Title page for ETD etd-04222005-084217


Type of Document Dissertation
Author Deng, Jianjun
Author's Email Address jideng1@vt.edu
URN etd-04222005-084217
Title INTERFACIAL CHARACTERIZATION OF POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) AMPHIPHILES AND POLYMER BLENDS: THERMODYNAMICS, MORPHOLOGY, AND RHEOLOGY
Degree PhD
Department Chemistry
Advisory Committee
Advisor Name Title
Esker, Alan R. Committee Chair
Crawford, Daniel T. Committee Member
Dillard, John G. Committee Member
Marand, Herv L. Committee Member
Ward, Thomas C. Committee Member
Keywords
  • Polymer blends
  • Nanofiller
  • Polyhedral oligomeric silsesquioxane (POSS)
  • Langmuir monolayers
Date of Defense 2005-04-18
Availability unrestricted
Abstract
Over the past two decades one class of oligomers, polyhedral oligomeric silsesquioxanes (POSS), has attracted considerable attention because of their unique hybrid organic/inorganic molecular structures and nanoscopic sizes. While surface and interfacial properties may play a key role in many potential POSS applications, relatively little is actually known about the surface properties of POSS. This dissertation provides studies of the interfacial aspects of both POSS molecules and POSS/polymer blends at the air/water interface (A/W) through surface pressure-area per molecule (Pi-A) isotherm, Brewster angle microscopy (BAM), and interfacial stress rheometry (ISR) studies.

Results for POSS Langmuir thin films at A/W show that trisilanol-POSS derivatives are a new class of amphiphiles, that exhibit multiple phase transitions in going from traditional 2D Langmuir monolayers (1 POSS molecule thick) to various 3D multilayer films upon compression. With small length/diameter ratios and bulky shapes, the monolayer phase behavior and packing states of different POSS are simpler than the traditional rod-like lipids. Meanwhile trisilanol-POSS derivatives have very different collapse behavior and multilayer organization showing strong substituent effects even though they have similar molecular sizes. While trisilanolisobutyl-POSS (TiBuP) monolayers undergo collapse around Pi=18 mNm-1 and form various ordered or disordered solid-like 3D aggregates at different compression rates, trisilanolcyclohexyl-POSS (TCyP) monolayers collapse into trilayers via instantaneous nucleation with hemispherical edge growth around Pi=3.7 mNm-1. ISR results reveal three different non-Newtonian flow regimes that correlate with phase transitions in the Pi-A isotherms. Further symmetric compression after trilayer formation induces TCyP thin films to self-assemble into highly ordered crystalline-like hydrophobic multilayers (8 POSS molecule thick) with unique rod-like morphologies, which are dramatically different from “collapsed” morphologies seen in other systems.

By treating POSS derivatives as ideal nanofiller for studying confinement effects on filled polymer systems, amphiphilic poly(dimethylsiloxane) (PDMS) derivatives with different polar functional groups are studied as blends with TiBuP and octaisobutyl-POSS at A/W to resolve one of the key challenges for current nanocomposite applications: How to control nanofiller dispersion in polymer matrices? The results in this dissertation reveal that introducing polar groups into polymeric matrix polymers is a good way to control dispersion.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  JianjunDeng2nd.pdf 19.80 Mb 01:31:39 00:47:08 00:41:14 00:20:37 00:01:45

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.