Title page for ETD etd-04272001-090416


Type of Document Master's Thesis
Author McMahon, Callie Griggs
Author's Email Address cagriggs@vt.edu
URN etd-04272001-090416
Title Muscle Strength and Body Cell Mass in Postmenopausal Women
Degree Master of Science
Department Human Nutrition, Foods, and Exercise
Advisory Committee
Advisor Name Title
Earthman, Carrie P. Committee Chair
Herbert, William G. Committee Member
Poole, Kathleen P. Committee Member
Roberto, Karen A. Committee Member
Keywords
  • bioimpedance spectroscopy
  • intracellular water
  • periodization
  • strength training
Date of Defense 2001-04-25
Availability restricted
Abstract

It has been observed that the normal process of aging is associated with a decline in muscle strength and mass. It has also been observed that total body potassium and intracellular water (ICW) decrease with age, reflecting a loss of body cell mass (BCM), 60% of which is the skeletal muscle. It is generally accepted that traditional high-intensity strength training (ST) regimens can not only attenuate, but in some cases, reverse some of these aging-related changes. Periodization, a nontraditional approach to strength training, has been demonstrated to stimulate more rapid increases in muscle strength than traditional approaches in young adults; however, it has not been comprehensively evaluated in postmenopausal women. Investigators have consistently reported an increase in muscle strength in older adults undergoing both short- and long-term traditional ST programs. It is fairly well accepted that early increases in muscle strength are attributable to neurologic adaptations. There has been less consistency in the literature regarding the timing and nature of changes in muscle quality and mass with ST. Although several investigators have reported increased muscle protein synthesis rates as early as 2 weeks after ST initiation in older adults, the majority of published reports support the notion that significant NET gains in intracellular protein, and thus, gains in muscle mass/volume/hypertrophy do not occur before 9-10 weeks. Changes in intracellular water, which would be expected to occur with changes in intracellular protein, have not been studied during short-term ST interventions in older adults. Bioimpedance spectroscopy (BIS) has been validated as a field technique to accurately measure ICW (and BCM) changes in HIV infected individuals. The primary aim of the current study was to determine if muscle strength would increase in postmenopausal women undergoing a novel (periodized) ST intervention of 10 weeks duration. A secondary aim was to determine if BIS would detect a change in ICW in the study subjects from baseline to study conclusion.

Study participants were eleven, healthy postmenopausal women between the ages of 60 and 74 (mean age: 65 ± 4.4 y) who had not engaged in ST in the six months preceding the study. ICW and muscle strength were assessed at baseline and at study conclusion. The ST program was conducted twice a week for 10 weeks at the Senior Center in Blacksburg, VA. Participants performed seven different exercises incorporating upper body and lower body muscle groups. The women performed one set of 8-12 repetitions at an intensity of 80% of one repetition maximum (1 RM) the first week, progressing to 2 sets of 8-12 repetitions at the same intensity during the second week. The remaining weeks consisted of three sets of 8-12 repetitions, performed at an intensity of 80%, 75%, and 70% of their current 1 RM, respectively. One RM was reassessed every other week. The major result from this study was that muscle strength of all trained muscle groups increased in postmenopausal women undergoing 10 weeks of pyramid ST (P<0.05). In addition, the pyramid ST protocol utilized in this study was well-tolerated and resulted in no injuries in any of the older women in the study, indicating that this approach may be used safely in this population. Mean ICW measured by the field method BIS did not change over the course of the study. This result was consistent with other published data reporting no changes in lean body mass or muscle volume/area by more sophisticated techniques.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] Thesis.pdf 360.61 Kb 00:01:40 00:00:51 00:00:45 00:00:22 00:00:01
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.