Title page for ETD etd-05052004-112502


Type of Document Master's Thesis
Author Hansen, Gail Ann
Author's Email Address gahansen@vt.edu, gahansen@hotmail.com
URN etd-05052004-112502
Title Upper Extremity Interaction with a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Joint
Degree Master of Science
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Duma, Stefan M. Committee Chair
Madigan, Michael L. Committee Member
Stitzel, Joel D. Committee Member
Keywords
  • Hyperextension
  • Elbow
  • Upper Extremity
  • Side Airbag
  • Injury
Date of Defense 2004-04-22
Availability restricted
Abstract
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5th percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries. Injury severity ranged from minor cartilage damage to more severe joint dislocations and transverse fractures of the distal humerus. Peak elbow bending moments ranged from 42.4 Nm to 146.3 Nm. Peak bending moment proved to be a significant indicator of any elbow injury (p=0.02) as well as elbow joint dislocation (p=0.01). Logistic regression analyses were used to develop single and multivariate injury risk functions. Using peak moment data for the entire test population, a 50% risk of obtaining any elbow injury was found at 56 Nm while a 50% risk of sustaining an elbow joint dislocation was found at 93 Nm for the female population. These results indicate that the peak elbow bending moments achieved in Part I are associated with a greater than 90% risk for elbow injury. Subsequently, the airbag was re-designed in an effort to mitigate this as well as the other upper extremity injury risks. Part III assessed the enhanced side airbag module to ensure injury risks had been reduced prior to implementing the new system. To facilitate this, 12 enhanced side airbag deployments were conducted using the same procedures as Part I. Results indicate that the re-designed side airbag has effectively mitigated elbow injury risks induced by the original side airbag design. It is anticipated that this study will provide researchers with additional injury criteria for assessing upper extremity injury risk caused by both military and automotive side airbag deployments.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
[VT] HansenMastersThesis.pdf 5.36 Mb 00:24:49 00:12:45 00:11:10 00:05:35 00:00:28
[VT] indicates that a file or directory is accessible from the Virginia Tech campus network only.

Browse All Available ETDs by ( Author | Department )

dla home
etds imagebase journals news ereserve special collections
virgnia tech home contact dla university libraries

If you have questions or technical problems, please Contact DLA.