Title page for ETD etd-04182009-041237


Type of Document Master's Thesis
Author Eades, Herbert H
URN etd-04182009-041237
Title Thermal modeling of hybrid microelectronics
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Lee, Fred C. Committee Member
Nelson, Douglas J. Committee Member
Vick, Brian L. Committee Member
Keywords
  • Microelectronics
Date of Defense 1990-07-07
Availability restricted
Abstract

As the size of hybrid microelectronics is reduced, the power density increases and thermal interaction between heat-producing devices becomes significant. A nondimensional model is developed to investigate the effects of heat source interaction on a substrate. The results predict the maximum temperature created by a device for a wide range of device sizes, substrate thicknesses, device spacings, and external boundary conditions. They can be used to assess thermal interaction for preliminary design and layout of power devices on hybrid substrates.

Previous work in this area typically deals with semi-infinite regions or finite regions with isothermal bases. In the present work, the substrate and all heat dissipating mechanisms below the substrate are modeled as two separate thermal resistances in series. The thermal resistance at the base of the substrate includes the bond to the heat sink, the heat sink, and convection to a cooling medium. Results show that including this external resistance in the model can significantly alter the heat flow path through the substrate and the spreading resistance of the substrate. Results also show an optimal thickness exists to minimize temperature rise when the Biot number is small and the device spacing is large.

Tables are presented which list nondimensional values for maximum temperature and spreading resistance over a wide range of substrate geometries, device sizes, and boundary conditions. A design example is included to demonstrate an application of the results to a practical problem. The design example also shows the error that can result from assuming an isothermal boundary at the bottom of the substrate rather than a finite thermal resistance below the substrate.

Several other models are developed and compared with the axisymmetric model. A one-dimensional model and two two-dimensional models are simpler than the axisymmetric model but prove to be inaccurate. The axisymmetric model is then compared with a full three-dimensional model for accuracy. The model proves to be accurate when sources are symmetrically spaced and when sources are asymmetrical under certain conditions. However, when the sources are asymmetrical the axisymmetric model does not always predict accurate results.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1990.E323.pdf 2.53 Mb 00:11:41 00:06:00 00:05:15 00:02:37 00:00:13
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.