Title page for ETD etd-02072005-114119


Type of Document Master's Thesis
Author Subramanian, Sangeetha
Author's Email Address sangeeth@vt.edu
URN etd-02072005-114119
Title Effect of Digestion Processes on Dewatering and Bound Water Content of Sludge
Degree Master of Science
Department Environmental Engineering
Advisory Committee
Advisor Name Title
Novak, John T. Committee Chair
Boardman, Gregory D. Committee Member
Randall, Clifford W. Committee Member
Keywords
  • Charge titration
  • Filter press
  • Filter skin formation
  • Sequential anaerobic-aerobic digestion
Date of Defense 2005-02-04
Availability restricted
Abstract
Solids handling can contribute to a significant portion of the operational costs of a wastewater treatment plant, contributing up to 50% of the total expenses in certain instances. Sludge dewatering and drying therefore become necessary not only from the operational perspective, but also from the economical viewpoint. The J-Vap process combines the above-mentioned processes, by pressure filtration of sludge followed by application of vacuum and heat. However, when cationic polymer conditioned sludge is dewatered in the J-Vap, the polymer is suspected to interact with the filter media at high temperatures, resulting in the formation of a skin layer that hinders efficient dewatering. The first part of the study has looked at various digestion processes and how they affect the skin formation phenomenon. The results showed that temperature played a significant role in determining the amount of polymer that adhered to the filter media.

The second part of the study focused on different kinds of digestion processes and their effects on extracellular polymeric substances, bound water content and dewatering. Bound water tests were used to determine the maximum achievable solids concentration on dewatering. Bound water content of solids obtained from field centrifuges run at different torques and g values were evaluated and fitted on a standard graph obtained from lab pressed sludge with different solids concentration. The bound water was seen to decrease with increasing solids content till 20%, after which a nearly constant 1.0 g of bound water was present for every gram of dry solids seen. The results indicate that nearly 50% solids concentration could be achieved on mechanical dewatering. In reality, only 30 to 35% solids concentration was attained both in the lab and on the field. It was determined that dilatometry attributed the increase in cake solids to the decrease in bound water. However, the use of bound water as a predictive tool for determining cake solids was not practical since the bound water calculations use the solids content in the calculations.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] final_compiled_thesis.pdf 469.02 Kb 00:02:10 00:01:07 00:00:58 00:00:29 00:00:02
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.