Title page for ETD etd-04302010-144750

Type of Document Master's Thesis
Author Johnson, Kelly Ann
URN etd-04302010-144750
Title The Effect of Stifle Angle on Stifle Kinematics following TPLO: An in vitro Experimental Analysis
Degree Master of Science
Department Veterinary Medical Sciences
Advisory Committee
Advisor Name Title
Lanz, Otto I. Committee Chair
Harper, Tisha A. Committee Member
McLaughlin, Ronald Committee Member
  • Hyperextension
  • Internal rotation
  • Cranial tibial translation
  • Kinematics
  • Tibial plateau leveling osteotomy
Date of Defense 2010-04-19
Availability unrestricted
Objective: To determine the ability of the Tibial Plateau Leveling Osteotomy (TPLO) to restore normal joint kinematics in a cranial cruciate ligament (CrCL)-deficient stifle through a loaded range of motion.

Methods: Paired pelvic limbs from 12 dogs were compared in an in vitro biomechanical study. Each limb was placed in a custom designed jig at 120° of stifle extension under an axial load of 20% body weight. Electromagnetic motion tracking sensors were placed on the distal femur and proximal tibia. A force was applied at approximately 10 N/sec to mimic the action of the quadriceps muscle. Force application allowed the limb to move from 120° to maximal extension. Positional data was acquired at 60 points/second. Each limb was tested under normal, CrCL-deficient, and TPLO-treated conditions.

Results: The TPLO failed to normalize CTT within the CrCL-deficient stifle; however, values trended towards intact values throughout the range of motion. No significant differences were noted in internal rotation in any of the three conditions from 120° – 137°. Hyperextension values did not differ significantly between conditions.

Conclusion: Data from this biomechanical model suggests that the TPLO fails to neutralize CTT throughout a loaded range of motion. Internal rotation and hyperextension values were not found to differ significantly between intact, CrCL-deficient and TPLO repaired stifles. The effectiveness of the TPLO in restoring normal biomechanics is more significant at greater angles of flexion.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Johnson_KA_T_2010.pdf 464.18 Kb 00:02:08 00:01:06 00:00:58 00:00:29 00:00:02

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.