Title page for ETD etd-05042007-184715


Type of Document Dissertation
Author Wilding, Matthew David
URN etd-05042007-184715
Title Melt Processing Thermally Unstable and High Molecular Weight Polymers with Supercritical Carbon Dioxide
Degree PhD
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Baird, Donald G. Committee Chair
Davis, Richey M. Committee Member
Kiran, Erdogan R. Committee Member
McGrath, James E. Committee Member
Keywords
  • polyethylene
  • extrusion
  • acrylonitrile
Date of Defense 2007-04-24
Availability unrestricted
Abstract

This thesis is concerned with the development of a continuous melt extrusion process utilizing CO2 for the production of materials that cannot be typically melt processed. The first goal of this study is to determine under what conditions it is possible to use CO2 to plasticize and, thereby, reduce the viscosity of an acrylonitrile (AN) copolymer in an extrusion process and render it melt processable. In order to assess whether it was possible to absorb adequate amounts of CO2 in short residence times by injection into a single screw extruder, a slit-die rheometer was attached to the end of the extrusion system for the purpose of directly assessing the viscosity reduction. A chemorheological analysis was performed on 65 and 85% AN copolymers to establish the temperature at which the 85% material would be stable for melt processing. This, coupled with studies correlating the degree of Tg and viscosity reduction with the amount of absorbed CO2, allowed one to establish conditions for melt extrusion of the 85% AN. It was determined that the 85% AN material should absorb at least 5 weight percent CO2 for a processing temperature reduction of 26°C in the extrusion process.

The second goal of this study is to determine to what extent CO2 can be used as a processing aid to melt process polyethylenes of higher molecular weight than can be typically melt processed. To assess the ability to melt process high molecular weight polyethylenes with CO2, the viscosity of a 460,000 g/mol HDPE plasticized with various amounts of absorbed CO2 as determined with the slit-die rheometer. A relationship was developed to determine the maximum molecular weight polyethylene that could be processed at a given viscosity reduction due to absorbed CO2. The viscosity of a blend of 40 weight percent UHMWPE with the 460,000 g/mol HDPE with 12 weight percent CO2 was reduced to that of the pure 460,000 g/mol HDPE as predicted by the relationship. Preliminary studies using a pressurized chamber attached to the exit of the die allowed one to assess the conditions under which suppression of foaming is possible.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  mdw_etd.pdf 2.56 Mb 00:11:51 00:06:06 00:05:20 00:02:40 00:00:13

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.