Title page for ETD etd-04012010-223908


Type of Document Dissertation
Author Qi, Jun
Author's Email Address juqi@vt.edu
URN etd-04012010-223908
Title Design, Syntheses and Bioactivities of Androgen Receptor Targeted Taxane Analogs, Simplified Fluorescently Labeled Discodermolide Analogs, and Conformationally Constrained Discodermolide Analogs
Degree PhD
Department Chemistry
Advisory Committee
Advisor Name Title
Kingston, David G. I. Committee Chair
Carlier, Paul R. Committee Member
Etzkorn, Felicia A. Committee Member
Gibson, Harry W. Committee Member
Turner, S. Richard Committee Member
Keywords
  • docetaxel
  • paclitaxel
  • taxol
  • tubulin binding conformation
  • fluorescence
  • discodermolide
  • microtubules
  • tubulin
  • androgen receptor
  • cyanonilutamide
Date of Defense 2010-02-18
Availability restricted
Abstract
Prostate cancer is the most common non-skin cancer for men in America. The androgen receptor exerts transcriptional activity and plays an important role for the proliferation of prostate cancer cells. Androgen receptor ligands bind the androgen receptor and inhibit its transcriptional activity effectively. However, prostate cancer can progress to hormone refractory prostate cancer (HRPC) to avoid this effect. Chemotherapies are currently the primary treatments for HRPC. Unfortunately, none of the available chemotherapies are curative. Among them, paclitaxel and docetaxel are two of the most effective drugs for HRPC. More importantly, docetaxel is the only form of chemotherapy known to prolong survival in the HRPC patients. We hypothesized that the conjugation of paclitaxel or docetaxel with an androgen receptor ligand will overcome the resistance mechanism of HRPC. Eleven conjugates were designed, synthesized and biologically evaluated. Some of them were active against androgen-independent prostate cancer, but they were all less active than paclitaxel and docetaxel.

Discodermolide is a microtubule interactive agent, and has a similar mechanism of action to paclitaxel. Interestingly, discodermolide is active against paclitaxel-resistant cancer cells and can synergize with paclitaxel, which make it an attractive anticancer drug candidate. Understanding the bioactive conformation of discodermolide is important for drug development, but this task is difficult due to the linear and flexible structure of discodermolide. Indirect evidence for the orientation of discodermolide in the tubulin binding pocket can be obtained from fluorescence spectroscopy of the discodermolide tubulin complex. For this purpose, we designed and synthesized a simplified fluorescently labeled discodermolide analog, and it was active in the tubulin assembly bioassay. In addition, a conformationally constrained discodermolide was designed to mimic the bioactive conformation according to computational modeling. The synthetic effort was made, but failed during one of the final steps.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Qi_J_D_2010.pdf 3.78 Mb 00:17:28 00:08:59 00:07:52 00:03:56 00:00:20
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.