Title page for ETD etd-02152010-173137

Type of Document Dissertation
Author Wang, Pu
URN etd-02152010-173137
Title Immersed Finite Element Particle-In-Cell Modeling of Surface Charging in Rarefied Plasmas
Degree PhD
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Wang, Joseph J. Committee Chair
Roy, Christopher J. Committee Co-Chair
Lin, Tao Committee Member
Scales, Wayne A. Committee Member
  • Charging
  • Particle-In-Cell
  • Immersed Finite Element
Date of Defense 2010-01-25
Availability restricted
Surface charging is a fundamental interaction process in space plasma engineering. A three-dimensional Immersed Finite Element Particle-In-Cell (IFE-PIC) method is developed to model surface charging involving complex boundary conditions. This method extends the previous IFE-PIC algorithm to explicitly include charge deposition on a dielectric surface for charging calculations. Three simulation studies are carried out using the new algorithm to model current collection and charging in both the orbital motion limited (OML) and space charge limited regime. The first one is a full particle simulation of the charging process of single small sphere and clusters of multiple small spheres in plasma. We find that while single sphere charging agrees well with the predictions of the OML theory, the charging of a sphere in a cluster is significantly, indicating that the often used OML charging model is not an accurate one to model charging in dusty plasma. The second one concerns a secondary electron emission experiment. The simulation includes detailed experimental setup in a vacuum chamber and the results are compared against experimental data. The simulation is used to determine the facility error in experiments. The third one is a full particle simulation of charging on lunar surface. The simulation concerns both flat and non-flat surface, and spacecraft on lunar surface, in the lunar polar region. The surface sees a mesothermal solar wind plasma flow and the emission of photoelectrons and secondary electrons. At a small sun elevation angle, the surface landscape generates a complex plasma flow field and local differential charging on surface. The results will be useful for further study of charging and levitation of lunar dust.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Wang_P_D_2010.pdf 23.28 Mb 01:47:47 00:55:25 00:48:30 00:24:15 00:02:04
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.