Title page for ETD etd-04152009-094121


Type of Document Dissertation
Author Charonko, John James
URN etd-04152009-094121
Title Studies of Stented Arteries and Left Ventricular Diastolic Dysfunction Using Experimental and Clinical Analysis with Data Augmentation
Degree PhD
Department Biomedical Engineering
Advisory Committee
Advisor Name Title
Vlachos, Pavlos P. Committee Chair
Ball, Kenneth S. Committee Member
Little, William C. Committee Member
Prabhu, Santosh Committee Member
Ragab, Saad A. Committee Member
Roan, Michael J. Committee Member
Keywords
  • wall shear stress
  • oscillatory shear index
  • left ventricular diastolic dysfunction
  • dilated cardiomyopathy
  • phase contrast magnetic resonance imaging
  • digital particle image velocimetry
  • coronary stents
Date of Defense 2009-04-01
Availability unrestricted
Abstract

Cardiovascular diseases are among the leading causes of deaths worldwide, but the fluid mechanics of many of these conditions and the devices used to treat them are only partially understood.  This goal of this dissertation was to develop new experimental techniques that would enable translational research into two of these conditions.  The first set of experiments examined  in-vitro the changes in Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI) caused by the implantation of coronary stents into the arteries of the heart using Particle Image Velocimetry.  These experiments featured one-to-one scaling, commercial stents, and realistic flow and pressure waveforms, and are believed to be the most physiologically accurate stent experiments to date.  This work revealed distinct differences in WSS and OSI between the different stent designs tested, and showed that changes in implantation configuration also affected these hemodynamic parameters.  Also, the production of vortices near the stent struts during flow reversal was noted, and an inverse correlation between WSS and OSI was described.

The second set of experiments investigated Left Ventricular Diastolic Dysfunction (LVDD) using phase contrast magnetic resonance imaging (pcMRI).  Using this technique, ten patients with and without LVDD were scanned and a 2D portrait of blood flow through their heart was obtained.  To augment this data, pressure fields were calculated from the velocity data using an omni-directional pressure integration scheme coupled with a proper-orthogonal decomposition-based smoothing.  This technique was selected from a variety of methods from the literature based on an extensive error analysis and comparison.  With this coupled information, it was observed that healthy patients exhibited different flow patterns than diseased patients, and had stronger pressure differences during early filling.  In particular, the ratio of early filling pressure to late filling pressure was a statistically significant predictor of diastolic dysfunction.  Based on these observations, a novel hypothesis was presented that related the motion of the heart walls to the observed flow patterns and pressure gradients, which may explain the differences observed clinically between healthy and diseased patients.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Charonko_Dissertation_ETD_version2.pdf 7.14 Mb 00:33:02 00:16:59 00:14:52 00:07:26 00:00:38

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.