Title page for ETD etd-01312012-161014


Type of Document Master's Thesis
Author Choudhury, Udit
URN etd-01312012-161014
Title Dynamic Mechanical Properties of Cockroach(Periplaneta americana) Resilin
Degree Master of Science
Department Engineering Science and Mechanics
Advisory Committee
Advisor Name Title
Dudek, Daniel M. Committee Chair
Lesko, John J. Committee Member
Moore, Robert B. Committee Member
Keywords
  • Time-Concentration Superposition
  • Time-Temperature Superposition
  • Dynamic Mechanical Analysis
  • Biopolymers
  • Resilin
  • Biomaterials
Date of Defense 2012-01-23
Availability restricted
Abstract
Resilin is a cuticular protein found in a variety of insects. It can stretch up to 300% of its natural length without any creep or relaxation. Further, it operates across a wide frequency range from 5 Hz in locomotion to 13 kHz in sound production. Both the protein sequence and composition of natural resilin as well as the dynamic mechanical properties vary substantially across species. This suggests that mechanical properties may be evolutionarily tuned for specific functions within an insect. Here, samples of resilin obtained from the tibia-tarsal joint of the cockroach, Periplaneta americana, were tested using a custom built dynamic mechanical analyzer. The material properties in compression are obtained from the rubbery to glassy domain with time-temperature superposition (-2C to 55C) and time-concentration superposition (0 % to 93% ethanol by volume in water). At low frequency the storage modulus was found to be 1.5 MPa increasing to about 5 MPa in the transition zone. The glass transition frequency at 23C in complete hydration was found to be 200 kHz. The data shows that cockroach resilin is less resilient than dragonfly resilin at low frequencies, returning about 79% of the elastic strain energy at 25 Hz compared to 97% for dragonfly resilin. However, at the glass transition (200 kHz) the material returns about 47% of the elastic strain energy compared to 30% in dragonfly (2MHz ). The resilin pad in cockroach is a composite structure, acting as a compressive spring to passively extend the tibia-tarsal joint during cockroach locomotion. Its mechanical properties are more similar to the composite locust pre-alar arm than to the pure resilin dragonfly tendon, suggesting that macroscopic structural influences may be as important as molecular sequence differences in setting properties.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Choudhury_U_T_2012.pdf 1.28 Mb 00:05:54 00:03:02 00:02:39 00:01:19 00:00:06
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.