Title page for ETD etd-04162010-154904


Type of Document Dissertation
Author Varano, Nathaniel David
Author's Email Address nvarano@vt.edu
URN etd-04162010-154904
Title Fluid Dynamics and Surface Pressure Fluctuations of Turbulent Boundary Layers Over Sparse Roughness
Degree PhD
Department Aerospace and Ocean Engineering
Advisory Committee
Advisor Name Title
Simpson, Roger L. Committee Chair
Devenport, William J. Committee Member
Mason, William H. Committee Member
Ragab, Saad A. Committee Member
Roy, Christopher J. Committee Member
Keywords
  • roughness
  • laser Doppler velocimetry
  • skin friction
  • turbulence
  • boundary layer
  • surface pressure
Date of Defense 2010-01-29
Availability unrestricted
Abstract
Turbulent boundary layers over rough surfaces are a common, yet often overlooked, problem of practical engineering importance. Development of correlations between boundary layer parameters that can be used in turbulence models and the surface geometry is the only practical option for solving these problems. Experiments have been performed on a two-dimensional zero pressure gradient turbulent boundary layer over sparsely spaced hemispherical roughness elements of 2 mm diameter. Laser Doppler velocimetry was used to measure all three components of velocity. The friction velocity was calculated using an integral momentum balance. Comparisons were made with various fitting methods that assume the von Kármán constant is appropriate for rough walls. Results indicate that this is not the case, and that the slope of the semi-logarithmic portion of the mean streamwise profile may be a function of the ratio of inner and outer length scales. Comparisons were also made between various correlations that relate the surface geometry to the behavior of the mean velocity profile. In general, the existing correlations achieved a reasonable agreement with the data within the estimated uncertainties.

A detailed study of the local turbulent structure around the roughness elements was performed. It was found that, in contrast to `sharper-edged' elements such as cylinders, an elevated region of TKE and Reynolds shear stress was found downstream of the element below the peak. This can be explained by the delay in separation of the flow coming over the top of the element due to the smooth curvature of the element.

Surface pressure fluctuation measurements were made as well using a dual microphone noise reduction technique. There have only been a few past experiments on the surface pressure fluctuations under rough wall boundary layers. However, it has been shown that the spectra of the wall fluctuations can be used to predict the far-field noise spectrum [1,2]. Therefore it is been the goal of this research to verify existing correlations between the surface pressure fluctuation spectrum and the surface geometry as well as develop new correlations that provide insight into the interactions between the turbulent motions in the flow surface pressure.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Varano_ND_D_2010.pdf 6.67 Mb 00:30:52 00:15:52 00:13:53 00:06:56 00:00:35

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.