Title page for ETD etd-04092009-154109


Type of Document Dissertation
Author Hogan, Shelly Patricia
Author's Email Address hogans@vt.edu
URN etd-04092009-154109
Title Grape Extracts for Type 2 Diabetes Treatment Through Specific Inhibition of α-Glucosidase and Antioxidant Protection
Degree PhD
Department Food Science and Technology
Advisory Committee
Advisor Name Title
Zhou, Kequan Kevin Committee Chair
Bevan, David R. Committee Member
Duncan, Susan E. Committee Member
Liu, Dongmin Committee Member
O'Keefe, Sean F. Committee Member
Keywords
  • oxidative stress
  • diabetes
  • bioactive phenolic compounds
  • alpha-glucosidase
  • enzyme kinetics
  • macromolecule
  • Functional foods
Date of Defense 2009-04-02
Availability unrestricted
Abstract
Research was conducted to investigate the effect of phenolic compounds derived from inherently rich antioxidant grape extracts (GE) on α-glucosidase inhibitory activity in vitro and in vivo blood glucose control, oxidative stress, and inflammation associated with obesity-induced type 2 diabetes. Because intestinal α-glucosidase plays a key role in the digestion and absorption of complex carbohydrates, the inhibition of this enzyme is a metabolic target for managing diabetes by improving post-prandial blood glucose control. Initially, red Norton wine grape (Vitis aestivalis) and pomace extracts were evaluated and determined to have notable phenolic content and antioxidant properties. Next, grape skin (GSE) and pomace extract (GPE) were tested and both had in vitro yeast and mammalian α-glucosidase inhibitory activity. The GSE was 32-times more potent at inhibiting yeast α-glucosidase than acarbose, a commercial oral hypoglycemic agent. From HPLC and LC-MS analysis, three phenolics from the GSE (resveratrol, ellagic acid, and catechin) were identified as active inhibitory compounds. The acute administration of GPE (400 mg/kg bw) to mice reduced postprandial blood glucose level by 35% following an oral glucose tolerance test compared to the control. The daily supplementation (250 mg/kg bw) of GSE and GPE for 12-weeks to mice affected fasting blood glucose levels, oxidative stress, and inflammatory biomarkers associated with obesity and type 2 diabetes. At the end of the study, the GSE group gained significantly (P < 0.05) more weight (24.6 g) than the control, high fat, or GPE groups (11.2, 20.2, 19.6 g, respectively). Both GSE and GPE groups had lower fasting blood glucose levels (119.3 and 134.2 mg/dL, respectively) compared to the high fat group (144.6 mg/dL). The 12-week supplementation of GSE was associated with a higher plasma oxygen radical absorbance capacity (ORAC), lower liver lipid peroxidation as measure by TBARS, and lower levels of inflammation as measured by plasma C-reactive protein compared to the high fat group. In conclusion, our collective observations from these studies provide insight into the potential effects of antioxidant rich grape extracts on diabetes-related biomarkers through a dual mechanism of antioxidant protection and specific inhibition of intestinal α-glucosidases.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  HoganPhD_ETD_2.pdf 1.37 Mb 00:06:21 00:03:16 00:02:51 00:01:25 00:00:07

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.