Title page for ETD etd-02242006-142346


Type of Document Master's Thesis
Author Sethi, Vivek
Author's Email Address vivsets@yahoo.com
URN etd-02242006-142346
Title Unbonded Monostrands for Camber Adjustment
Degree Master of Science
Department Structural Engineering and Materials
Advisory Committee
Advisor Name Title
Roberts-Wollmann, Carin L. Committee Co-Chair
Rojiani, Kamal B. Committee Co-Chair
Weyers, Richard E. Committee Member
Keywords
  • Probability distribution
  • Prediction models
  • Monte Carlo Simulation
  • Camber
  • Creep
  • Shrinkage
  • High strength concrete
  • Unbonded monostrands
Date of Defense 2006-02-13
Availability unrestricted
Abstract
Prestressed concrete structural members camber upwards or downwards depending upon the location of application of prestress force. Identical members do not camber equally due to variability of the factors influencing it. Differential camber in the beams, if significant, results in excessively tall haunches or girder top flange extending into the bottom of the slab. For adjacent members like deck bulb-tees and box girders that are to be transversely post-tensioned the differential camber causes problems during the fit up process. This variation is undesirable and hinders the smooth progress of construction work if not properly accounted for at the design stage.

Various factors influence camber and camber growth in prestressed members. Some of the factors are concrete strength and modulus, concrete creep and shrinkage properties, curing conditions, maturity of concrete at release of prestress force, initial strand stress, climatic conditions in storage and length of time in storage. Combinations of these variables result in variation of camber of otherwise similar beams at the time they are erected.

One way to increase the precision of camber estimation is to use Monte Carlo simulation based upon the randomized parameters affecting the camber and camber growth. In this method, the parameters, in the form of a probability distribution function, are combined and passed through a deterministic model resulting in camber and camber growth prediction with narrowed probability bounds as compared to single definite value given by most contemporary methods. This outcome gives the expected range of cambers for a given girder design. After determining the expected range of camber, the ultimate goal is to provide guidelines for using unbonded monostrands for camber adjustment.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Vivek2.pdf 3.11 Mb 00:14:23 00:07:23 00:06:28 00:03:14 00:00:16

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.