Title page for ETD etd-03122011-233633


Type of Document Dissertation
Author Lee, Jeong Heon
Author's Email Address jeonghel@vt.edu
URN etd-03122011-233633
Title Physical Layer Security for Wireless Position Location in the Presence of Location Spoofing
Degree PhD
Department Electrical and Computer Engineering
Advisory Committee
Advisor Name Title
Buehrer, Richard Michael Committee Chair
Hou, Yiwei Thomas Committee Member
Reed, Jeffrey Hugh Committee Member
Taaffe, Michael R. Committee Member
Yang, Yaling Committee Member
Keywords
  • Location Security
  • Attack Detection
  • Secure Positioning
  • Location Estimation
Date of Defense 2011-03-04
Availability unrestricted
Abstract
While significant research effort has been dedicated to wireless position location over the past decades, most location security aspects have been overlooked. Recently, with the proliferation of diverse wireless devices and the desire to determine their position, there is an increasing concern about the security of location information which can be spoofed or disrupted by adversaries or unreliable signal sources. This dissertation addresses the problem of securing a radio location system against location spoofing, specifically the characterization, analysis, detection, and localization of location spoofing attacks by focusing on fundamental location estimation issues.

The objective of this dissertation is four-fold. First, it provides an overview of fundamental security issues for position location, particularly associated with range-based localization. Of particular interest are security risks and vulnerabilities in location estimation, types of localization attacks, and their impact. The second objective is to characterize the effects of signal strength and beamforming attacks on range estimates and the resulting position estimate. The characterization can be generalized to a variety of location spoofing attacks and provides insight into the anomalous behavior of range and location estimators when under attack. Through this effort we can also identify effective attacks that are of particular interest to attack detection and localization. The third objective is to develop an effective technique for attack detection which requires neither prior environmental nor statistical knowledge. This is accomplished by exploiting the bilateral behavior of a hybrid framework using two received signal strength (RSS) based location estimators. We show that the resulting approach is effective at detecting attacks with the detection rate increasing with the severity of the induced location error. The last objective of this dissertation is to develop a localization method resilient to attacks and other adverse effects.

Since the detection and localization approach relies solely on RSS measurements in order to be applicable to a wide range of wireless systems and scenarios, this dissertation focuses on RSS-based position location. Nevertheless, many of the basic concepts and results can be applied to any range-based positioning system.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lee_J_D_2011.pdf 4.68 Mb 00:21:38 00:11:07 00:09:44 00:04:52 00:00:24

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.