Title page for ETD etd-04302010-144750


Type of Document Master's Thesis
Author Johnson, Kelly Ann
URN etd-04302010-144750
Title The Effect of Stifle Angle on Stifle Kinematics following TPLO: An in vitro Experimental Analysis
Degree Master of Science
Department Veterinary Medical Sciences
Advisory Committee
Advisor Name Title
Lanz, Otto I. Committee Chair
Harper, Tisha A. Committee Member
McLaughlin, Ronald Committee Member
Keywords
  • Hyperextension
  • Internal rotation
  • Cranial tibial translation
  • Kinematics
  • Tibial plateau leveling osteotomy
Date of Defense 2010-04-19
Availability unrestricted
Abstract
Objective: To determine the ability of the Tibial Plateau Leveling Osteotomy (TPLO) to restore normal joint kinematics in a cranial cruciate ligament (CrCL)-deficient stifle through a loaded range of motion.

Methods: Paired pelvic limbs from 12 dogs were compared in an in vitro biomechanical study. Each limb was placed in a custom designed jig at 120° of stifle extension under an axial load of 20% body weight. Electromagnetic motion tracking sensors were placed on the distal femur and proximal tibia. A force was applied at approximately 10 N/sec to mimic the action of the quadriceps muscle. Force application allowed the limb to move from 120° to maximal extension. Positional data was acquired at 60 points/second. Each limb was tested under normal, CrCL-deficient, and TPLO-treated conditions.

Results: The TPLO failed to normalize CTT within the CrCL-deficient stifle; however, values trended towards intact values throughout the range of motion. No significant differences were noted in internal rotation in any of the three conditions from 120° – 137°. Hyperextension values did not differ significantly between conditions.

Conclusion: Data from this biomechanical model suggests that the TPLO fails to neutralize CTT throughout a loaded range of motion. Internal rotation and hyperextension values were not found to differ significantly between intact, CrCL-deficient and TPLO repaired stifles. The effectiveness of the TPLO in restoring normal biomechanics is more significant at greater angles of flexion.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Johnson_KA_T_2010.pdf 464.18 Kb 00:02:08 00:01:06 00:00:58 00:00:29 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.