  • polymer powder
  • sintering
  • heat transfer
  • viscoelastic contact growth
Date of Defense 2003-12-18
Availability unrestricted
Abstract
Laser sintering (LS) is an additive manufacturing process which uses laser surface heating to induce consolidation of powdered materials. This work investigates some of the process-structure-property relationships for LS of viscoelastic polymers. A one-dimensional closed-form analytical solution for heating of a semi-infinite body, with a convective boundary condition, by a moving surface heat flux was developed. This solution approximates the shape of the Gaussian energy distribution of the laser beam more accurately than previous solutions in the literature. A sintering model that combines the effects of viscoelastic deformation driven by attractive surface forces and viscous flow driven by curvature-based forces was developed. The powder-bed temperature was approximated using the thermal model developed herein. The effect of the enthalpy of melting for semi-crystalline polymers was accounted for using a temperature recovery approach. Time-temperature superposition was used to account for the temperature dependence of the tensile creep compliance. The results of the combined-mechanism sintering model will be compared to the classic Mackenzie-Shuttleworth sintering model. A lab-scale LS unit was constructed to fabricate test specimens for model validation and to test the applicability of materials to LS. In this work, sintering four materials, polycarbonate (PC) and three molecular weights of polyethylene-oxide (PEO) was predicted using the aforementioned thermal and sintering models. Samples were fabricated using the lab-scale LS unit and the sintered microstructures were investigated using scanning electron microscopy. The rheologic, thermal and physical properties of the materials were characterized using standard methods and the relevant properties were used in the models. The choice of an amorphous polymer, PC, and a semi-crystalline polymer, PEO, affords comparison of the effects of the two material forms on contact growth during LS. The three molecular weights of PEO exhibit significantly different tensile creep compliances, however, the thermal and physical properties are essentially the same, and therefore the effect of molecular weight and subsequently the rheologic characteristics on contact growth during LS will be investigated. The effects of particle size, laser power, and bed temperature were also investigated.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Schultz_Disertation.pdf 17.05 Mb 01:18:56 00:40:35 00:35:31 00:17:45 00:01:30

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.