Title page for ETD etd-04252007-092722


Type of Document Master's Thesis
Author Lynch, Stephen P.
Author's Email Address slynch@vt.edu
URN etd-04252007-092722
Title Endwall Heat Transfer and Shear Stress for a Nozzle Guide Vane with Fillets and a Leakage Interface
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Thole, Karen A. Committee Chair
Ng, Fai Committee Member
Vick, Brian L. Committee Member
Keywords
  • gas turbines
  • vane endwalls
  • film-cooling
  • fillets
Date of Defense 2007-04-18
Availability unrestricted
Abstract
Increasing the combustion temperatures in a gas turbine engine to achieve higher efficiency and power output also results in high heat loads to turbine components downstream of the combustor. The challenge of adequately cooling the nozzle guide vane directly downstream of the combustor is compounded by a complex vortical secondary flow at the junction of the endwall and the airfoil. This flow tends to increase local heat transfer rates and sweep coolant away from component surfaces, as well as decrease the turbine aerodynamic efficiency. Past research has shown that a large fillet at the endwall-airfoil junction can reduce or eliminate the secondary flow. Also, leakage flow from the interface gap between the combustor and the turbine can provide some cooling to the endwall. This study examines the individual and combined effects of a large fillet and realistic combustor-turbine interface gap leakage flow for a nozzle guide vane. The first study focuses on the effect of leakage flow from the interface gap on the endwall upstream of the vane. The second study addresses the influence of large fillets at the endwall-airfoil junction, with and without upstream leakage flow. Both studies were performed in a large low-speed wind tunnel with the same vane geometry. Endwall shear stress measurements were obtained for various endwall-airfoil junction geometries without upstream leakage flow. Endwall heat transfer and cooling effectiveness were measured for various leakage flow rates and leakage gap widths, with a variety of endwall-airfoil junction geometries.

Results from these studies indicate that the secondary flow has a large influence on the coverage area of the leakage coolant. Increased leakage flow rates resulted in better cooling effectiveness and coverage, but also higher heat transfer rates. The two fillet geometries tested affected coolant coverage by displacing coolant around the base of the fillet, which could result in undesirably high gradients in endwall temperature. The addition of a large fillet to the endwall-airfoil junction, however, reduced heat transfer, even when upstream leakage flow was present.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lynch_MSThesis_ETDrev1.pdf 1.70 Mb 00:07:51 00:04:02 00:03:32 00:01:46 00:00:09

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.