Title page for ETD etd-04252009-040642


Type of Document Master's Thesis
Author Grosskopf, Paul P.
URN etd-04252009-040642
Title Mechanical behavior of a ceramic matrix composite material
Degree Master of Science
Department Engineering Mechanics
Advisory Committee
Advisor Name Title
Duke, John C. Jr. Committee Chair
Hasselman, D. P. H. Committee Member
Henneke, Edmund G. II Committee Member
Keywords
  • Ceramic materials
Date of Defense 1990-11-05
Availability restricted
Abstract

Monolithic ceramic materials have been used in industry for hundreds of years. These materials have proven their usefulness in many applications, yet, their potential for critical structural applications is limited. The existence of an imperfection in a monolithic ceramic on the order of several microns in size may be critical, resulting in catastrophic failure. To overcome this extreme sensitivity to sman material imperfections, reinforced ceramic materials have been developed. A ceramic matrix which has been reinforced with continuous fibers is not only less sensitive to microscopic flaws, but is also able to sustain significant damage without suffering catastrophic failure.

A borosilicate glass reinforced with several layers of plain weave silicon carbide cloth (Nicalon) has been studied. The mechanical testing which was performed included both flexural and tensile loading configurations. This testing was done not only to determine the material properties, but also to initiate a controlled amount of damage within each specimen.

Several nondestructive testing techniques, including acousto-ultrasonics (AU), were performed on the specimens periodically during testing. The AU signals were monitored through the use of an IBM compatible personal computer with a high speed data acquisition board. Software has been written which manipulates the AU signals in both the time and frequency domains, resulting in quantitative measures of the mechanical response of the material.

This paper will compare the measured AU parameters to both the mechanical test results and data from other nondestructive methods including ultrasonic C-scans and penetrant enhanced X-ray radiography.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] LD5655.V855_1990.G767.pdf 9.97 Mb 00:46:08 00:23:43 00:20:45 00:10:22 00:00:53
[BTD] next to an author's name indicates that all files or directories associated with their ETD are accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.